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A B S T R A C T   

Broccoli is a vegetable grown worldwide due to its good nutritional properties. The harvest of this product is 
done selectively by hand depending on their size and state of maturation for both fresh market and agri-food 
industry. The final aim of our work is the development of a machine that is able to automatically harvest 
only those broccoli heads that have the size and ripeness suitable for the agri-food industry, besides discarding 
those overripe or with diseases. One critical element in such a machine is a vision system that locates and 
classifies the broccoli heads present in photographic images, to trigger later a cutting module. In this paper, we 
present an approach to that vision system, based on deep learning techniques. The proposed algorithm, running 
in a relatively cheap hardware, is able to work in real time, locating broccoli heads in 640 × 480 px digital 
images, and classifying then into harvestable, immature and wasted classes. Tested with images taken in real 
conditions, with many heads partially hidden by leaves, the system was able to correctly locate and classify up to 
97% of the cases presented in the test set.   

1. Introduction 

Broccoli (Brassica oleraceae va. Cymosa), is a plant of the family 
Brasicaceae or Cruciferae. This plant has abundant green fleshy flower 
heads, arranged in the shape of a tree, with branches that are born from 
a thick edible stem. The great mass of heads is surrounded by leaves. It 
belongs to the group of cabbages together with cauliflower, cabbage and 
red cabbage. In mid-latitudes, its harvesting season and best time to eat 
it is from September to June. It has good nutritional properties such as 
the contribution of vitamins A, C and niacin; minerals such as potassium, 
calcium, sodium and magnesium and fibre. For all these reasons, over 26 
million tons are produced worldwide (data from FAOSTAT 2017 FAO 
(2019)). The largest producers are China, India, the United States, Spain, 
Mexico and Italy. 

Traditionally, all production of broccoli, both for the fresh market, 
where products reach consumers directly, and for agri-food industry, 
where products reach consumers once processed, is harvested by hand 
Mullaney and Weinroth (2019). The harvest must be selective due to the 
different stages of maturity that can be found within the same planta
tion. In our region the agricultural workers specialized in this task of 

harvesting only cut the heads of broccoli that have an optimal maturity 
stage (i.e. neither overripe nor underripe), no defects or diseases, and a 
size that is the maximum possible with the two previous conditions, and 
always larger than a size requested by the industry they are destined to. 

Generally, the optimal size for harvesting a head of broccoli is 
around 16 cm in diameter (Fig. 1(a)). However, the objective of farmers 
will always be to maximize their crop yield. Therefore, the broccoli 
should be allowed to grow as much as possible (Fig. 1(b)) before cutting, 
whenever possible due to its maturity stage. This means that each head 
of broccoli has to be considered for harvesting not only depending on its 
size, but also on its state of maturity, before it reaches a stage where it is 
no longer harvestable (Fig. 1(c)). 

In Fig. 1(a) it can be seen that, despite the broccoli head size, the 
grains are very small, and the head completely compact and hermetic. 
Therefore, its harvest at that moment is not advisable since it can grow 
more and reach larger size and, hence, higher weight. In Fig. 1(b) we 
show the broccoli in its optimum state for harvesting. The head should 
be semi-spherical, compact, smooth, with compact, homogeneous, green 
to violet florets. The flowers must be small, completely closed, without 
protruding individually in the florets. It can be seen that the size of the 
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grain that will give rise to the flowers is larger than in Fig. 1(a). Finally, 
in Fig. 1(c) a broccoli head is observed with a diameter bigger than the 
two previous ones. Now the top part is no longer compact and airtight, 
an the texture of the grains has also changed. All this indicates that its 
state of maturity has plate-ned and in a short time the flowers will break 
out. In other words, it has been left too long to be harvested. In Fig. 1(c) 
can also be observed the characteristic spots due to the fungus botrytis, 
which makes the head not suitable for consumption, and therefore it 
should be discarded. 

In order to maximize the crop yield, plantations are harvested at least 
once a week, subject to weather conditions, and two or three successive 
rounds are performed in each session. Therefore, a very high workload 
and personnel cost are involved in a plantation of this type, being 
approximately 12% of production costs Anejo no 20 (2020). 

