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Abstract : We give a new inequality of the iso-Hölder set’s dimension within the framework
of the centered multifractal formalism. Besides we develop an example of a class of measure
for which this inequality is finer than that established by the classic formalism.

Key words: Multifractal formalism, packing, dimension.

AMS Subject Class. (2000): 28A80, 28A78, 28A12.

1. Introduction and preliminaries

One of the targets of the multifractal formalism is to establish the packing
dimension of the iso-Hölder set

Xα =

{
x ∈ suppµ, lim sup

r→0

log µ
(
B(x, r)

)

log r
= α

}
,

where µ is a Borel probability measure on Rd and α is a positive number.
By a heuristics approach, physicists [9, 6, 8] obtained for some self-similar

measures that Dim(Xα), where Dim is the packing dimension [16], is equal to
the Legendre transform of a free energy function τ , i.e.,

Dim(Xα) = τ∗ (α) .

This income is generally false. Besides mathematicians [12, 5, 4, 14, 1, 10, 2,
11, 3, 15, 13] proved the inequality below

Dim(Xα) 6 τ∗ (α) .

By considering the nature of Xα, the classic formalism is based on quantities
connecting systematically the measure of every ball of a centered packing
in its diameter. We present in this paper a new approach that consists in
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64 L.B. Youssef

introducing quantities not connecting necessarily the measure of every ball of
a centered packing in its diameter.

We were inspired by the work of F. Ben Nasr in [2] to establish a new
inequality involving Dim(Xα), where

X
α =

{
x ∈ suppµ, lim sup

r→0

log µ
(
B(x, r)

)

log r
≤ α

}
.

Our result would be better if we take place outside of the framework of the
classic measure classes as illustrates it the example developed in the third sec-
tion on a class of of coin-tossing measure. This paper contains three sections.
We finish this section by giving some preliminaries. In the second section
we establish our main theorems. Finally in the third section we develop an
application of our result.

We present afterward the multifractal formalism and the main results es-
tablished by Olsen in [10]. We shall use these preliminaries in the following
sections.

Let µ be a Borel probability measure on Rd. For E ⊂ Rd, q, t ∈ R and
ε > 0, by adopting the convention

{
0q = +∞, q < 0,

00 = 1,

put

P
q,t
µ,ε(E) = sup

{∑

i

µ
(
B (xi, ri)

)q(2ri)t

}
,

where the supremum is taken over all the centered ε−packing
(
B (xi, ri)

)
i∈I

of E. Also put
P

q,t
µ (E) = lim

ε→0
P

q,t
µ,ε(E).

Since P
q,t
µ is a prepacking-measure, then we consider,

P q,t
µ (E) = inf

{∑

i

P
q,t
µ (Ei), E ⊂

⋃

i

Ei

}
.

It is clear that

P q,t
µ (E) = inf

{∑

i

P
q,t
µ (Ei), E =

⋃

i

Ei

}
. (1.1)
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and

P q,t
µ (E) = inf

{∑

i

P
q,t
µ (Ei),

(⋃

i

Ei

)
is a partition of E

}
. (1.2)

The prepacking-measure P
q,t
µ and the measure P q,t

µ assign respectively a di-
mension to each subset E. These dimensions are respectively denoted by
∆q

µ(E) and Dimq
µ(E). They are respectively characterized by

P
q,t
µ (E) =

{
∞ if t < ∆q

µ(E)
0 if t > ∆q

µ(E)

and

P q,t
µ (E) =

{
∞ if t < Dimq

µ(E)
0 if t > Dimq

µ(E)

Remark 1. The numbers ∆q
µ(E) and Dimq

µ(E) are respectively the multi-
fractal extensions of the prepacking dimension ∆(E) and the packing dimen-
sion Dim(E) of E [16], in fact

∆0
µ(E) = ∆(E) and Dim0

µ(E) = Dim(E).

Note that L. Olsen established in [10] the following results

Dim(E) ≤ ∆(E) (1.3)

and

Dim

(⋃
n

En

)
= sup

n
Dim(En). (1.4)

In [10], L. Olsen also proved the proposition and the theorem below.

