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Abstract— This paper proposes the application of a hybrid 

numerical technique to two cases of interest in the space business: 

the reallocation of radiators and scatters on satellite platforms; 

and the analysis of antennas for mobile communications. It is 

based on the analytical manipulation of the Generalized 

Scattering Matrix obtained from the Finite Element Method, 

when concave and convex spherical surfaces are defined as ports. 

The technique combines the power of full-wave resolution, the 

flexibility and speed of the Direct Domain Decomposition 

techniques, and the application of analytical rotations and 

translations from the addition theorems for spherical vector 

waves while keeping the same accuracy as a complete full-wave 

method since no model simplifications are considered. 

 
Index Terms— Spherical modes port, satellite applications, 

lens antenna, finite element method, Ka-band.  

 

I. INTRODUCTION 

s known from the basics of electromagnetics, two or 

more bodies that are close to each other in terms of wave-

length generate a global electromagnetic (EM) behavior that 

depends on both the sum of the effect generated by each body 

independently, and their mutual interactions.  

This situation is ubiquitous in applications related to space. 

Focusing on the space segment, satellites are complex 

structures involving several EM-sensitive bodies whose study 

requires a multiphysics approach (mechanical, thermal, 

electrical, etc.). In addition, the geometry of new satellite 

platforms is often prone to changes during its design cycle [1]. 

Therefore, reallocation of scatters and antennas is a frequent 

need. This process may require a full EM analysis of the new 

structure each time a change is introduced, turning into a very 

consuming process; and/or the use of simplified models.  

On the ground segment, dielectric lens antennas have been 

proposed during the last years for Ka-band communications 
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on the move [2]. Among their virtues, they offer high gain and 

their manufacturing process is well controlled. The lens design 

is usually carried out according to asymptotic methods (AM) 

which, in general, provide the lens shape and profile needed to 

meet the specifications. But the interactions between lens and 

feeder are not taken into account and this frequently results in 

a poor prediction of the lens performances. Furthermore, for 

communications on the move, the lens may move with respect 

to the feeder to obtain beam steering, so a complete full-wave 

analysis would be needed for each steering angle. 

The idea of Domain Decomposition (DD) has already been 

proposed in the literature [3-5]. In [4], the location of an 

antenna on an airplane fuselage is presented. And in [5], the 

use of AM plus spherical mode expansion is used to obtain the 

modifications in the feeder's S11 parameter. 

In this work, DD is fully incorporated into a hybrid 

technique based on the Finite Element Method (FEM) 

combined with mathematically-accurate analytical matrix 

manipulations. The main goal is to develop a technique 

allowing placing, reallocations, and rotations of antennas and 

scatters on or near a bigger domain (such as a satellite fuselage 

or a lens), so that the EM impact of each modification can be 

quickly obtained with a very reduced computational effort, 

while offering an exact solution of the complete problem. As it 

will be shown, this novel technique relays on the proper 

combination of the FEM-computed Generalized Admittance 

Matrix (GAM) for each domain of interest ([3], [6]), and the 

well-known spherical mode expansions to model the free-

space between a convex spherical port (CxSp, being the outer 

boundary of a domain) and a concave spherical port (CvSp, 

being the “host” port in a bigger domain). These spherical 

ports are allowed to have arbitrary centers and radii. This 

hybrid technique will be fully described in Section II, while 

Section III contains the obtained results from the two relevant 

cases highlighted in this Introduction: beam-steerable lens 

antenna and antenna reconfiguration on sat-platforms.  

II. DIRECT DD BASED ON SPHERICAL PORTS 

A. Step-by-step description 

The technique proposed can be broken-down as follows: 

1) Solving the FEM problems, including CxSp and CvSp. 

There will be a number of smaller domains, Di, each of them 

with (at least) a CxSp as outermost boundary, generating each 

a GAMi; and a bigger domain, DH, with, at least, a CvSp (that 

will host domains Di) yielding GAMH.   

Direct FEM-Domain Decomposition using Convex-

to-Concave Spherical Ports for Space Applications 

Pedro Robustillo, Jesus Rubio, Juan Zapata, and Juan R. Mosig, Life Fellow, IEEE 

A 

Page 1 of 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2) Obtaining the Generalized Scattering Matrix, GSMi, 

associated to each GAMi. Described in Section II.B.  

3) Applying the traslation/rotation theorems to all GSMis, 

yielding the analytically-built GSMG. This operation accounts 

for all the couplings between the GSMis, explained in [6-7].  