Due to its large production and worldwide spread, there are 
currently one commercially available broccoli harvester by RoboVeg 
RoboVeg (2021), and one patented prototype by MYCOM MYCOM 
(2021). RoboVeg company has developed a machine that must be 
attached to a tractor, and uses a vision system to detect the broccoli 
heads and a robotic arm to cut them. On the other hand, the prototype by 
MYCOM has autonomous movement, and the broccoli heads detected by 
the machine are cut by a fixed blade. Though both machines are re
ported to perform very well, with 2-3 s to locate and harvest the broccoli 
heads, given their characteristics they are mainly intended for large 
broccoli growers, and very few medium or small growers can afford one 
of them. In this context, our global aim of this research line is the 
development of a simple and low-cost prototype of an automatic and 
selective harvester for broccoli, which could be affordable for small 

plantations. 
In these prototypes, a critical part is always the system that analyses 

images in order to locate and classify (i.e., detect) the broccoli heads, 
thus replacing the human visual perception. Several approaches to 
automatic localization of broccoli within images can be found in liter
ature. The first study Ramirez (2006) used texture-based analysis in RGB 
images, but it was very simple (only considered 13 images) and its re
sults are not very significant. More interesting is Blok et al. (2016), 
where a method based on texture filters is proposed, analysing 228 
broccoli heads. Though it presented a high precision (99,5%), the recall 
was not so high due to generalization problems of the algorithm. Later, 
in Blok et al. (2021), the same authors introduced deep learning tech
niques in their location and segmentation algorithm, achieving a better 
image generalization than in previous studies. They also report the 
development of a cutting robot, but few details are given. 

Most of the studies include machine learning in the techniques used 
to locate broccoli heads. In Kusumam et al. (2016), Kusumam et al. 
(2017) they also address the localization of broccoli in the field, this 
time using 3D vision (with Kinect-2), a Support Vector Machine classi
fier and a temporal filter, to provide the 3D localization of the heads 
with up to 95% of precision. In Le Louedec et al. (2020), another system 
for localization of broccoli heads is presented, which is based on 3D 
information obtained from RGBD sensors. In their technique they 
trained a CNN auto-encoder for the task of semantic segmentation using 
the 3D information, outperforming the results described by Kusumam 
et al. (2016), and reporting very high inference speeds, making the 
technique suitable for real time applications. In Bender et al. (2020) they 
presented a system to locate plants (not heads) of broccoli and 

Fig. 1. 1(a) Optimal broccoli for harvesting considering only the size. 1(b) Optimal broccoli for harvesting by size and state of maturity. 1(c) Broccoli not optimal for 
harvest due to disease (botrytis fungus). 
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cauliflower with Faster Region-Based convolutional neural network, and 
reported 95% mean average precision (mAP). However, they did not 
locate the head, essential for harvesting. Finally, in Zhou et al. (2020), 
another system for the segmentation and localization of broccoli heads is 
presented, based in other type of deep convolutional neural network. In 
this case, the segmented images are used later to estimate the quality of 
the broccoli head, considering the yellowness observed. 

Unfortunately, all the studies described above only approach the 
localization of broccoli heads, and only in two of them they evaluate 
their condition of harvestable, exclusively based on the size. However, it 
is very important for a selective harvester to determine if the localized 
head is harvestable (and we have to cut it), immature (and we let it grow, 
so it will be considered in the following rounds of harvesting) or wasted 
(because it is overripe or have defects or diseases, and we can cut and 
discard it). This way, another classification step is needed. 

However, given the high performance obtained by deep neural net
works in the localization of broccoli heads, and the ability of this net
works to classify the proposals into predefined classes Koirala et al. 
(2019), we hypothesised that the classification can be made along with 
the localization, in one unique step, with one of those networks. This 
way, and taking into account the global aim of our research described 
above, the objective of this work is to test this hypothesis through the 
development of a robust vision system that, considering 2D images taken 
in the field without controlled illumination conditions:  

• Locates and classifies (i.e. detects) the broccoli heads, determining if 
they are harvestable or not.  