Proposition 1. Write Λµ(q) = ∆q
µ(suppµ) and Bµ(q) = Dimq

µ(suppµ).

(i) Bµ ≤ Λµ, Bµ(1) = Λµ(1) = 0.

(ii) Λµ(0) = ∆(suppµ) and Bµ(0) = Dim(suppµ).

(iii) The functions Λµ : q 7→ Λµ(q) and Bµ : q 7→ Bµ(q) are convex and
decreasing.

Theorem 1. For α ≥ 0, if αq + Bµ(q) ≥ 0, then

Dim(Xα) ≤ inf
q≥0

(
αq + Bµ(q)

)
.
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2. Another inequality involving Dim(Xα)

In this section, before giving our new inequality involving Dim(Xα) for
α > 0, we start by illustrating our main idea on the set Eα defined by

Eα =
{
x ∈ suppµ, if r < r0 then (2r)α ≤ µ

(
B(x, r)

)}
, (2.1)

where r0 > 0 is a fixed number. Note that the set Eα is very similar to X
α

and that it is established in the classic formalism [10] the inequality

Dim(Eα) ≤ inf
q≥0

(
αq + Bµ(q)

)
, (2.2)

which proof is based on the inequality

log µ
(
B(xi, ri)

)

log 2ri
≤ α,

where (B(xi, ri))i∈I is a centered ε–packing of Eα.
First, we give the definition of a centered ε–k–Besicovich packing of a set

E ⊂ Rd.

Definition 1. Let ε > 0 be a real number and k ≥ 1 be an integer.
A family

(
B(xi, ri)

)
i∈I

is called a centered ε–k–Besicovich packing of a set
E when there exists a finite partition of I such that I = I1 ∪ · · · ∪ Is with
1 ≤ s ≤ k and

(
B(xi, ri)

)
i∈Ij

a centered ε–packing of E for all 1 ≤ j ≤ s.

This definition is useful to introduce the following quantities not connect-
ing necessarily the measure of every ball of a centered packing in its diameter.

For all ε > 0, let (uε)ε>0 be a decreasing family of numbers such that ε ≤ uε

and limε→0 uε = 0. Let k ≥ 1 be an integer. If E ⊂ suppµ, for each centered
ε–packing

(
B(xi, ri)

)
i∈I

of E, we consider all the families
(
B(yi, δi)

)
i∈I

that
are centered uε–k–Besicovich packing, and we define the quantity

Lk
ε,(B(xi,ri))i∈I

(E) = inf

(
sup
i∈I

(
log µ

(
B(yi, δi)

)

log 2ri

))
,

where the infimum is taken over all the centered uε–k–Besicovich packing(
B(yi, δi)

)
i∈I

. Now write

Lk
ε(E) = sup

{
Lk

ε,(B(xi,ri))i∈I
(E)

}
,
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where the supremum is taken over all the centered ε–packing
(
B (xi, ri)

)
i∈I

of E. Remark that

Lk

ε,
(
B(xi,ri)

)
i∈I

(E) ≤ sup
i∈I

(
log µ

(
B(xi, ri)

)

log 2ri

)
. (2.3)

On the other hand, when ε < ε′, Lk
ε′(E) > Lk

ε(E), then we define

Lk(E) = lim
ε→0

Lk
ε(E).

As the sequence
(
Lk(E)

)
k

is decreasing, write

L(E) = lim
k→+∞

Lk(E).

Proposition 2. For α > 0,

L(Eα) ≤ α.

Proof. For ε < 2r0 and
(
B(xi, ri)

)
i∈I

a centered ε–packing of Eα, thanks
to the characteristic property of Eα (2.1), we have for all i ∈ I,

log µ
(
B(xi, ri)

)

log 2ri
≤ α,

hence

sup
i∈I

log µ
(
B(xi, ri)

)

log 2ri
≤ α,

from the inequality (2.3), we deduce that

Lk
ε,(B(xi,ri))i∈I

(Eα) ≤ α,

while considering the supremum over all the centered ε–packing, it results
that Lk

ε(E
α) ≤ α. Letting ε → 0, we obtain that Lk(Eα) ≤ α, then letting

k → +∞, it follows that L(Eα) ≤ α.

