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1. PRELIMINARIES

Let ‘H be a complex Hilbert space and B(H) the Banach algebra of all
bounded linear operators on H. If T' € B(H) then T™ stands for the adjoint
operator of T', while R(T) and N (T) denote the range and the null-space of
T, respectively.

A contraction on 'H is an operator T' € B(H) satisfying T*T < I, where I =
I is the identity operator. If T*T < I then T is called a proper contraction.
The class of contractions is one of the most studied and well-understood class
of operators (see for instance [2], [3], [6], [L1]) and the investigations concerning
different other classes in B(H) have a starting point the theory of contractions.
We refer below to a class of operators which generalize the contractions.

Let A € B(H) be a positive operator, A # 0. An operator T" € B(H)
satisfying the inequality

(1.1) T*AT < A

is called an A-contraction on H. If the equality in (1.1) one occurs then T'
is called an A-isometry on H. Such operators appear in different contexts
in [1], 2], [3], [5], [7]-[10], [11], and other papers. By contrast to the class
of contractions (that is, of I-contractions), the class of A-contractions is not
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invariant for the adjoint mapping 7' — T* in B(H), in general (see Example
4.1 [8]).

It is clear from (1.1) that N(A) is an invariant subspace for 7' (and ob-
viously, for A). So, if A is not injective then N (A) is a nontrivial invariant
subspace for T'. In general, for an A-contraction 7' it is possible to get other
invariant subspaces for 7" which contain N'(A). For instance, we proved in [8]
that the subspace

(1.2) N = N(A—AT) = N(AY2 — AYV2T) = N(A — T* A)

is invariant for T', where A'/2 is the square root of A. Clearly one has N'(A) C
N, hence N' = {0} implies A injective. On the other hand, N' = H means
T*A = A, that is T* ’W = IW' Thus, if A is not injective and T™ is not

the identity on R(A), then N (A) and A are nontrivial invariant subspaces
for T

Now, we infer from (1.1) that there exists a unique contraction 7" on
R(A) = R(AV/?), which satisfies TAY2h = AY2Th for any h € H. Then
it follows immediately that R(I —T) = R(AY/2 — AY/2T), hence having in

view the decomposition R(A) = R(I —T) & N'(I — T we have
(1.3) N, = N(AYV2 —T* AV = N(I = T) @ N(A).

We know (from [9] and [10]) that N' = N, if and only if N/ (equivalently,
N.) reduces A, and this fact has a pure ergodic character (see Theorem 2.1
[9] and Theorem 2.4 [10]). According to [9] we say that an A-contraction T
on H is ergodic if N' = N,. In this case, the subspace N is invariant for A
and T but, by contrast with the case when A = I, A is not invariant for 7,
in general (see Example 2.8 [10]).

An A-contraction T on H is called regular if it satisfies the condition
AT = AY2TAY2?. Equivalently, this means that AY2TAY2h = T Ah for
h € H, which implies AY2Tk = TAYV2k for k € R(A). So, an A-contraction
T is regular if and only if T and A|W commute. In this case, one has
(I — TYAY2k = AV2(I — T)k for k € R(A), which gives that N'(I — T is
invariant for A/ 2|W and from (1.3) one obtains that N, is invariant for A.

Hence, any regular A-contraction is an ergodic A-contraction.

It is clear that any contraction 7" on H is an ergodic T*T-contraction
(being also a (T*T)'/2-contraction). In addition, if T is hyponormal that
is TT* < T*T, then T* is an ergodic T'T™*-contraction, and also an ergodic
T*T-contraction. This happens in particular when T is quasinormal, that is
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if T and T*T commute (see [2], [3], [12]). But in this last case T" and T* are
regular T*T-contractions.

In general, an operator 7' € B(H) which is a T*T-contraction is called a
quasi-contraction, and if T'is a T*T-isometry then 7T is called a quasi-isometry.
In this last case, one has ||T|| > 1, and it was proved in [5] that ||T|| = 1 if
and only if T" is hyponormal.

In this paper we deal with some invariant subspaces in the context of A-
contractions. So, in Section 2 we discuss the largest invariant subspace on
which a given A-contraction actions as an A-isometry. Especially, the regular
case is considered here. As applications, in Section 3 we analyze in detail the
quasinormal contractions seen as quasi-contractions. We obtain the concrete
forms for the unitary part and for the quasi-isometric part of a quasinormal
contraction, and also some facts concerning such operators. In Section 4 we
obtain an asymptotic form of the largest invariant A-isometric subspace from
Section 2, using the operator limit of the sequence {T*"AT"; n > 1}. We
study this subspace in connection to other subspaces which appear in the
general context of A-contractions. But, more precisely results are derived in
the case of a regular A-contraction, or when the range of A is closed. As
applications in this section, we reobtain some facts concerning the asymptotic
behaviour of a quasinormal operator (see [2], [3]), by direct investigations
using the context of regular A-contractions.

2. THE INVARIANT A-ISOMETRIC PART

As we remarked in the previous section, the null-spaces N (A) and N =
N (A — AT) play an important role in the study of an A-contraction 7' on
‘H, by being invariants for T. Other remarkable subspaces associated to an
A-contraction T are

No:=N(A=T*AT), Ny :=[|N(A—T"AT").
n=1

We have N C Noo C Np, and N = N if and only if AV2TNy C N,.

By contrast with N/, A is not invariant for 7" even in some ergodic cases.
This fact easily follows from Example 4.3 [8], where one has {0} # N(A) =
N =Ny & Ny # H. But, in general, the inclusion N'(4) C N C Np can be
strict even if A is invariant for T'. For instance, when 7' is a T*T-isometry on
H with ||T|| = 1, we have from Remark 2.7 [10] that N = N(T) &N (I —T).
Thus, if T'is not an orthogonal projection and 7" has non zero invariant vectors
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in H, then {0} #N(T) G N G Now =N = H.
Concerning the subspaces Ny and N, we firstly have

PrOPOSITION 2.1. The following conditions are equivalent for an A-con-
traction T on H:

(i) TNy C Noy;
(i) No = N(A—T*2AT?);
(iil) My = Noo.-

Furthemore TNy C Nu, and if ANy C Nu then Ny is the largest
invariant subspace (in H) for A and T' on which T is an A-isometry.

Proof. Let T be an A-contraction on H. Then T™ is also an A-contraction
for any integer n > 2, and since the sequence {T*" AT™} is decreasing we have

N(A =T AT™) C N(A—T*"AT™") C Ny (m,n > 2)

This shows that (iii) implies (ii), and the equivalence of (ii) with (i) is based
on the following relation (for n = 1)

(2.1) (A = T*" AT™)Y2Th||?> = (T* ATh, h) — (T*"D AT 1}, R),

where h € H and n > 1.