• Can be implemented in a low-cost and low-power hardware, and is 
able to work in real time. This way, it can be incorporated our pro
totype with a minimum cost.  

• Performs well in the less restrictive case, i.e., in the harvesting of 
broccoli for agri-food industry. 

Therefore, what this work apports is a new technique that locates and 
classifies the broccoli heads in a single step, and which can be used in 
real time with a relatively cheap hardware, providing methodology to 
implement these network models, once trained, on NVIDIA Jetson Nano 
NVIDIA (2019), as will be discussed in the following section, where the 
materials and methods are described. 

2. Materials and methods 

2.1. Image dataset 

Taking into account our objectives described above, in this study we 

considered images of the broccoli varieties used for commercial industry 
(Parthenon, Monaco, Marathon, …). These types of broccoli go to fac
tories where the florets that make up the head are separated and then 
deep-frozen. For broccoli going to the fresh market, other parameters for 
optimal maturity are considered, and therefore this study is not suitable, 
though it could be adapted. 

The images used to train and test our algorithm were captured with 
non-professional cameras in plantations around Badajoz, Spain. These 
images were taken in the field, with non-controlled natural illumination. 
Due to this, the heads of broccoli in the images are often partially hidden 
by leaves, or covered with water droplets of dew, as can be seen in Fig. 2 
(a) and (b). In total, 6139 images were captured with broccoli heads, 
distributed among images of broccoli considered harvestable (optimal 
state of maturity, decided by an expert harvester), immature (they can 
grow more) and wasted (not suitable for consumption due defects, dis
eases such as botrytis fungus, or excesive ripeness). 

Trying to obtain a more robust visual system, two kinds of images 
were captured in the process. Firstly, some of the images where taken by 
hand using two different cameras: Sony-DSC-S950, 1/2.3 inch CCD 
sensor, with a resolution of 2592×1944 px (618 images) and Nikon- 
E4600, 1/2.5 inch CCD sensor, with a resolution of 2288×1712 px (57 
images), both with autofocus. This images were taken at a fixed distance 
from the ground, in several sessions. On the other hand, more images 
were taken using a Sony IMX179 image sensor camera (1/3.2 inch) 
placed on a tractor, automatically capturing over 10 images per second 
while the tractor was moving at a speed of approximately 1 km/h (5464 
images), simulating a possible real scenario, in which we need to proc
cess the images at this rate. 

Therefore, in this study we considered a total of 6165 images of 
broccoli heads, taken from the 6139 photographs, of which 2778 were 
considered as harvestable (Figs. 1(b) and 2(b)), 2805 as immature 
(Figs. 1(a) and 2(a)) and 582 as wasted. The images were randomly 
separated into learning and test sets as shown in Table 1. 

Once taken, the images were marked (correct location of broccoli 
heads) and labelled (correct classification: harvestable, immature, 
wasted) by an expert farmer of our region, using an application devel
oped for the task, which stores data in a database. 

Fig. 2. 2(a) Image of a immature head of broccoli originally captured at a size of 2592×1944 px with a Sony-DSC-S950 camera, 1/2.3 inch CCD sensor. 2(b) Image of 
a harvestable head of broccoli originally captured at a size of 2288×1712 px with a Nikon-E4600 camera, 1/2.5 inch CCD sensor. 

Table 1 
Composition of the training sets.   

Harvestable Immature Wasted  

Learning (L) 2233 2247 451 4931 
Test (T) 545 558 131 1234 

Total 2778 2805 582 6165  
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2.2. Modules and development kits 

The NVIDIA Jetson Nano was used to implement the image analysis. 
It is a small and powerful computer that allows running multiple neural 
networks in parallel for applications such as image classification, object 
detection, segmentation or voice processing. In addition, it has a fully 
configurable 40-pin General Purpose Input/Output (GPIO) connector 
through which other devices can be easily controlled, such as the tool 
needed to cut a broccoli head. This device has a power consumption of 5 
watts, a particularly important parameter for embedded systems that 
depend on a battery. In fact, it could be easily connected via a dc-dc 
converter (12 to 5 V) to the battery of the tractor system to which we 
intend to attach our harvesting prototype, once developed. Though 
other manufacturers and models of embedded microprocessors available 
in the market, as can be seen in the studies carried out in Embedded 
microprocessor benchmark consortium (2020), the NVIDIA Jetson Nano 
was chosen because, as we will show later, it met our performance re
quirements, and its price was very low. 