Theorem 2. Assume s := infq Bµ(q) < 0. Then for α > 0,

Dim(Eα) ≤ L(Eα)
α

inf
q≥1

(
αq + Bµ(q)

)
.
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Proof. The proof of the Theorem 2 is organized in two steps.
1st Step: For z > s, put ψ(z) = inf B−1

µ (]−∞, z[). Then

inf
{

ψ(αt) + t,
s

α
< t < 0

}
=

1
α

inf
q≥1

(
αq + Bµ(q)

)
.

In fact, as Bµ is convex, decreasing on [0, +∞[ and taking strictly negative
values for s

α < t < 0, there exists an unique q > 1 such that αt = Bµ(q).
We deduce that for all n ∈ N \ {0}, Bµ(q + 1

n) < Bµ(q) = αt. Thus q + 1
n ∈

B−1
µ (]−∞, αt[), therefore ψ(αt) ≤ q.

On the other hand, from the equalities

ψ(αt) = inf B−1
µ (]−∞, αt[) = inf {θ, Bµ(θ) < αt} = inf {θ, θ > q} ,

it follows that ψ(αt) ≥ q. So ψ(αt) = q.
Two possible cases appear :

If s = −∞, then it is clear that

inf
{

ψ(αt) + t,
s

α
< t < 0

}
= inf

{
q +

Bµ(q)
α

, q > 1
}

.

If s > −∞, put qs = inf
q>1

{q, Bµ(q) = s}. As Bµ is convex, it follows that for

all q ≥ qs, Bµ(q) = s. Then q + Bµ(q)
α ≥ qs + s

α . It results that

inf
{

q +
Bµ(q)

α
, q > 1

}
= inf

{
q +

Bµ(q)
α

, 1 < q ≤ qs

}
.

Consider a sequence (qn) such that qn → qs and 1 < qn < qs. As Bµ is
continuous, surely we obtain that qn + Bµ(qn)

α → qs + Bµ(qs)
α . It follows that

inf
{

q +
Bµ(q)

α
, q > 1

}
= inf

{
q +

Bµ(q)
α

, 1 < q < qs

}
,

i.e.,

inf
{

q +
Bµ(q)

α
, q > 1

}
= inf

{
ψ(αt) + t,

s

α
< t < 0

}
.

Otherwise, (1 + 1
n) + Bµ(1+ 1

n
)

α → 1 + Bµ(1)
α , so

inf
{

q +
Bµ(q)

α
, q > 1

}
= inf

{
q +

Bµ(q)
α

, q ≥ 1
}

.
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Finally,

inf
{

ψ(αt) + t,
s

α
< t < 0

}
=

1
α

inf
q≥1

(
αq + Bµ(q)

)
.

2nd Step: From the first step, it follows that

if
s

α
< t < 0, then ψ(αt) + t ≥ 0.

For γ > 0 and s
α < t < 0, if γ > ψ(αt) + t, then Bµ(γ − t) < αt. It results

that P γ−t,αt
µ (suppµ) = 0. Then P γ−t,αt

µ (Eα) = 0. According to the equality
(1.1), we can write

Eα =
⋃

m∈M

Em (2.4)

such that for all m ∈ M,
P

γ−t,αt
µ (Em) < ∞. (2.5)

Let λ > L (Eα). First of all let us prove that for all m ∈ M , 4(Em) ≤ γλ.
As Em ⊂ Eα and λ > L(Em), then there exists an integer k ≥ 1 and ε0 < 2r0

such that for all ε < ε0,
Lk

ε(Em) < λ.

It follows that for all
(
B(xi, ri)

)
a centered ε–packing of Em, there exists a

centered uε–k–Besicovich packing
(
B(yi, δi)

)
i∈I

of Em such that for i ∈ I,

log µ
(
B(yi, δi)

)

log 2ri
< λ.

So that
µ
(
B(yi, δi)

)
> (2ri)λ. (2.6)

Let us recall that thanks to the characteristic property of Eα (2.1), we can
write

(2δi)
α < µ

(
B(yi, δi)

)
. (2.7)

Thus, from the inequalities (2.6) and (2.7) we obtain that for γ > 0 and
s
α < t < 0,

(2ri)γλ ≤ µ
(
B(yi, δi)

)γ−t (2δi)
αt .