4) Relating the several CxSps of the GSMG to a single 

CxSp which will fit into the CvSp of DH, by using the 

procedure explained in Section II.C, yielding GSMC. This 

CxSp must enclose all the CxSps of the many GSMis. 

5) Converting the GSMC into GAMC.     

6) Perform the connection of GAMC and GAMH, yielding 

the GAM of the complete problem, say GAMT.  

B. Conversion from GAM to GSM and viceversa 

In the frame of this work, it was found that connection of a 

GSM-CxSp to a GSM-CvSp laid to issues with interpretation 

and convergence in relation to CvSp. On the other hand, 

connection of a GAM-CxSp to a GAM-CvSp was successfully 

checked, as will be shown. However, GSMs for regions with 

convex ports need to be calculated since they provide the 

reflection and radiation characteristics of the device, and they 

allow using analytical tools to account for rotations, changing 

the origin of the spherical modes, and computing mutual 

couplings.  

The GSM, denoted as S, of the device is obtained from the 
GAM through the expressions that relate complex amplitudes 

of voltages and currents with: complex amplitudes of incident 

(𝑣𝑙
+) and reflected modes (𝑣𝑙

−) in plane ports (WGp); and 

incoming (𝑎𝑖𝑚) and outgoing (𝑏𝑖𝑚) spherical modes in 
spherical ports. These relations are well known for plane ports. 

For spherical ports they are given through the Schelkunoff 

Spherical Hankel functions of first and second kind [8]. In a 

general way, we express it as:  

 

𝑉𝑖𝑚 = 𝑎𝑖𝑚𝐴𝑖𝑚 + 𝑏𝑖𝑚𝐵𝑖𝑚        

𝐼𝑖𝑚 = 𝑎𝑖𝑚𝐶𝑖𝑚 + 𝑏𝑖𝑚𝐷𝑖𝑚       (1) 

 

which leads to the following relation between the GSM and the 

GAM, Y:       

𝑺 = (𝒀𝑩 − 𝑫)−1(𝑪 − 𝑫𝑩−1𝑨) − 𝑩−1𝑨    (2) 

 

where A, B, C and D are diagonal matrices whose elements are 

computed from the aforementioned spherical modes, and with 

S defined as 

𝑺 [𝒗+

𝒂
] = [

𝝆 𝒓
𝒕 𝒔

] [𝒗+

𝒂
] = [

𝒗−

𝒃
]      (3) 

 

where  𝒗+, 𝒗−, a and b are column vectors and their elements 

are respectively 𝑣𝑙
+,  𝑣𝑙

−, 𝑎𝑖𝑚 , and 𝑏𝑖𝑚. ρ, r, t, and s are 

respectively the device reflection, reception, transmission and 

scattering matrices [9]. Additionally, the far-field pattern can 

be analytically obtained by means of the following expression 
 

 𝑬(𝜃, 𝜑) = 𝒆𝒕𝒗+       (4) 

 

where e is a row vector of the transversal electric field 

component of the spherical modes. From (2), the expression of 

Y as a function of S can be readily obtained. 

C. Axis rotation and coordinate origin change for GSM 

The rotation of the reference axes and the change of origin 

of coordinates of the spherical ports allow us to choose the 

same coordinate system for all the convex spherical ports of 

each domain, so that all of them can be referred to a single 

spherical port that contains all of these domains. It can be 

carried out by means of a general translation matrix 𝑮𝑗𝑘
(2)

 

which relates complex amplitudes of incoming spherical 

modes between two spherical ports, j and k, and complex 

amplitudes of scattered spherical modes between the same two 

ports  

 

        𝒃𝑗
𝑠 = 𝑮𝑗𝑘

(2)
𝒃𝑘

𝑠  ; 𝒂𝑘 = (𝑮𝑗𝑘
(2))

𝐻
𝒂𝑗 (5) 

 

where  

 

                 𝒃𝑗
𝑠 = 𝒃𝑗 − 𝒂𝑗 (6) 

 

and port k must be completely surrounded by port j. Matrix  

𝑮𝑗𝑘
(2)

can be analytically built as explained in [6] but with the 

axial translation coefficients corresponding to the second case 

given in Appendix 3 of [9] (denoted here as (2)), or in  [10]. 

From (5) and (3) the submatrices of the GSMC, with only 

one common spherical port j, can be computed from the 

submatrices of the GSMG with, in general, multiple local 

spherical ports k through the following expressions: 

 

𝝆𝐶 = 𝝆𝐺 ; 𝒕𝐶 = 𝑮(2)𝒕𝐺              

𝒓𝐶 = 𝒓𝐺(𝑮(2))
𝐻

 ; 𝒔𝐶 = 𝑮(2)(𝒔𝐶 − 𝑰)(𝑮(2))
𝐻

+ 𝑰 (7) 

𝑮(2) = [𝑮𝑗1
(2)

 𝑮𝑗2
(2)

…  𝑮𝑗𝑘
(2)]             

 

with the superscript H denoting the conjugate transpose. 