2.3. Choice of learning algorithm 

To estimate automatically the maturity state and of the broccoli 
heads, two different task are required: the location of the head within 
the image, and the analysis of it, using a classifier. Currently there are 
several network models that allow the location and classification of 
objects in a unified way (object detection), reducing the total processing 
time. Faster R-CNN Ren et al. (2017), SSD Liu et al. (2016), Retina Net 
Lin et al. (2017) or all three versions of YOLO Redmon et al. (2016), 
Redmon and Farhadi (2017), Redmon and Farhadi (2018) are examples 
of models that perform detection of objects with low inference times. 
Among the previous models, Faster R-CNN has become the reference 
model Koirala et al. (2019), due to to the accuracy and robustness of the 
predictions it generates, which is why we have chosen it as the engine of 
our system. 

The aforementioned network models are based on a deep convolu
tional neural network trained on a large set of images such as ImageNet 
Deng et al. (2009). Networks of type ResNet He et al. (2016) or VGG16 
Simonyan and Zisserman (2015), are commonly used as baseline for 
deep network models. In fact, ResNet-50 architecture presents a good 
trade-off between precision and inference-time compared to other ar
chitectures, as shown in Canziani et al. (2016). 

For our system, we decided to use a pre-trained model in order to 
take advantage of what is known as transfer learning Tan et al. (2018). A 
model trained in ImageNet will have essentially “learned” both the low- 
level and high-level features in the images. This is of paramount 
importance for the development of a real-world application like the one 
we are dealing with, where the number of training data will always be 
low, mainly due to the cost in time and resources to obtain the images, 
and the need of an expert in the maturity state of broccoli to label those 
images. Fully training this type of network requires adjusting over 23 
million parameters (network weights for a ResNet − 50 model), which is 
very difficult to achieve without ImageNet or other large dataset, such as 
COCO. However, the net weights pre-trained in ImageNet can be used as 
a starting point, adjusting then in a last training stage to locate and 
classify the broccoli heads into its different states of maturity. 

Though there are several popular environments that can be used for 
that last training, as TensorFlow Abadi et al. (2015), PyTorch Paszke 
et al. (2017), Caffe Jia et al. (2014) or Detectron Girshick et al. (2018) 
(now integrated into PyTorch), we selected Detectron because of its ease 
of use, and our previous experience with this environment. In any case, 
the choice of the environment should not lead to very different results in 
training. 

In order to be used in the NVIDIA Jetson Nano for inference, the 
model was transformed using NVIDIA TensorRT NVIDIA (2020a,b), 
obtaining a very good performance when processing an image size of 
640 × 480 px, as we shall see in the results section. 

2.4. Network training 

As we have previously mentioned, the Faster R-CNN model is built on 
a pre-trained ResNet-50 backbone. The Faster R-CNN region generation 
block is implemented with a Feature Pyramid Network (FPN) (Lin et al., 
2017) which, unlike the standard model, uses only square base ROIs. 
Since broccoli can typically be contained in a 1:1 aspect ratio bounding 
box, using training regions with other aspect ratios to adjust the model 
can result in elongated proposals that cover more than one broccoli 
head, reducing the efficiency of the detection system. 

As mentioned above, the training was carried out with Detectron, on 
a GTX 1070 Ti GPU card with 8 GB RAM. It was configured to use 
minibatch stochastic gradient descent (SGD) with 2 images per GPU and 
256 ROIs per image. Hence, the number of ROIs per training minibatch 
was 512. We used a weight decay of 0.0001 and momentum of 0.9. The 
model was trained for 60000 iterations, that are equivalent to 24 epochs. 
The initial learning rate was set to 0.0025, and it is reduced by a factor of 
10 each 20000 iterations. Besides, we used horizontal image flipping for 
data augmentation. 