Then, using the equality I = I1 ∪ · · · ∪ Is with 1 ≤ s ≤ k and (B(xi, ri))i∈Ij

a centered ε−packing of Em for all 1 ≤ j ≤ s, it follows that

∑

i∈I

(2ri)γλ ≤
∑

i∈I

µ
(
B(yi, δi)

)γ−t(2δi)αt =
s∑

j=1

∑

i∈Ij

µ
(
B(yi, δi)

)γ−t(2δi)αt,
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Therefore, it results that
∑

i∈I

(2ri)γλ ≤ kP
γ−t,αt
µ,uε

(Em). (2.8)

Note that from the inequality (2.5), we can write that there exists ε1 > 0 such
that for all uε < ε1,

P
γ−t,αt
µ,uε

(Em) < ∞.

Then from the inequality (2.8) it comes that for all m ∈ M ,

4(Em) ≤ γλ.

Therefore, from the inequality (1.3), we obtain that

Dim(Em) ≤ γλ, m ∈ M.

And from the equalities (2.4) and (1.4), we deduce that

Dim(Eα) ≤ γλ.

So for s
α < t < 0,

Dim(Eα) ≤ L(Eα) inf
{

ψ(αt) + t,
s

α
< t < 0

}
.

Finally, according to the first step, it results that for all α > 0,

Dim(Eα) ≤ L(Eα)
α

inf
q≥1

(
αq + Bµ(q)

)
.

Let us now present our main theorem. Thereafter, for η > α and p ∈
N\ {0}, write

Xα(η, p) =
{

x ∈ X
α
, if 2r <

1
p

then (2r)η ≤ µ
(
B(x, r)

)}
.

It is clear that Xα(η, p) ⊂ Xα(η, p+1). Furthermore, considering the equality

X
α =

{
x ∈ suppµ, lim sup

r→0

log µ
(
B(x, r)

)

log 2r
≤ α

}
,

it occurs that
X

α =
⋃
p

Xα(η, p). (2.9)
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Theorem 3. Assume s := infq Bµ(q) < 0. For α > 0, write

Tµ(α, η, p) = sup
E⊂Xα(η,p)

L(E),

Tµ(α, η) = lim
p→+∞Tµ(α, η, p),

Tµ(α) = lim
η→α+

Tµ(α, η),

then,

Dim(Xα) ≤ Tµ(α)
α

inf
q≥1

(
αq + Bµ(q)

)
.

Remark 2. The limits Tµ(α, η) and Tµ(α) are well defined, indeed the se-
quence

(
Tµ(α, η, p)

)
p≥1

is increasing, since Xα(η, p) ⊂ Xα(η, p + 1) and for
all η < η′, Xα(η, p) ⊂ Xα(η′, p), what involves that the quantity Tµ(α, η)
is decreasing when η → α. Note that, according to the Proposition 2, the
inequality L(Eα)

α ≤ 1 is true, as well as the inequality Tµ(α)
α ≤ 1. Moreover,

when the equality

inf
q≥1

(
αq + Bµ(q)

)
= inf

q≥0

(
αq + Bµ(q)

)
, (2.10)

occurs, the hypothesis (s := infq Bµ(q) < 0) of Theorem 2 and Theorem 3
is satisfied and the inequality given in Theorem 3 is better than the one
established by L. Olsen in Theorem 1.

Proof. We stand in the interesting case where X
α 6= ∅. From the Theo-

rem 2 it follows that for all η > α,

Dim
(
Xα(η, p)

) ≤ L
(
Xα(η, p)

)

η
inf
q≥1

(
ηq + Bµ(q)

)
.

Thus
Dim

(
Xα(η, p)

) ≤ Tµ(α, η, p)
η

inf
q≥1

(
ηq + Bµ(q)

)
.

From the equalities (2.9) and (1.4), letting p → +∞, we obtain that

Dim(Xα) ≤ Tµ(α, η)
η

inf
q≥1

(
ηq + Bµ(q)

)
.