Next, if we assume the condition (i), then for h € Ny and n > 1 we
have AT"h = T*AT"* 'h, hence T*AT"h = T*™+) AT 1], This leads to
My = N, that is the condition (iii).

Now we infer from (2.1) that

TNoo CN(A-T"AT") (n>1),

whence TN C Noo.

Suppose that AN, C Nu. Therefore N is invariant for A and T, and
T|n., is an A|n; -isometry because Now C Ny. Let M C 'H be another
invariant subspace for A and T such that T'|y is an A|r-isometry. Then
T™am is also an A|p-isometry, that is (T"|m)*AT"h = Ah for h € M,
n > 1. Equivalently, one has ||AY2T™h|| = ||A'Y/2h|| which implies M C
N(A—T*"AT™) for any n > 1, and so M C N. 1

Remark 2.2. If the A-contraction T is not an A-isometry on H and the
operator A is not injective, then N'(A), NV and Ny are nontrivial invariant
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subspaces for T. Furthermore, if the A-contraction 7' is not ergodic then

N(A) # N. In general N' # N, because one has
(2.2) N C N NN(AT —T*A) = Noo NN (A — AT?) C N,

where the subspace between N and N is also invariant for T

In particular, if T is an idempotent, that is T? = T, then AT = T*A
(see [8]) and so T*AT = AT, whence we infer that N' = N, = Ny. On the
other hand, when T is 2-nilpotent, that is 72 = 0, then immediately follows
that My C N(A), consequently N(A) = N = N. Such a case appears in
Example 4.3 [8] quoted above, where N, # Np; here Ny and N, are invariant
for A. In all these cases, T is an ergodic A-contraction.

In general, neither Ny nor N, are invariant for A, as can be seen in
Example 4.4 [8] where the A-contraction T is not ergodic and {0} # N =
Noo = Ny # H. Finally, the Example 2.8 [10] gives an ergodic A-contraction
T for which {0} # N(A4) = N = Ny & My # H, such that N is invariant
for A, but Ny is not invariant for A or T

The above remarks lead to conclusion that the properties of subspaces Ny
and N, depend not essentially of the ergodic character of the A-contractions.
However, certain facts about Ay and N may be obtained when T is a regular
A-contraction.

PROPOSITION 2.3. Let T be an A-contraction on H and M C Ny be an
invariant subspace for A and AY?T. Then AY?T |, is a quasinormal operator
in B(M) if and only if ATh = AV?TAY?h, h € M.

Furthermore, if T is a regular A-contraction, then Ny and N, are invariant

for A, and N is the largest subspace into Ny which is invariant for A and
AV2T.

Proof. Let M C Ny be a closed subspace such that AM C M and
AYV2T M c M. Then (AV2T|p)* = Pp(AY2T)*| g, Paq being the orthogo-
nal projection onto M, and for h € M we obtain (because h € Np)

Ah = T*ATh = Py(AY2T)*AY2Th = (AV?T| a0 )" AV?Th.
This firstly implies
AYV2T AR = (AY2T| ) (AY2T | pg)* AY2Th
and later on (because A'/2Th € M)
A32Th = (AY2T| )" (AY2T | i) %A
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Finally, the two relations show that the operator AY/ 2T | m is quasinormal in
B(M) if and only if A3/2Th = AY?T Ah for any h € M. Since this condition
just means that the operators A|, and AY/ 2T| pm commute, it is equivalent to
the fact that A'/2| ¢ commutes with A'/2T| 4 (M being a reducing subspace
for A), that is ATh = AY2TA'Y/2h, for h € M.

Now we suppose that AT = AY2T AY2 on ‘H. For n > 2, T" is also an A-
contraction, while the condition AT™ = AY/2T" A1/2 can be easily obtained by
induction and using the fact that the operator A1/2 is injective on his range.
Thus, for n > 1 one obtains

(A—T*"AT™")A = A2 — T*"A?T" = A(A — T*"AT™),

which yields ANy € My and AN, C N(A — T*AT™) for n > 1, and later
ANs C Na. So Ny and N, are invariant subspaces for A, N, being also
invariant for T', consequently Ny is invariant for AY/2T.

Next, let M C Ny be as above. Using the condition from hypothesis, we
get for h € M

AT* AY2T2h = T* AT AV2Th = A32Th,

whence ATh = AY2T*AY2T2h = T*AT?h. This gives Ah = T*ATh =
T*2AT?h, and repeating the same argument we will obtain by induction that
Ah =T*"AT"h, for h € M and n > 2. Thus we have M C N(A —T*"AT™),
for n > 1, and finally M C N,. Hence N is the largest subspace into Ny
which is invariant for A and AY2T. §

COROLLARY 2.4. Let T be an A-contraction on ‘H such that N, is invari-
ant for A. Then T is a regular A-isometry on N if and only if the operator
A'V2T | is quasinormal in B(Nx).

Proof. By hypothesis and Proposition 2.1 we have that N, is invariant
for A and T, and T|p, is an Ay -isometry. The conclusion follows from
Proposition 2.3. |

COROLLARY 2.5. An A-isometry T on 'H is regular if and only if the op-
erator AY?T is quasinormal in H.

Concerning the subspace Ny we have now
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THEOREM 2.6. Let T be a regular A-contraction on H. One has:

(i) T is a regular A™-contraction and a regular A'/?"-contraction, and further-
more we have

(2.3) No = N(A" = T*A™T) = N(AV?" —1*AV?'T) (0 > 1).

(ii) The subspace Ny is invariant for T' if and only if Ny is invariant for A™/?T,
for some (equivalently, all) integers n > 1.

Proof. (i) The fact that T' is a regular A™-contraction can be proved by
induction. For the first equality in (2.3) we use the identity

T* APT — (A1/2)2(n—1)A1/2T*A1/2T (n > 2)7

which clearly follows from the condition AT = AY2TAY2. Thus, for h € H
we have T*A™Th = A"h if and only if

(A1/2)2(n—1)Ah _ (Al/Q)z(”_l)Al/zT*A1/2Th,

or equivalently (since A'/2 is injective on AY?H), Ah = AY?T*AY2Th
= T*ATh. This gives the first equality in (2.3).