2.4.1. Metrics used for evaluation 
To evaluate system performance, four different metrics were 

considered: precision, recall, F1-score and Average Precision (AP). 
To determine whether a proposal generated by the system has 

located a head of broccoli, we must use an overlap metric with respect to 
the reference marks. In object detection, Intersection over Union (IoU) is 
used to measure the accuracy of a detection proposal. This parameter 
reaches a value of 1.0 when the proposal is perfectly overlapped with the 
ground-truth bounding box, and a minimum value of 0.5 is usually 
considered a good object detection Everingham et al. (2015). The formal 
definition of IoU is given by Eq. 1, where P is the area of the proposal and 
G is the area of the ground-truth mark. 

IoU(P,G) =
|P ∩ G|

|P ∪ G|
(1) 

As the network can generate slightly different proposals for the same 
object, we must use a non-maximum proposal suppression algorithm 
(NMS) at its output. A NMS algorithm permits to obtain non-overlapping 
proposals from the complete list of proposals produced by the network, 
ordered desdendingly with respect to their score and with the highest 
level of confidence. To measure the overlap between two proposals, IoU 
given by Eq. 1 is commonly used. In this work, we have set an overlap 
threshold of 0.5 for the NMS algorithm, so any candidate with at least 
this level of IoU with a lower score proposal will be eliminated from the 
final list. 

In order to determine performance, all the elements in the final list of 
proposals are compared with the ground-truth marks, using IoU as the 
overlap metric. This way, a proposal is considered to be a true positive 
(TP) when its IoU with a reference mark exceeds a previously set IoU 
threshold. On the other hand, if a proposal does not reach that IoU 
threshold with any ground-truth mark, it will be considered a false 
positive (FP). And finally, each ground-truth mark for which no over
lapping proposal is obtained from the network, i.e. each non-localized 
broccoli head, is considered as a false negative (FN). Using these 
markers, the usual metrics of precision, recall and F1-score are defined 
(Koirala et al., 2019). For unbalanced, multiclass test sets, these pa
rameters are calculated for each category, and the final value is the 
weighed average using the number of items in each category as weights. 
Precision for class Ci is calculated as the number of correctly predicted 
objects of that class divided by all predicted objects of class Ci. On the 
other hand, recall for class Ci is the number of correctly predicted objects 
of class Ci divided by the number of the objects of class Ci present in the 
test set. And finally, 

F1score = 2 ×
Precision × Recall
Precision + Recall

(2) 
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With this definitions, precision informs about the ability of a classi
fier to identify relevant objects, while recall measures the ability of the 
classifier to find all relevant cases. Finally, F1-score informs whether a 
model has been adjusted to favour precision over recall or vice versa, 
and reaches a maximum value of 1 when both are maximum, decreasing 
when precision or recall decreases. 

The area under the precision-recall curve (AP) can also be used as a 
single metric to summarize the performance of the object detection 
model. For a given IoU threshold to determine TPs, a model with high 
precision at all recall levels will have a high AP score. In a multi class 
object detection task the mean Average Precision is used (mAP), where 
individual AP is averaged over all classes. Multiple variants of this 
metric have been defined, and it is very common to calculate AP as an 
average of the results obtained with different IoU thresholds. Therefore, 
AP can be calculated over a range of thresholds at 10 different IoU 
ranging from 0.50 to 0.95 at 0.05 step-size, usually denoted, AP@ 
[.50:.05:.95]. 