Finally, letting η → α, it follows that

Dim(Xα) ≤ Tµ(α)
α

inf
q≥1

(
αq + Bµ(q)

)
.
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3. Example

In this paragraph, we intend to construct a class of coin-tossing measures
µ verifying the conditions

Tµ(α)
α

< 1 and inf
q≥1

(
αq + Bµ(q)

)
= inf

q≥0

(
αq + Bµ(q)

)
. (3.1)

that will lead us, thanks to the Theorem 3, to establish that

Dim(Xα) ≤ Tµ(α)
α

inf
q≥1

(
αq + Bµ(q)

)
< inf

q≥0

(
αq + Bµ(q)

)
.

Put A the set of the words constructed with {0, 1} as alphabet. The length
of a word j is denoted by |j| . For all j ∈ A, put N0(j) the number of times
the letter 0 appears in j. If j, j′ ∈ A, write jj′ the word starting by j and
gotten while putting j′ after j. For all j ∈ A such that j = j1j2 · · · jn, put Ij

the dyadic interval of order n defined by

Ij =

[
n∑

k=1

jk

2n
,

n∑

k=1

jk

2n
+

1
2n

[
.

We denote by Fn the family of all the dyadic intervals of order n and for all
x ∈ [0, 1[ we call In(x) the element of Fn containing x. Let 0 < p0 ≤ p1 such
that p0 + p1 = 1 and L ⊂ (∪nFn) we associate the following measure µ on R
such that

µ
(
R \ [0, 1[

)
= 0

and for all Ij ∈ Fn and l ∈ {0, 1},

µ (Ijl) =





plµ(Ij) if Ij contains an interval of L,

µ(Ij)
2

otherwise.

It is clear that suppµ = [0, 1]. For the construction of the example satisfying
the conditions (3.1), we choose the part L as follows. Let β1, β2, γ1 and γ2

be real numbers such that
1
2

< β1 < γ1 < β2 < γ2 <
1
3
.

We say that an interval Ij ∈ Fn is of

type T1 if β1 <
N0(j)

n
< γ1, and of type T2 if β2 <

N0(j)
n

< γ2.
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Let I ∈ Fn be of type T1 (respectively of type T2), put Ĩ the set of intervals
of order n + 6 contained in I and of the same type that I. Let n0 ∈ N be a
multiple of 6 and (np) be the sequence of integers defined by:

n0, n3i+1 = 2n3in0, n3i+2 = 2n3i+1 and n3i+3 = 2n3i+2.

Remark that
np = n0 + 6k, k ∈ N.

For k ∈ N we construct the family Gk of disjoined dyadic intervals of order
n0 + 6k such that:

• any element Ij of Gk verifies the relation

β1 <
N0(j)

n
< γ2,

• G0 contains two intervals I1
n0

and I2
n0

respectively of type T1 and T2,

• any element of Gk+1 is contained in an element of Gk that we call his
father,

• all the elements of Gk give birth to the same number of son in Gk+1, to
pass from Gk to Gk+1 we distinguish the three following cases:

1st case: If n3i ≤ n0 + 6k < n3i+1, then for each I ∈ Gk we select two
intervals in Ĩ . So Gk+1 is the union of all these selected intervals.

2nd case: If n3i+1 ≤ n0 + 6k < n3i+2, then for each I ∈ Gk of type T1

we select an interval in Ĩ, and for each I ∈ Gk of type T2 we select an
interval Ij of order n0 + 6(k + 1) containing a selected interval of order
n3i+2 of type T1. So Gk+1 is the union of all these selected intervals.
Note that all the intervals in Gn3i+1 are of type T1.

3rd case: If n3i+2 ≤ n0 + 6k < n3i+3, then for each I ∈ Gk having an
ancestor of order n3i+1 and of type T1, we select an interval Ij of order
n0 + 6(k + 1) containing a selected interval of order n3i+3 of type T2,
and for each I ∈ Gk remaining of type T1 we select an interval in Ĩ. So
Gk+1 is the union of all these selected intervals.