Now, we show that 7" is an A'/2-contraction on H. Recall that the op-
erator A'/2 can be obtained as the strong limit of a sequence {p,(A4)}n>1 of
polynomials in A with positive coefficients and p,(0) = 0 (see [6], pg. 261).
As T is an A7-contraction for j > 1, we obtain

(T"pn(A)Th,h) < (pp(A)h, h),

for any h € ‘H and n > 1. So, by passing to limit when n — oo, we get
T*AY2T < AY2. Hence T is an A'/2-contraction on H.

Next, we prove that the A'/2-contraction T is regular, too. We remark
that the inequality T*AT < A implies that there is an operator C' € B(H)
such that AY2T = CAY2. Since T is a regular A-contraction, we get

(A1/2)2T — AT = Al/QTAl/Q — C(A1/2)2

and by induction we obtain (AY/2)"T = C(AY/?)" for any n > 1. This leads
to p(AY?)T = Cp(A'/?) for any polynomial p with scalar coefficients. Then
considering a sequence of approximation polynomials (as above) for the square
root A4 of A2, we deduce that AY4T = CAY/4. This implies AY4T A4 =
CAY2 = AV2T, which just means that T is a regular A'/2-contraction. Also,
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it follows by induction on n > 1 that T is a regular AY/2"-contraction, and
clearly, the first equality in (2.2) gives Ny = N (AY2" — T*AY?"T), for any
n > 1.

(ii) If Ny is invariant for T then, being also invariant for A2 Aj will
be invariant for A™2T, for any n > 1. Conversely, we suppose that Aj is
invariant for A™2T, for some n > 1. We have for h € Nj

T*A"T%h = T* A>T AY?Th = A™2A"2Th = A™Th,

where we used from assertion (i) the fact that T is a regular A™-contraction
and a regular A'/2-contraction, while in the second equality one has in view
that A™2Th € Nj. Finally, from (2.3) we obtain that TNy C Np. 1

COROLLARY 2.7. If T is a regular A-contraction on H such that AY/2T

is a quasinormal operator on H, then Ny = N and this subspace reduces
AT

Proof. From hypothesis we infer for h € Ny,
T*ATAY?*Th = AY*TT*ATh = AV?T Ah = AAY?Th,
and respectively,
T*ATT* AY2h = T* AV2T* AV2AV2Th = T* A32h = AT* AY?h.

This means that A is a reducing subspace for the operator AY2T_ and both
Theorem 2.6 (ii) and Proposition 2.1 imply finally Ny = N |

Remark 2.8. When T is a regular A-contraction and Ny = N, then we
also have

(2.4) M =NA-T"TAT") (n>2),
which completes the relations (2.3). On the other hand, let us remark that the

condition AT = AY2T AY2 not assures that A/2T is quasinormal, in general.
For instance, when T is a non-unitary coisometry and A = I on H.
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3. APPLICATIONS TO QUASINORMAL CONTRACTIONS

The above results can be applied to obtain some facts on the quasinormal
contractions, as those concerning their unitary, isometric and quasi-isometric
parts.

THEOREM 3.1. Let T be a quasinormal contraction on H. One has:
(i) N(I —T*T) is the largest subspace which reduces T to an isometry.
(ii) N(I — TT*) is an invariant subspace for T', and T is an isometry on this
subspace.
(iii) M = o2y N(I —T™T*™) is the largest subspace which reduces T' to a
unitary operator, and we have

(3.1) M = ﬁ TN(I - TT*).
n=0

Proof. The assertion (i) follows immediately from Proposition 2.1 and
Corollary 2.7 when A = I.

(ii) It is easy to see (1" being quasinormal) that T7* < T*T and
(3.2) NI =TT*) c N(I - T*T).

Thus, for h € N(I — TT*) we have h = T*Th and Th = TT*Th, hence
Th e N(I —TT*). Therefore N(I —TT*) is invariant for 7.

(iii) By Proposition 2.1 the subspace M from (iii) is the largest invariant
subspace for T* on which T™* is an isometry. Let us prove that TM C M. Let
h € M, hence h = T’T*h for j > 1. Using the fact that M C N (I —TT*)
and (3.2) we have T*Th = h, and we obtain for n > 1,

TT*Th, — TnT*(n—l)h _ T(Tn—lT*(n—l)h) — Th.

Thus TM C N(I —T"T*") for n > 1, whence it follows that T M C M. Con-
sequently, M reduces T to a unitary operator (by (3.2)), being even the largest
subspace with this property, because M is the largest invariant subspace for
T* on which T* is an isometry. The subspace M can be also expressed as in
(3.1) by Theorem 2.4 [7]. 1

Recall that W. Mlak proved in [4], using the unitary dilation, that for any
hyponormal contraction T the largest subspace which reduces T' to a unitary
operator has the form (3.1). But in [7], this fact was shown for the quasinormal
contractions without the use of unitary dilation.
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COROLLARY 3.2. Let T be a quasinormal contraction on H. Then the
subspace N'(I — TT*) is reducing for T if and only if T is a unitary operator
on N(I-TT%). In this case, N (I —TT™) is the largest subspace which reduces
T to a unitary operator.

Proof. Suppose that T is unitary on N (I —TT*). Then we have T*N (I —
TT*) =T*TN(I —TT*) =N(I —TT"), because T is an isometry on N (I —
TT*). So N(I — TT*) reduces T to a unitary operator, being the largest
subspace with this property, by Theorem 3.1 (ii7). The converse part of the
corollary is immediate. |

Remark 3.3. Since any contraction 7" on H is also a quasi-contraction, one
has

oo o0
(3.3) (NI -TT") C (Y N(T*T - T*'T™),
n=1 n=2
where in the left side and the right side we have the largest invariant subspace

for T' on which T is an isometry, and respectively, a quasi-isometry. When T’
is quasinormal we can obtain more complete facts in the following

THEOREM 3.4. Let T be a quasinormal contraction on H. One has:

(i) N(T*T — T*2T?) is the largest subspace which reduces T to a quasi-
isometry.

(ii) N(T*T — TT*TT™) is an invariant subspace for T and T*T, and T is a
quasi-isometry on this subspace. Furthermore we have
N(T*T — TT*TT*) = N(I — TT*) & N(T)

4
(34 CN(T*T —TT*) N N(T*T — T**T?).

(iiit) M := 02 N(T*T — T"T*TT*") is the largest subspace which reduces
T, on which T and T* are T*T-isometries. Moreover, we have

(3.5) M= ﬁ T"N (I — T™T*™) & N (T).
n=0

Proof. The assumption that T is a quasinormal contraction assures that
T is also a regular T*T-contraction. Then both Proposition 2.1 and Corollary
2.7 imply the assertion (i).
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Also we remark (T being a quasinormal contraction) that
TT*TT* <TT* <T*T,

which shows on one hand that T is a T*T-contraction on H, and on the other
hand we infer the inclusion

(3.6) N(T*T — TT*TT*) ¢ N(T*T — TT").