2.5. Broccoli head size estimation 

According to geometrical optics laws, the broccoli head size can be 
estimated from the images using Eq. 3: 

R =
D × O × P

FL
(3)  

where R is the real object size (mm); D, the distance to the object (mm); 
O, the object size within the image (px); P, the pixel size (μm) and FL, the 
focal length (mm). From this parameters, the most difficult to obtain is 
the distance to the object, because it has to be recorded when the image 
is taken. Though it could be measured using a RGBD camera or a LiDAR 
module, this complicates our vision system, and, in our view, it is not 
necessary. Given the new methods of working and monitoring the 
plantations, it can be assumed that the plants of the same harvest grow 
in an homogeneous way, so that they are all at approximately the same 
distance from the ground. This way, if we take the images at a fixed 
distance from the ground, as we did with all our cameras, this parameter 
only has to be measured once in each session. Obviously, this condition 
is very easy to maintain when the camera is placed on the tractor, as we 
did with our Sony IMX179. 

Considering that the relationship between R and D is linear, an error 
of ED mm in the measure of D, will give rise to an error of 

ER =
ED × O × P

FL
(4) 

Therefore, for an image taken with the Sony-DSC-S950 (FL = 5.8 
mm, P = 2.37 μm), in which we have a broccoli head of 500 px size (at 
least 1/4 of the horizontal dimension of the image), an error as large as 
±10 cm in D, will produce an error in our estimation of ±1 cm. 

Anyway, as we discussed in the introduction, the concrete size is not 
critical for agri-food market, as workers decide the moment of har
vesting based mainly on the state of maturity. In this work, we used this 
estimation to study the relation between our classes and the sizes of the 
broccoli heads. 

3. Results and discussion 

Once the Faster R-CNN network was trained with our images, we 
tested its performance on the whole test set. The mean inference time 
with the GPU system used for training was 59 ms per image. When 
performing this operation using NVIDIA Jetson Nano we found that the 
system required 134.6 s to process the 1234 images in the test set. Thus, 
the mean inference time is 109 ms per image with the low cost com
puter. Therefore, as we had raised in the objectives, it allows us to 
operate the detection subsystem in real time. 

3.1. Evaluation of multi-class object detection 

First of all, we have carried out a study of the system performance 
with the minimum score required for detection proposals. The objective 
of this study was to maximize the F1 score, obtaining as a result that the 
maximum efficiency of the detector is achieved by discarding the pro
posals that do not reach a minimum score of 0.7. 

Table 2 shows the performance parameters of our system, for a 
configuration which discards proposals with a score lower than 0.7, as 
previously stated, and counts a true positive if the IoU overlap criteria 
given in Section 2.4.1 is met. The table shows, for the three classes of 
interest and in a simplified way, the confusion matrix over the test set, 
together with the Precision, Recall and F1 rates. 

As a first result, it should be noted that more than 97% of the broccoli 
heads are found on the main diagonal of the confusion matrix, and 
therefore correctly located and well classified. This result informs us of a 
high overall performance when separating the proposed classes. 

When analysing the deviations from the main diagonal, we first 
observe that the modelling achieved for the harvestable and immature 
classes generates a maximum erroneous transfer between both classes of 
less than 1.8%. This result is interesting, considering that one of the 
indicators of the state of maturity is the size of the broccoli head, which 
has not been used as a direct or indirect input to the classifier. 

The behaviour of the system with the heads to be discarded (Wasted) 
indicates that it is capable of correctly separating 95% of the instances, 
allowing the wrong harvesting of only 3% of the cases to be discarded. 

With the level of certainty required for a valid detector proposal, we 
can see that the configured system is highly robust. This translates into 
six false negatives in the immature class, which can be harvested in a 
later pass, so they would not affect negatively the harvest. And there is 
only a false positive, also in this class, which would not trigger the 
cutting mechanism as immature, and therefore would not affect the 
yield of the harvest. 

To study the response of our detector with the size of the heads 
classified as harvestable, we have analysed the mean diameter of the 
proposals generated for each class. The results obtained are shown in 
Table 3, together with its associated standard deviations. 

On average, we can see that the heads classified as harvestable have a 
larger diameter than those classified as immature, as we expected. And 
the moderate standard deviations associated with each metric indicate 
that the diameter for harvestable and immature classes are different. The 
high value of the standard deviation for immature class points out greater 
variability in size associated with this class. However, considering the 
high yield achieved when detecting the harvestable and immature heads, 
it seems clear that the size information is not decisive for the detector to 
determine the real maturity state of the broccoli head. 