An elementary calculus of counting assures that the construction of the
family (∪k≥0 Gk) is possible for any n0 big enough, and allows us furthermore
to impose the following separation condition: for all k ≥ 0, if I, J ∈ Gk are
of order n, then the distance between I and J is bigger than 1

2n−1 . Besides
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for all k ≥ 1, if I ∈ Gk is of order n, then the distances between I and his
father’s endpoints are bigger than 1

2n . We associate the following relation on
(∪k≥0 Gk) : the two elements of G0 are in relation and two elements of Gk+1

are in relation if their fathers, elements of Gk, are in relation. Thereafter we
write L = (∪k≥0 Gk) and we call selected interval any interval I ∈ L.

The diagram below summarizes this construction, note that the arrows
indicate the intervals of the same generation that are in relation.
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Proposition 3.

lim
q→+∞Bµ(q) = −∞.

Proof. First, let us remark that for all Ij ∈ Fn,

pn
0 ≤ µ (Ij) ≤ pn

1 . (3.2)

Let
(
B(xi, ri)

)
i∈I

be a centered ε–packing of suppµ. For all i ∈ I, let us con-
sider the largest interval In(xi) included in B(xi, ri). It results that B(xi, ri)
is covered by at the more two contiguous intervals of Fn−1. It follows that

1
2n

≤ 2ri ≤ 1
2n−2

(3.3)

and according to (3.2), we obtain

pn
0 ≤ µ

(
B(xi, ri)

) ≤ 2pn−1
1 . (3.4)

From (3.3), we deduce that for all t ∈ R, there exist c1, c2 ∈ R such that for
all n ∈ N,

c1

2nt
≤ (2ri)t ≤ c2

2nt
, (3.5)

and from (3.4), it follows that for all q > 0,

pnq
0 ≤ µ

(
B(xi, ri)

)q ≤ 2qp
(n−1)q
1 . (3.6)

Then, considering (3.5) and (3.6), there exists c3 ∈ R such that

µ
(
B(xi, ri)

)q(2ri)t ≤ c32qp
(n−1)q
1 2−nt. (3.7)

Otherwise, for all n ∈ N \ {0}, any interval of Fn−1, meets to the more two
balls of

(
B(xi, ri)

)
i∈I

verifying the relation 1
2n ≤ 2ri ≤ 1

2n−2 , so according to
(3.7), there exists a constant C that only depends on q and t such that

∑
1

2n≤2ri≤ 1
2n−2

µ
(
B(xi, ri)

)q(2ri)t ≤ C(2 pq
1 2−t)n. (3.8)

For ε > 0 small enough, while writing,
∑

i∈I

µ
(
B(xi, ri)

)q(2ri)t =
∑

n≥1

∑
1

2n≤2ri≤ 1
2n−2

µ
(
B(xi, ri)

)q(2ri)t,
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it comes from the inequality (3.8) that

∑

i∈I

µ
(
B(xi, ri)

)q(2ri)t < ∞, t > 1 + q
log p1

log 2
.

We deduce that
Λµ(q) ≤ 1 + q

log p1

log 2
, q > 0.

Then, according to the Proposition 1

Bµ(q) ≤ 1 + q
log p1

log 2
, q > 0. (3.9)

Finally
lim

q→+∞Bµ(q) = −∞.

Proposition 4. Put B
′
µ−(1) the left derivative number of Bµ at 1. Then

B
′
µ−(1) ≤ −1.

Proof. Let us recall that Bµ(1) = 0 and Bµ is convex. So to prove that
B
′
µ−(1) ≤ −1, it is sufficient to establish that for all q < 1,

Bµ(q) ≥ 1− q,

what comes back to show that, according to (1.2), if (∪iEi) is a partition of
suppµ, then

∑
i∈I P

q,t
µ (Ei) = ∞. Let us consider the case where for all i ∈ I,

P
q,t
µ (Ei) < ∞, the contrary case is obvious. Put 0 < ε < 1

2n0 . For all i ∈ I,
choose δi < ε such that

P
q,t
µ,δi

(Ei) ≤ P
q,t
µ (Ei) +

1
2i

. (3.10)

According to the Besicovitch covering theorem [7], there exists an integer ζ

(that only depends on R) such that each Ei is covered by ∪ζ
u=1

(∪j B(xij , δi)
)

and for all 1 ≤ u ≤ ζ,
(
B(xij , δi)