Next, if h € N(T*T — TT*TT*), then using (3.6) and the fact that T is
quasinormal we obtain

T*Th = TT*TT*h = T*T*T*h = T*TT*Th = T**T?h.
This leads to the inclusion
(3.7) N(T*T — TT*TT*) C N(T*T — T**T?),

and both (3.6) and (3.7) give the inclusion from (3.4).
Now denote N, := N(T*T — T"T*TT*") for n > 1. Clearly, N, is the
corresponding subspace Ny for the regular T*T-contraction T*", therefore by

Proposition 2.3, N, is invariant for T*T. Also, since T' is quasinormal we have
TTTYT*" = TT*™T*T, whence

N, = N[T*T(I = T"T*")] = N[(I — T*T*)T*T).

Thus we infer that N (T) = N(T*T) C N,, and N(I — T"T*) C N, and
furthermore, T*TN,, C N(I — T"T*"). As N, reduces T*T, we can define
the operator P, := T*T|y;, in B(N,). Then using (3.7) and the fact that
N, C N for n > 2, we obtain that P? = P,, and since P, > 0, P, will be an
orthogonal projection in B(N,,). But we have

N(P,) =N, " N(T*T) = N(T),
and on the other hand,

R(P,) ={h €Ny : h=T*Th} = {h € H : T*Th = T"T*"T*Th}
={heH:h=TTh=T"T*"h}
=NI -T*T)NN(I —T"T*") = NI — T"T*"),

because T being a quasinormal contraction, one has for n > 2,

NI =TT ¢ N(I —TT*) c NI — T*T).
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Thus, it follows that the Hilbert space N, admits the orthogonal decomposi-
tion

(3.8) Ny = NI —T"T™) & N(T) (n>1).

In particular, for n = 1 this just gives the decomposition from (3.4) of the
subspace N7, whence we also infer that A7 is an invariant subspace for T,
because N (I — TT*) and N (T) are such subspaces. Furthermore, from (3.7)
we have that T is a quasi-isometry, or equivalently a T*T-isometry, on N.
All assertions from (ii) are proved.

Next, if M := 2, N, then from (3.8) we obtain for n > 1 that

MON(T) c N(I —T"T*™),

therefore if h € MEN(T) then h = T"T*"h. But M is just the corresponding
subspace N for the T*T-contraction T*, hence M is the largest invariant
subspace for T* on which T* is a T*T-isometry. So, for h as above one has
T*"h € M C Ny, hence h € T"N; € T"N (I —TT*) by (3.8), for n > 1. Thus
we obtain

MeN(T)c (T"NI —TT*) = (| T"N(I - TT*) =M
n=1 n=0

which yields the inclusion M C M & N(T). But by Theorem 3.1, the sub-
space M defined above reduces the operator T to a unitary operator and
particularly, T is a T*T-isometry on M. Having in view the maximality
property quoted above for the subspace M, we infer that M C M, and also
M@ N(T) c M. Consequently, M = M & N (T) which means the equality
(3.5). But N(T) is a reducing subspace for T', because T is quasinormal. It
follows that M is also invariant for T, and as M C N, by (3.7) we have that
T is a quasi-isometry, or equivalently, a T*T-isometry, on M. In fact, T| v
is the orthogonal sum between a unitary operator and zero, relative to the
decomposition M = M &N (T'). Therefore, M has the required properties in
the statement (iii), and the proof is finished.

COROLLARY 3.5. Let T be a quasinormal contraction on H. Then M is
the largest subspace which reduces T' to a normal quasi-isometry. Moreover,
T is injective if and only if T' is a unitary operator on M, or equivalently,

(3.9) M= ﬁ T"N(I —TT).

n=0
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Proof. As we quoted in the previous proof, by the decomposition (3.5)
we have T’ = U @ 0, U being a unitary operator on the subspace M given
by the right side in (3.9). This shows that 7" is a normal quasi-isometry on
M and furthermore, T | ;4 one reduces to a unitary operator if and only if
N(T) = {0}, or equivalently M = M. Now, if £ is another subspace which
reduces T' to a normal quasi-isometry, then easily follows that T™ is also a
T*T-isometry on £, so £ C M having in view the property of M in Theorem
3.4 (iii). Hence M has the required property in Corollary 3.5. O

Now, preserving the above notations, we immediately obtain the following
corollary which completes Corollary 3.2.

COROLLARY 3.6. For a quasinormal contraction I' on ‘H, the following are
equivalent:

(i) M =N(T*T — TT*TT*);
) NI = TT*) = (L, TN (I~ TT);
(iii) N(I — TT*) = TN (T*T — TT*TT*);
) N(I —TT*) is an invariant subspace for T*;
) N(T*T — TT*TT*) is an invariant subspace for T*.

Proof. Clearly, (i) implies (ii) by the relations (3.5) and (3.8). Assuming
(ii) we get (by (3.8) for n =1), N(I = TT*) = TN (I —TT*) = TN, so (ii)
implies (iii). Now, the equality from (iii) means that for any h € N'(I —TT*)
there exists hy € N7 such that Thy = h. Then we have by (3.8),

T*h =T*Thy € T*TN (I — TT*) = N(I — TT*),

because N (I — TT*) € N(I — T*T). This shows that N (I — TT*) is an
invariant subspace for 7%, and so (iii) implies (iv). Next, the assertions (iv)
and (v) are even equivalent, by the relation (3.8) for n = 1, because N (T')
reduces T'. Finally, (v) implies (i) by Theorem 3.4 (the assertions (ii) and

(ii)). W

Remark 3.7. Corollary 3.6 shows that, for a quasinormal contraction 7',
the subspace Ny corresponding to the regular I-contraction 7%, and the one
for the regular T*T-contraction T*, respectively Ny = N (I — TT*) and Ny =
N(T*T — TT*TT*), are not invariant for T*, in general. But they are always
invariant for 7" and T*T.

Now, from Theorem 3.1 and Theorem 3.4 we infer the following
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COROLLARY 3.8. Let T be a quasinormal contraction on H. Then H
admits the orthogonal decomposition

(3.10) H=R(I*T — T2T2) o N(I — T*T) & N(T),

where N'(I — T*T') is the largest subspace which reduces T to an isometry,
and R(T*T — T*2T?) is the largest subspace which reduces T to an injective
proper quasinormal contraction.