Fig. 3 shows three cases well classified as harvestable, immature and 

Table 2 
Performance parameters over the test set for the selected system configuration. 
High recall and precision rates are obtained for the three classes considered. The 
results correspond to the optimum detector configuration with a score > 0.7 and 
an IoU > 0.5.  
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wasted (botrytis). As can be seen in figures (b) and (c) the system is able 
of performing correctly despite the reflections produced by the sun in 
the photograph. 

Fig. 4 shows misclassified cases. As can be seen, many times it is 
difficult, even for an expert, to correctly classify cases by looking at just 
one photograph. And it is very likely that the expert was wrong when 
classifying the case shown in the photograph 4(f) as wasted, perhaps 
confused by the reflections produced by the sun, and so the system could 
have classified it correctly. 

3.2. Global results 

Table 4 shows the results obtained on the test set indicated in 
Table 1, in terms of AP,AP50 and AP75 (average precision rates assessed 
at 0.50 and 0.75 IoU threshold), in addition to AP on medium (APM) and 
large (APL) objects as indicators of the evaluation of the detection 
process. 

AP is averaged for all categories (classes). In this context, it is 

traditionally known as mean average precision (mAP). It shows us the 
percentage of hits on all classes. In this case, we obtained a value over 
83%, which can be considered as acceptable. We can also appreciate that 
the values for AP50 and AP75 are very close, which means that the pro
posals of the network are adjusted to the marks made by the expert, thus 
detecting quite well the dimensions of the broccoli heads. 

4. Conclusions and future work 

At the sight of our results, with 97% of the broccoli heads in the test 
set correctly located and classified, we can conclude that the localization 
of broccoli heads in images and its classification can be accomplished in 
one unique step with a Faster R-CNN deep neural network. Besides, as 
far as we know, this is the first work that identifies the harvestable 
broccoli heads by its state of maturity, and not only by the size. Also, 
wasted heads are detected, allowing to improve the overall quality of the 
harvest. 

On the other hand, the inference step was implemented in a low-cost 
hardware, cheaper than an industrial computer, and performed at a rate 
of ten images per second, so it is suitable for our real time application. 
This is very important because, integrated with an image capture sys
tem, it can decide in real time if a broccoli head should be harvested or 
not, triggering a cutting module in the right moment. 

As future work, we consider two different lines. In one hand, we 
intend to continue the development of a complete harvester prototype, 
integrating first the image capture module and our broccoli heads de
tector. The integrated system should be thoroughly tested in real con
ditions before adding the mechanical cutting module, which will be 

Table 3 
Average sizes of the proposals generated by the network together with their 
associated standard deviations. The average size of the proposals classified as 
harvestable exceeds that of the immature ones.  

Class Diameter (cm) (σ)  

Harvestable 16.42 2.26 
Inmmature 10.51 2.71 
Wasted 16.67 2.09  

Fig. 3. Correct class. 3(a) Two correctly detected harvestable broccoli heads on the same image. 3(b) Well classified immature broccoli head. 3(c) Well classified 
wasted broccoli head. 
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precisely synchronised in order to harvest every localized broccoli head 
that is classified as harvestable. 

Regarding our vision system, we intend to improve it in two ways. 

First, in order to increase image generalization, our image database 
should be increased, adding some other varieties of broccoli grown in 
our region, along with other lighting conditions (acquiring images at 
different times of the day). This will make our classifier even more 
robust. Besides, we are considering to develop an optional image capture 
module with artificial, controlled illumination, with the aim of making 
the prototype usable at night. 

Fig. 4. Wrong class. 4(a) Immature broccoli head classiffed as harvestable. 4(b) harvestable broccoli head classified as immature. 4(c) harvestable broccoli head 
classified as wasted. 4(d) Wasted broccoli head classified as harvestable. 4(e) Immature broccoli head classified as wasted. 4(f) Wasted broccoli head classified 
as immature. 

Table 4 
Detection results on the test set.  

Method AP AP50  AP75  APM  APL  

Result 0.8347 0.9851 0.9816 0.6915 0.8381  
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