)
j

is a packing. Considering (3.10), it follows
that

ζ∑

u=1

∑

j

µ
(
B(xij , δi)

)q(2δi)t ≤ ζ

(
P

q,t
µ (Ei) +

1
2i

)
.
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Then,

∑

i




ζ∑

u=1

∑

j

µ
(
B(xij , δi)

)q(2δi)t


 ≤ ζ

∑

i

P
q,t
µ (Ei) + ζ. (3.11)

Let us consider the sum

∑

i




ζ∑

u=1

∑

j

′
µ
(
B(xij , δi)

)q(2δi)t


 , (3.12)

where
∑ ′

j is taken on all j such that the distance between xij and I1
n0

(re-
spectively I2

n0
) is bigger than 1

2n0 . In this case, there exists C ∈ R that only
depends on n0 such that

µ
(
B(xij , δi)

) ≤ C m
(
B(xij , δi)

)
,

where m is the Lebesgue measure. We deduce that

Cq−1(2δi)q−1+t ≤ µ
(
B(xij , δi)

)q−1(2δi)tµ
(
B(xij , δi)

)
. (3.13)

Otherwise, the union of the balls that appear in the sum (3.12) recovers suppµ
deprived of I1

n0
, I2

n0
and the intervals of order n0 that their are contiguous.

Therefore, according to (3.13), we obtain that

(
1− 6

2n0

)
Cq−1(2ε)q−1+t ≤

∑

i




ζ∑

u=1

∑

j

′
µ
(
B(xij , δi)

)q(2δi)t


 .

We deduce that, while considering (3.11),
(

1− 6
2n0

)
Cq−1(2ε)q−1+t ≤ ζ

∑

i

P
q,t
µ (Ei) + ζ.

Letting ε → 0, it results that
∑

i∈I P
q,t
µ (Ei) = ∞ while t < 1− q, so that

Bµ(q) ≥ 1− q, q < 1. (3.14)

Remark 3. From the Proposition 1, and the inequality (3.14), we can de-
duce that

Bµ(q) = 1− q, q ∈ [0, 1] .

Moreover while considering the inequality (3.9), we draw below the typical
shape of the function Bµ.
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Proposition 5. Consider the Cantor set

C =
⋂

k≥1

( ⋃

Ij∈Gk

Ij

)

and the function g defined on [0, 1] by

g(x) = −
x log

(
p0

p1

)
+ log p1

log 2
.

(i) If x /∈ C, then

lim
r→0

log(µ
(
B(x, r)

)

log 2r
= 1.

(ii) If x ∈ C, then

g(β1) ≤ lim inf
r→0

log(µ
(
B(x, r)

)

log 2r
≤ lim sup

r→0

log(µ
(
B(x, r)

)

log 2r
≤ g(γ2).
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Proof. (i) Put x /∈ C. Thanks to the separation condition, for r > 0 small
enough, the ball B(x, r) is contained in the union of two contiguous intervals
of order N, I1

N and I2
N that do not meet C. For all interval of order n,

In ⊂ I1
N ∪ I2

N there exist c, c′ ∈ R such that

c

2n
≤ µ

(
In(x)

) ≤ c′

2n
.

We deduce that

lim
n→+∞

log(µ
(
In(x)

)

log
(

1
2n

) = 1. (3.15)

Consider the largest interval In(x) contained in the ball B(x, r), it follows that
B(x, r) is contained in the union of two contiguous intervals of order n − 1,
In−1(x) and Jn−1, thus

c

2n
≤ µ

(
B(x, r)

) ≤ c′

2n

and
|In(x)| ≤ 2r ≤ 2 |In−1(x)| .

Therefore, from (3.15), we obtain

lim
r→0

log(µ
(
B(x, r)

)

log 2r
= 1.

(ii) It is clear that if Ij ∈ Gk is of order n, then

µ (Ij) = p
N0(j)
0 p

n−N0(j)
1 ,

thus
µ(Ij) = |Ij |g

(
N0(j)

n

)
. (3.16)

Otherwise, let us recall that for Ij ∈ Gk ,

β1 <
N0(j)

n
< γ2.