III. RESULTS 

A. Beam-steerable, lens-based antenna system 

Fig. 1 shows the structure under analysis and its geometrical 

description. It consists of a dielectric lens (εr = 2.35), [2], 

scaled to work at 19GHz. The lens can rotate around the y-

axis, for θsteering  [0°, 40°]. The DD proposed in this work is 
also shown in Fig. 1. Domain 1, D1, includes the lens and two 

spherical ports: the outer one to account for the radiating 
fields; the concave, inner one to host Domain 2, D2. Domain 2 

includes the horn (fed by a circular waveguide port), covered 

by a CxSp. Both domains are FEM-solved independently, 

obtaining GAM1 and GAM2, respectively. By connecting 

GAM1 and GAM2 (when the outer CxSp of Domain 2 fits the 

inner CvSp of Domain 1), GAMT arises containing the EM 

behavior of the complete structure. Fig. 2 shows results from 

this direct connection to verify the proposed FEM-DirectDD 

without rotation/translations (i.e. case θsteering =0°).  Results 

from only full-FEM and from this work show differences 

below 0.1 dB for E-field Right-/Left-Handed Circular 
Polarization (RHCP, LHCP). Therefore, the convex-to-

concave connection is verified. From Table I, computational 

time for the proposed method is seen to be of the same order 

of magnitude as that from software in [11]. The advantages of 
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using the proposed method come now thanks to the fact that 

the GSM2 can be analytically manipulated to obtain the GSM 

of the horn antenna rotated a defined angle θsteering, say 

GSM’2,θ (where ’ highlights the fact of being analytically 

computed). Next, by analytical connections of GAM1 with 

every GAM’2,θ , it is obtained the EM behavior of the 
complete structure for any θsteering within only 1-2 seconds per 

θsteering value (as opposed to the 51min needed by [11]).  

Results for θsteering =10°, 40° are also shown in Fig. 2 to 

prove the accuracy of the proposed FEM-DirectDD technique 

when rotation is analytically applied. Discrepancies between 

this work and results from [11] are within the usual range 

observed when two numerical methods are compared (in this 

case, FEM in [11] also applied Integral Equation Boundary 

Conditions over the lens and absorbing boundary conditions). 

Up to 880 spherical modes where considered for the 

connection. Other advantages of the proposed technique will 

be highlighted thanks to the next example. 

B. Small-satellite Fuselage Bread-Board 

Fig. 3 shows a representative breadboard of the main 

features that small- and microsatellites may exhibit. The 

considered frequency band is 700-850MHz (42 frequency 

points), which is also representative of the working frequency 
of some units on-board (such as the TT&C [1]) and payload 

instruments [12]. The main fuselage has the shape of a 

truncated cone to proof that the proposed method also works 

whenever a hemi-sphere surface can be laid on a 

circumference. The radii of the bottom and upper bases are, 

respectively, 2300 mm and 1150 mm. The height is 800 mm. 

On the upper, circular base, three elements will be placed on 

positions (rA1, A1; rA2, A2 ; rP, P) not specified a priori: two 
patch antennas (180mm×180mm), described by a single 

GAMA; and a prism, metallic, passive element 

(99mm×99mm×130 mm), described by GAMP. These three 

elements will be placed in 120°-circular rotation configuration 

on the upper base. A fourth element (a metallic cylinder, 250 
mm in height) will be located near the base edge, see Fig. 3. 

This configuration allows to proof:  

- The formulation works for both spherical ports and 

hemispherical ports laying on a metallic circumference. 

- Replication of elements can be analytically done. 

- Analytical rotations/translation can be used to set the 

desired position of any element, characterized by its 

GAM, inside a hemi-sphere (as long as no collision 

between spherical surfaces takes place).  

- Analytical domains can be created.  

- Domains –either analytically or FEM computed- can be 

nested inside each other. 
The geometry is decomposed into the three different domains 

depicted as D1, D2, and D3. The radii of the outer-most 

spherical ports are, respectively (mm): 1500, 750, 500. As can 

be seen, Domain 3 (D3) is a so-defined analytical domain, and 

will host GSMA (analytically operated to obtain 2 replications 

at different positions/rotations) and GSMP.   