Proof. Since T is quasinormal one has T*?72 = (T*T)2. Then by Propo-
sition 3.3 [3] we have

(3.11) N(T*T — T**T?) = N(I - T*T) & N(T),

this being the largest subspace which reduces T to a quasi-isometry (by
Theorem 3.4(i)). But by Theorem 3.1(i), N(I — T*T) is the largest sub-
space which reduces T' to an isometry. Thus, we conclude that the range
subspace from (3.10) reduces 7" to an injective and completely non isomet-
ric contraction, being the largest subspace with this property. Clearly, if
0# h € R(T*T — T*2T?) then one has h € N (I —T*T) that is ||Th|| < ||h]],
hence R(T*T — T*2T?2) reduces T to a proper contraction. Conversely, if
M C 'H is a subspace which reduces T" to an injective proper contraction, then
T is also a non isometric contraction on M, hence M C R(T*T — T*?T?),
thus this range has the required property. |

Having in view (3.11) we also have the following fact which was obtained
in [5] in a different way.

COROLLARY 3.9. A quasi-isometry T on ‘H with ||T'|| = 1 is quasinormal
if and only if T is a partial isometry.

Finally, we infer from Corollary 3.8 the following

COROLLARY 3.10. An injective quasinormal contraction is completely non
isometric if and only if it is a proper contraction.

4. ASYMPTOTIC FORM OF THE INVARIANT A-ISOMETRIC PART

Let T be an A-contraction on H. Since {T*"AT™; n > 1} is a bounded
decreasing sequence of positive operators it converges strongly to an operator
Ar € B(H). If T is a contraction (i.e., A = I) we will denote by St the strong
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limit of {T*"T"; n > 1}. So, if T is the contraction on R(A) associated
to the A-contraction T' as in Section 1, then S; will be the strong limit in
B(R(A)) of the sequence {T*"T™; n > 1}. Since AY2T"h = T"AY2h and

T A2k = AV2T*"k for h € H, k € R(A) and n > 1, one has
(4.1) Arh = AY2S A0 (h € H).

This gives Ar < A because S; < I. We also have S; = T*STT and
Ar = T*ArT. We can use the operators Ar and S; in order to obtain
more informations on the subspace N, defined in Section 2.

THEOREM 4.1. Let T be an A-contraction on H. Then we have
(4.2) Noo = N(A — A7) = (AV)TIN(T - S3).
Furthermore, if ||A|| < 1 then
(4.3) NooNN(A—- A% =N(A) @ N(I — A7) = Noo NN (A — A%)
and
(44) NI —Ap) =N —A)NNI - Sz) =N — A) N Ne.

Proof. If h € Ny then Ah = T*" AT™h for any n > 1 and taking n — oo
one obtains Ah = Arh, that is h € N (A — Ar). So Noow C N(A — Ar). Next,
if h € N(A— A7) then using (4.1) and the fact that A2 is injective on R(A)
we obtain (I — S;)AY2h = 0, which yields h € (AY2)7IN/(I — S;). Thus we
have N'(A— Ar) C (AY2)7IN(I — S;). Finally, if h € (AY2)7IN(I - S;), or
equivalently AY2h € N(I — S7), then since T and S are contraction and T
is also a Sj-isometry on R(A) it follows (see Proposition 3.1 (j) from [2]) that

|AY2T"R|| = || T AY2h]| = [|AY2R)] (0> 1).

This gives (A — T**AT™)h = 0, that is h € N(A — T*"AT"), for n > 1,
therefore € Noo. Thus, (AY2)7IN(I — S;) C Ni, and consequently the
two equalities in (4.2) hold.

Now we suppose that ||A|| < 1 that is A < I (since A > 0). As Ar < A
implies 0 < I — A < I — Ap, one obtains that

NI = Ap) = N(I — A)NN(A— A7) = N(I — A) N Nwo.
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This gives one relation in (4.4) and also (by Proposition 3.3 [2])
Noo NN(A =A%) = Noo N(N(A) & NI — A)) = N(A) @ N (I — Ar),

that is the first relation in (4.3). Next if h € Ny NN (Ar — A%), then
Ah = Arh and h = hg + hq with hy € N(AT) and hy € N(I — Ar). Hence
Ah = Aphy = hy and also Ah = Ahg+ Ahq, whence we get Ahg = (I—A)hy =
0 because N (I — Ay) C N(I — A) by the previous remark. Thus hy € N(A)
and then h € N(A) ® N(I — Ar). Consequently

Noo "N (Ap — AZ) c N(A) e N(I — Ar)

and as the converse inclusion is obvious, we obtain the second relation in (4.3).

For the first equality in (4.4) we remarked above that N'(I — Ap) C N (I —
A). So, if h € N(I — Ar) we have h = Aph = Ah = AY?h, and also by the
second equality in (4.2) we obtain h = AY/2h € N'(I — S;). Hence

NI —Ar) CN(I - A)NNUI - S;).
Conversely, if h € N (I—A)NN (I —S;) we have h = AY2h € N(I—S;) which
means (by (4.2)) h € N(A— Ar). Thus h = Ah = Aph, hence h € N'(I — Ar)
and we obtained the inclusion

NI -A)NNI - 58;) CN(I - Ar).

We conclude that the former equality (4.4) holds and the proof is finished. I

COROLLARY 4.2. IfT is an A-contraction on H such that ||A|| < 1 then
(4.5) N(A) = Noo NN (Ar).

Furthermore, the following assertions are equivalent:

(1) Noo = N(A);

(i) (AW)HN(I Sp) ={0};

(iii) |15/ %Kl < [|k|| for every k € R(AY?), k # 0;
)

(iv |\A1/2h|| < ||AY2h|| for every h & N'(A).
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Proof. If h € Noo N N (A7) then by (4.3) one has h = hg + hy with hg €
N(A) and hy € N(I — Ar), hence h — hg = h; = 0 because h — hg € N (Ar).
So, h = hg € N(A) and we have the inclusion Ny N N(Ar) C N(A), the
converse being trivial.