Since the function g is strictly increasing, it follows that

g (β1) <
log(µ

(
Ij(x)

)

log |Ij(x)| < g (γ2) . (3.17)
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Put x ∈ C and r < 1
2n0+6 . Thanks to the separation condition, B(x, r) is

contained in one of the intervals I1
n0

or I2
n0

. Consider the smallest interval
In(x) containing the ball B(x, r), it follows, from the separation condition,
that if B(x, r) doesn’t contain the selected interval In+6(x), then it necessarily
contains the selected interval In+12(x), therefore, we can write

µ
(
In+12(x)

) ≤ µ
(
B(x, r)

) ≤ µ
(
In(x)

)

and
|In+12(x)| ≤ 2r ≤ |In(x)| .

From (3.17), it results that

g(β1) ≤ lim inf
r→0

log
(
µ(B(x, r)

)

log 2r
≤ lim sup

r→0

log
(
µ(B(x, r)

)

log 2r
≤ g(γ2).

We stand thereafter in the case where g(γ2) < 1, Even if we choose p0 > γ2.
Thus, according to the Proposition 5,

X
g(γ2) = C.

In all what follows, we choose the real number α such that

g(γ1) < α ≤ g(γ2) and X
α 6= ∅.

Proposition 6.
Tµ(α) ≤ g(γ1) < α.

Proof. Put M ⊂ Xα(η, p) and
(
B(xi, ri)

)
a centered ε–packing of M . It

is clear that for all i ∈ I, xi ∈ C. Then consider the largest selected interval
In(xi) of order n, containing xi and contained in B(xi, ri). It follows that

1
2n

≤ 2ri.

Consider the partition I1 ∪ I2 of I such that

I1 = {i ∈ I : In(xi) is of type T1} and I2 = I \ I1.

Let us recall that, any interval In(xi), i ∈ I2, is in relation with an unique
selected interval of order n and of type T1 centered in x′i ∈ M that is denoted
by In(x′i). Thanks to the separation condition,

(
B(x′i,

1
2n )

)
i∈I2

is a centered
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ε–packing of M. Then we consider the family
(
B(yi, δi)

)
i∈I

indexed by I and
defined by

B(yi, δi) =

{
B(xi, ri), i ∈ I1

B
(
x′i,

1
2n

)
, i ∈ I2.

We verify that

log µ
(
B(yi, δi)

)

log 2δi
≤ log µ

(
In(xi)

)

log
(

1
2n

) , i ∈ I1

and
log µ

(
B(yi, δi)

)

log 2δi
≤ log µ

(
In(x′i)

)

log
(

1
2n

) , i ∈ I2.

From (3.16) and as g is increasing, we deduce that for all i ∈ I,

log µ
(
B(yi, δi)

)

log 2δi
≤ g(γ1).

Thus
L2

ε,(B(xi,ri))i∈I
(M) ≤ g(γ1).

Then L2
ε(M) ≤ g(γ1), letting ε → 0, we deduce that L2(M) ≤ g(γ1). Since

the sequence
(
Lk(M)

)
k

is decreasing it follows that L(M) ≤ g(γ1). Therefore,
Tµ(α) ≤ g(γ1). But g(γ1) < α, and then Tµ(α) < α.

Corollary 1.

Dim(Xα) ≤ Tµ(α)
α

inf
q≥1

(
αq + Bµ(q)

)
< inf

q≥0

(
αq + Bµ(q)

)
.

Proof. From the Proposition 3 and the Theorem 3, we deduce the first
inequality. Otherwise, as α < 1 and from the Proposition 4, it follows that
B
′
µ−(1) ≤ −α. Then

inf
q≥1

(
αq + Bµ(q)

)
= inf

q≥0

(
αq + Bµ(q)

)
.

Therefore,

Tµ(α)
α

inf
q≥1

(
αq + Bµ(q)

)
=

Tµ(α)
α

inf
q≥0

(
αq + Bµ(q)

)
.

Finally, according to the Proposition 6, we deduce that

Tµ(α)
α

inf
q≥1

(
αq + Bµ(q)

)
< inf

q≥0

(
αq + Bµ(q)

)
.
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