Hence, following the procedure in Section II, GAMD1, 

GAMD2, GAMA, and GAMP from (respectively) D1, D2, the 

patch antenna, and the metallic scatter were computed by 

FEM (for these two latter, the radius of the outer-most, 

convex, hemispherical port is 180 mm). Then, GSMG,D3 for 

Domain 3 is obtained from GSMA by setting its desired 

position/rotation on the satellite (rA1, A1; rA2, A2); and from 

GSMP, analytically placed at (rP ,P). Then, GSMC,D3 is 
computed and, from it, GAMD3. Next, connection of GAMD3 

and GAMD2 is performed, yielding GAMD23; and, after 

connection with GAMD1, the EM response of the complete 

structure is achieved.  The computational details are given in 

Table II. We see that the FEM problems are carried out only 

once. However, since the position and the local rotation of each 

element, (ri, i), is set analytically, a large set of locations, 

along with their complete EM behaviors, can be assessed 
within 1-2 seconds each, as opposed to the 120min needed for 

the computation of the total geometry by [3]. 

In addition, the proposed technique allows to quickly 

evaluate the impact on EM performance in case an evolution of 

the fuselage happens (in our case-example, only D2 and/or D1 

should be FEM-recomputed). Also, the redesign or the 

inclusion of other elements within Domain 3 can be assessed 

straightforward. So, a sizeable reduction in total computational 

time within the satellite design loop can be obtained, as shown 

in Table II. 

Fig. 4 shows that the results obtained by the proposed 
technique are similar to that obtained by using FEM on the 

complete geometry (“Total” in Table II) for the 42 frequencies. 

IV. CONCLUSION 

As stated in the introduction, a hybrid FEM-DirectDD 

technique has been presented that allows relevant features in 

the space field, both on-ground and in-orbit. The 

implementation of the method has shown accuracy, robustness 

and efficiency. Most features of this technique have been 
successfully applied to breadboards of both lens-based 

antennas for satcoms, and small satellites.  The former 

example allowed us to verify the accuracy and the 

computational time for connections and rotations; the latter 

demonstrated other useful advantages such as 

translation/rotation, replication, and nesting, which make the 

proposed technique (fully implemented as a general purpose 

tool) an efficient tool. 

 

 

 
 

 
Fig. 1.  General sketch of a lens-based antenna structure. In this work: r1= 

5.52mm; r2= 19.65mm; r3= 40mm; h1= 10mm; h2= 25mm; h3= 22mm; h4= 

60mm. DirectDD applied:: D2, contains {P1: circular port; P2: CxSp, r=30 

mm}; D1, contains { P3: CvSp, r=30 mm; P4: CxSp, r=70 mm}. 
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Fig. 2. Amplitude (dB) of RHCP (blue) and LHCP (red), at plane φ=0°, 19 

GHz.  a) Dot: FEM in [3].  b)  Solid: this work. c) Dash: FEM-IE from [11]. 

NOTE: (a) and (b) are almost superimposed. Inset: S11. 

 
Fig. 3. Left: Cross section of the conical small-satellite fuselage bread-board. 

The geometry is devided into domains: D1, D2, D3. Right: Conceptual sketch 

of the analitical generation of GSMC,D3. Beside each matrix name,  the number 

of WGp, n, and CxSp, m, of each matrix: [n:m]. 

 

Fig. 4. Up: Amplitude (dB) of Eφ and E. Cut at φ-planes with respect to the 

XYZ reference system shown. Down: S11 of Patch antennas P1, P2. Dash: EM 

simulation of complete geometry, [3]; Solid: this work, t/w.  
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TABLE I: COMPUTATIONAL DETAILS, 24-CORE 3.33 GHZ 

 FEM This work: D1/D2 FEM in [11] 

# elem./ 

RAM (GB) 
302K / 101 152K/115 105K/15 101K/16 

CPU t ~90 min ~110min ~10 min ~51 min 

# modes 
P1:2 P3:880 P1:2 

P1: 2 
P4:2176 P4:2176 P2:880 

 

TABLE II: COMPUTATIONAL DETAILS, 24-CORE 3.33 GHZ 

 
Total 

by[3] 
This work: D1/D2/D3  

Patch 

Ant. 

Prism 

# elem. 94K  45K 42K 
- 

 

32K 13K 

RAM 

GB 
14 7.4 4.7 

- 1.5 1 

CPU t 

(min) 
~120 ~43 ~19 

- 7 6 

# modes:  

WGp 2    2  

CvSp  576 576   - 

CxSp  864 576 576 35 35 
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