Now we suppose that Ny = N'(A) and let k = AY2h € R(AV2) NN (I —
S;). Then AV?p = STAl/Qh, whence by (4.1) one has Ah = Arh. Hence
by (4.2) we have h € Ny = N(A) which gives k = AY2h = 0. This means
that R(AY2) NN (I — S;) = {0} and so we obtained the implication (i) =
(ii). Next, the assumption (i) ensures that for 0 # k € R(A'2) one has
(I = S;7)k # 0, or equivalently

1/2
1l = 113/ 2K[[2 = /(1 — $7)"/2K][* > 0,

which provides the implication (ii) = (iii). Similarly, we infer from (iii) that
(I — S;)AY2h #£ 0 for h ¢ N(A), which also gives AY2(I — S;)AY2h #
0 because (I — ST)Al/Qh € R(A). Hence (A — Ar)h # 0, or equivalently
((A— Ar)h,h) > 0, that is the inequality from (iv). Finally, the implication
(iv) = (i) is trivial, having in view the first relation in (4.2). §

We can also describe V(A7) as follows

COROLLARY 4.3. If T is an A-contraction on H and Ay = A\W then

(4.6) N(Ar) = (AN (S7) = N (A) & N(SpA)).
Furthermore, the following assertions are equivalent:
(i) N(Ar) = N(A);
(i) R(AV2) NN (S;) = {0};
(iii) AY2T"h £ 0 for every h & N'(A), h # 0.

Proof. From (4.1) one infers that h € N'(Ar) if and only if AY/2h € N(S;),
or equivalently h € (A1/2)"IN/(S;), what gives the first equality in (4.6). On
the other hand, since 0 < Ay < A it follows that N'(A) C N (Ar), hence

N(Ar) = N(A) & (R(A) NN (Ar)).

But £ € R(A) NN (Ar) if and only if A(l)/2k € N(S;3), or equivalently k €
N (STA(I)/ 2). Thus one obtains the other equality in (4.6).
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Clearly, N'(Ar) = N(A) if and only if /\/'(STA%/Q) = {0}. Now we suppose
that N'(A7) = N'(A). Then for AY2h € N(S;) we have

SpAYh = 0= AV Iy

where h = hy+ho with by € R(A) and ho € N'(A). So hy € N (S:Ay?) which
means h; = 0 by our assumption, hence h = hg and A'/2h = 0. Thus we have
the implication (i) = (ii). Next, using (ii), we obtain for 0 # h ¢ N(A) that
AV2p ¢ N (S;) that is T AY2h £ 0, or equivalently AY2T™ £ 0. Therefore
(ii) implies (iii), and obviously (iii) ensures (z). §

Remark 4.4. The second relation in (4.2) shows that A2\, is contained
in V(I —S;), but N(I — S;) is not contained in Ny, and also N, and
N(I — S;) are not invariant for A, in general. However, if ||A|| < 1 then
N(I — Ar) and hence Ny N N(A — A2) are invariant (in fact, reducing)
subspaces for A. Now we can describe the case when N, is invariant for A
(completing Proposition 2.1).

PRrROPOSITION 4.5. The following are equivalent for an A-contraction T on
H:

(i) Ny is invariant for A;
(il) Ny is invariant for Ap;
(iii) Noo C N(AAp — ArA);
(iv) Noo C N (A% — A2).

Furthermore, in this case we have

(4.7)  Noo= (A+ A7) "No = N(AAr — ApA) NN (A? — AZ).

Proof. The statements (i) and (ii) are obviously equivalent, having in view
the first relation in (4.2). Now the assumption (i) ensures for h € N that
AArh = A%h = ApAh, that is h € N(AAp — ArA). Hence (i) implies (iii).
Since for h € N(AAr — A7 A) one has

(A? = Af)h = (A+ Ar)(A — Ar)h,

the implication (iii) = (iv) is immediate. Finally, supposing (iv), we have for
h € Ny that Ah = Arh and so

(A — Ar)Ah = (A% — A2)h =0,
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that is Ah € Nx. Hence (iv) implies (i).

Now let h € N(AAr — ArA) NN (A% — AZ) so that AArh = ApAh and
A%h = AZh. Then one obtains A(A+ Ar)h = Ap(A+Ar)h, or (A— Ar)(A+
A7)h = 0. This gives that (A + Ar)h € N, therefore h € (A + A7) ' Nx.
Conversely, if k € (A + Ar) !N, which means that (A + A7)k € N, then
A(A+ Ar)k = Ar(A + Ar)k, or equivalently, (A + Ar)(A — Ar)k = 0.
This shows that (A — Ap)k € N(A+ Ar), and as 0 < A < A+ Ap one
has N (A + Ap) € N(A), hence A(A — A7)k = 0. Since R(Ar) C R(AY?)
(by (4.1)) it follows that (A — Ap)k € R(AY?), and by previous remark
(A — Ap)k € N(A), therefore (A — Ar)k = 0, that is k € No. Thus we

proved the inclusions
(4.8) N(AAp — ArA) NN (A% — A2) C (A+ Ap) "Ny C N

In the case when N is invariant for A, these inclusions become the equalities
(4.7), having in view the conditions (iii) and (iv) of above. This ends the
proof. |

Now we present two cases in which Proposition 4.5 can be applied, where
the subpace N, has a special form.

THEOREM 4.6. Let T be an A-contraction on ‘H such that either the range
R(A) is closed, or the A-contraction T is regular. Then one has

(4.9) Noo = N(A) & N (I — S;),

while Noo and N (I — S;) are invariant subspaces for A.

Moreover, in the regular case we have ASpk = S;Ak for k € R(A),
Arh = S;Ah for h € H and

(4.10) N(Ar) =N(A) @ N(S;), R(Ar)=R(S;).

Proof. Firstly we suppose that the range R(A) is closed. Then R(A) =
R(A'?) and having in mind the definition of S;we have 0 < Sy < T < [
for any n > 1, hence

NI = §;) = {AYV2h € R(A) : |77 AV = || AY2h]], n > 1}

c {ke™:||AV2T k|| = ||AY2K||, n > 1}
={keH :T"AT"k = Ak, n > 1} = N.
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From (4.2) we infer that AY2N, C N(I — S;) C N, and we also have
AYVAN(I-Sz) € AYV2No € N(I—S;), which means that Ny and N (I—S;)
are invariant subspaces for A.

Now it is clear that N'(A) ® N(I — S;) C Nuo, and to prove the equality
let h € N such that h is orthogonal to N'(A) @ N(I — S3). Then h € R(A)
and h is orthogonal to N'(I — Sz) which implies that h is also orthogonal to
AN as a subspace of V(I —Sy). In particular (h, Ah) = 0 that is Al2h =0,
and since h € R(A) we conclude that h = 0. Thus the equality (4.9) holds if
R(A) is closed.

Next we suppose that T is a regular A-contraction, that is one has AT =
AYV2T AY2 Then AY2T AY2h = T Ah, for h € H which means that AY/2T =
TA'Y? on R(A). Using this relation one obtains immediately that SpAh =
A1/2STA1/2h = Arh for every h € H, and also STAI/2 = A1/2ST, or equiv-
alently S;A = AS;, on R(A). This relation later on implies that A/(S;)
and V(I — S;) are invariant subspaces for A. But using (4.1) one infers that
N(I—S;) C N and also AYV2No € N(I —S;) C Noo so that Ny is invari-
ant for A, too. Clearly, we have N'(A) @ N (I — S;) C Nuo. To prove here the
equality, let h € N such that h is orthogonal to N'(A) ® N'(I — S;). Since
Ah € N(I - S;) we have (h, Ah) = 0 so that AY/2h =0, and as h € R(A) one
has h = 0. Hence the equality (4.9) holds if the A-contraction T is regular.

Finally, since ArH = S;AH it follows that R(Ar) = R(S;) that is the
second relation in (4.10), and which also implies the former relation in (4.10).

COROLLARY 4.7. Let T be a regular A-contraction on H. Then N (Ar),
N(Sz) and N (S4 — S;) are invariant subspaces for A, and one has

(4.11) N(Sz) = N(S:A7).

Moreover, if ||A|| < 1 then N(Ar — A2) is an invariant subspace for A,
and if A = A? then we have

N(Ar — A7) = (A) 7'V (Sz — S3)

(4.12) ;
=N(A) @ N(S; — S5) =N(S3) ® Nu.
In the last case, one has Ay = A% if and only if Sj = Sjo.

Proof. It was seen in the previous proof that N (S;) is an invariant sub-
space for A and the first relation in (4.10) gives that N (A7) is also invariant
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for A. In addition, both this relation from (4.10) and the second relation from
(4.6) lead to (4.11).

Since N (S — SCQF) = N(S;) ® N(I — S;), this subspace will be invariant
for A, such as the two contained subspaces.

In the case when ||A|| < 1 one has N (Ap — A%) = N(Ar) @ N(I — Ar)
and it follows that N (Ar — A%) is invariant for A (by the above remark and
Remark 4.4).

Now we assume that A = A%, Then for h € H we have

(Ar — A7)h = SpAh — S2A%h = (S; — S%) Ah,

hence h € N(Ar — A%) if and only if Ah € N(S; — S%), or equivalently
h e (A)IN(S; — S;) This gives the first relation in (4.12). On the other
hand, since A = A% one has R(A) = N(I — A), and from (4.4) one obtains
N(I — Ar) = N(I — S;). Thus we have

N(Ap — A7) = N(A) @ N(5;) @ N(I — 5;) = N(A) @ N(S7 — 53,

that is the second relation in (4.12). Clearly, from this relation it follows that

A = A% if and only if S; = S%. Also, we infer from the previous relation
and (4.9) that

N(Ar — A3) = N(Sp) & N
which is the last relation in (4.12). The proof is finished. §

COROLLARY 4.8. Let T' be a regular A-contraction such that ||A|| < 1
and Ay = A%. Then S; = S% and furthermore, if N(A) = N(Ar) one has
A= Arp.

Proof. From the relation (4.4) and (4.10) we have
H=N(Ar — A7) = N(A) @ N(S;) @ N(I — A) NN (I — S3),
whence it follows

R(A) :N(ST)@N(I—A)HN<I—ST) ZN(ST—S%),

that is S; = S%. Now if N'(A) = N(Ar), or equivalently N'(S;) = {0}, then
we have N'(I — S;) = R(A) that is S; = I. Hence Ap = S;A=A. 1
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Remark 4.9. Since T is an Ap-isometry on H there exists a (unique) isom-
etry V on R(Ar) such that VA;/zh = A;/zTh, h € H. On the other hand,
because 7' is a S;-isometry on R(A) there exists a (unique) isometry V on

R(S;) satisfying VS;/Qk = S;/QT/{, k € R(A). But in the regular case one
has V =V, since R(Ar) = R(S;) (by (4.10)) and

1/2 1/2 1/2
VAL h = A*Th = 52 AT,
12 41/23, _ 1rQl/2 g1/23 _ Yr 41/2
ST AV = VS 2 AV h = VA h

for h € H. Here we used the fact that AlT/ 2 _ S;/ 2 A1/2 which follows from

Theorem 4.6. In this case, N'(I — S;) is the largest invariant subspace for T
on which 7 is an isometry and we even have

Tni-sp) = VIvu-s,)

because N(I — S;) is also invariant for V' and for h € N (I — S;) one has
N U e Ve T
Th=S8;Th= ST Th = VST h=Vh.

In addition, if Sz is a projection then N(I — S;) = R(S;) is the largest
subspace which reduces T to an isometry, so that V is the isometric part of
T.

As an application to quasinormal contractions, we can obtain the following
facts, partially known from [2], [3], which complete ones from Section 3.

PRrROPOSITION 4.10. For a quasinormal contraction T on H we have:

(i) St = S2 and the largest subspace which reduces T to an isometry is
(4.13) NI =87)=N{I-T"T) =N - S4)

where T = T’W .

(ii) The largest subspace which reduces T' to a quasi-isometry, or equivalently
to a partial isometry, is

(4.14) N(T*T—ST> :N(T)@N(I—ST) :H@N(ST)
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(iii) The largest subspace which reduces T to a strongly stable contraction, or
equivalently to a proper contraction, is

(4.15) N(St) = N(T) EBN(ST).

Furthermore, N'(S;) reduces T and there is no nonzero subspace of N(S;)

which reduces T to a quasi-isometry.

Proof. One considers T a quasinormal contraction. Since T and T*T
commute it follows that Sp = T*T'Sp, St being the strong limit of the se-
quence {T*"T™; n > 1}. Thus we have (I — T%*T)St = 0, whence R(Sr) C
N(I—-T*T). Let now h € N(I —T*T)NN(S7). Then Sph = 0 which means
that T"h — 0 (n — o0). Since N'(I — T*T) reduces T to an isometry, one
has ||T™h|| = ||h|| for n > 1, hence h = 0. So, one has N (I — T*T) = R(Sr),
therefore N'(I —T*T) and N (S7) are orthogonal subspaces. Next, if h € H is
orthogonal to N'(S7) @ N (I —T*T) then h € R(St) NN (St) by the previous
remark, and so h = 0. Hence we have

H=N(Sr)® NI -TT).
But it is clear that N (I —T*T) C N(I — St) and so we obtain
H =N(Sr)® NI — Sr) = N(Sr — 57),

and consequently Sy = S2. Also one has N'(I —=T*T) = N'(I — St), this being
the largest subspace which reduces T' to an isometry. In addition, since S; =
ST\W and as N'(I — St) C R(T*), it follows that N'(I — S7) = N(I — S;).
Thus the assertion (i) is proved.

To show (ii), we firstly remark that 7" is a regular A = T*T-contraction
on H and that 7 =T ‘W is the corresponding contraction on R(T*) which
satisfies T|T|h = |T|Th, h € R(T*). In this case (i.e., A = T*T) we have
Ar = St and the corresponding subspace Ny, given by the relation (4.9) is

N(T*T — Sy) = N(T) & N'(I — Sr).

Since N (T') and N (I —S7) reduce T', N (T*T — Sr) is just the largest subspace
which reduces T' to a T*T-isometry, that is to a quasi-isometry, or equivalently
(by Corollary 3.9) to a partial isometry. This gives the assertion (ii).

For the same meaning of 7', we infer from (4.10) and from the above
decomposition of H that

N(Sr) =N(T)®&N(S;) =HeN(I - St),
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this being the largest subspace which reduces T' to a completely non isometric
contraction, or equivalently to a strongly stable contraction, having in view
the definition of Sp. But by Corollary 3.8, NV(St) is the largest subspace
which reduces T to a proper contraction. Finally, we remark that

H = N'(S;) & N(T*T - Sg),

hence the subspace N(S;) has the required property. The assertion (iii) is
proved and the proof is finished. 1

The dual version of the preceding proposition can be also given.

ProrosSITION 4.11. For a quasinormal contraction T' on H we have:

(i) Sp= = S%* and the largest subspace which reducesI' to a unitary operator,
or equivalently, on which T* is an isometry, is

(4.16) N(I = Sp-) = N(I = Sz.),

where T = T|W

(ii) The largest subspace which reduces T™* to a T*T-isometry, or equivalently,
on which T' is a normal partial isometry, is

(4.17) N(T*T — Sp+) = N(T) @ N(I — Sp+) = H O N (S;.).

(iii) The largest subspace which reduces T* to a strongly stable contraction is
(4.18) N(Sp) = N(T) @ N'(5;7.) = N'(S7) & (N(I — S7) © N(I — Sr-)).
Furthermore, one has

(4.19) N(Sz.)=N(Sz) & (NI — Sr) © N(I — Sp+)).

Proof. Let T be a quasinormal contraction. Since 7™ and 7T commute,
T* is a regular T*T-contraction on H. In this case, the corresponding con-
traction Ap« (A =T*T) is equal to Sp-. Indeed, because TT* < T*T < I we
have for n > 1

TnT*TT*n g TnT*n — Tn—lTT*T*(n—l) g Tn_lT*TT*(n_l),
whence it follows that

A = s = IimT"T*TT™™ = s — im T"T*" = Sp+.
n n
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Since T™T*TT*" = T™T*"T*T = T*TT"T*", we infer that Sp« = Sp«T*T =
T*T S+, and also (I —T*T)Sp« = 0. This implies that R(Sp+) C N(I-T*T),
hence N'(I — St+) C R(S7+) C N(I — St) having in view (4.13). But S7+ and
T*T commute, therefore R(T*) reduces S+, and we have ST*|W = S}
where 7' € B(R(T*)) verifies T|T| = |T|T" on R(T*). Indeed, for T* as
a T™T-contraction there is a contraction T, € B(R(T™*)) satisfying T4|T| =

|T|T* = T*|T| on R(T*), hence Ty, = T*|W. Since R(T*) reduces T one

has T =T ’W =T, therefore T* = T, = T* ’W’ and the relation quoted

above between St+ and Sj. follows immediately.

Now, since N'(I — Sp+) C R(T*) we have N'(I — Sp+) = N (I — S;.). But
N(I — Sp+) is an invariant subspace for T, because if h € N (I — Sp+) then
using the fact that T' is quasinormal we get

Sp<Th = lim T"T*TT*"h = lim T"T*TT*TT*"YVh =
n n
= lm TT*TT" ' T*TT* " Vh = TT*TSp+h = T'Sp<h = Th,
n
hence Th € N(I—Sp+). On the other hand, N'(I —Sp+) is the largest invariant
subspace for T on which 7% is an isometry (being the corresponding subspace
N for the regular T*T-contraction 7). Since N'(I — Sp+) C N(I —T*T), it

follows that N (I — Sp~) is the largest subspace which reduces T' to a unitary
operator, or equivalently, on which T* is an isometry. Since one has

NI —=8p)=N{I—-5S87+)® NI - Sr)eo NI — Sr+)),
T will be a shift, or equivalently T™* a strongly stable contraction, hence
N(I — ST) @N(I — ST*) :N([ — ST) ﬁN(ST*).

having in view that N (Sp+) is the largest subspace on which T* is strongly
stable. On the other hand, using the fact that T7* < T*T and that T is
quasinormal, one obtains that Sp- < Sp, whence N (S7) € N(Sp+). Now,
because St is an orthogonal projection, we infer from above relations that

H =N —Sr)®N(Sr) = NI = Sp<) & N(Sr-) = N(Sp+ — S7),

consequently S7~ is an orthogonal projection, which ends the proof of the
statements (i). Also, we obtain that N (Sp+) is the largest subspace which
reduces T™ to a strongly stable contraction, and clearly we have from the
above remarks and (4.10),

N(S7+) =N (S1) @ (N(I = S7) © N(I = S7+)) = N(T) & N(Sj.)-
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This leads to the assertion (iii).
Next, we remark that the subspace N, for the regular T*T-contraction
T* given by the relation (4.9) is

N(T*T —Sp«)=N(T)®dN( — Sp+) =H @N(ST*),

and this is the largest subspace which reduces T* to a T*T-isometry, because
N(I — Sp+) reduce T. Equivalently, N'(T*T — S7+) = M, the subspace from
(3.5), hence this subspace has the required property relative to 7" in (ii). The
assertion (ii) holds, and the proof is finished. 1

Finally from Corollary 3.8 and (4.14) we obtain

COROLLARY 4.12. If T is a quasinormal contraction on H and T =
T|m then

(4.20) R(T*T — T*2T2) = N(S;),

hence T' and T* are strongly stable contractions on this subspace. Also, a
quasinormal contraction is strongly stable if and only if it is a proper contrac-
tion.

We notice that the above facts concerning the quasinormal contractions
are obtained by different methods as ones from [2], [3]. Here we only used the
context of the regular A-contractions.
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