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AMS Subject Class. (2000): 46B03, 46B20 Received November 15, 2005

1. Introduction

A bounded linear operator T : X → Y is said to be Tauberian if T ∗∗(X∗∗ \
X) ⊆ Y ∗∗ \ Y .

A bounded linear operator T : X → Y is said to be co-Tauberian if T ∗ is
Tauberian.

We call a Tauberian operator non-trivial if it is not an isomorphic embed-
ding. We call a co-Tauberian operator non-trivial if it is not onto.

Tauberian operators appeared in [6] and were studied systematically in [1,
8, 13, 15]. A comprehensive survey on Tauberian operators and the isomorphic
properties they preserve is provided in [8].

Recall that a bounded linear operator T : X → Y is called a semi-
embedding (see [14]) if T is one-to-one and the image T (BX) of the unit
ball BX of X is closed in Y . It is known that to be a semi-embedding is not a
hereditary property, that is, if T : X → Y is a semi-embedding then restricted
to each subspace E ⊆ X, T |E need not necessarily be a semi-embedding. This
motivated for searching a notion of embedding which is hereditary and in [3],
Gδ-embedding was introduced. One could define a notion of “hereditary semi-
embedding”. However it turned out, as proved in [15, Theorem 2.3], that such
a class of operators coincides exactly with one-to-one Tauberian operators.

Note that just the existence of a non-isomorphic semi-embedding T : X →
Y already provides us with some information on X. The following result was
obtained in [4, Theorem 2]:
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Theorem A. Let X be a separable Banach space. The following assertions
are equivalent:

(a) X contains a subspace isomorphic to an infinite dimensional dual space.

(b) There exists a Banach space Z and a semi-embedding of X into Z which
is not an isomorphic embedding.

Our main objective in the Section 2 of this note is to obtain a result parallel
to Theorem A with Tauberian and co-Tauberian operators. We show that a
Banach space X contains an infinite dimensional reflexive subspace if and
only if there exists a Banach space Z and a one-to-one non-trivial Tauberian
operator T : X → Z. For co-Tauberian operator we prove that a Banach
space has an infinite dimensional reflexive quotient if and only if there exists
a Banach space Z and a one-to-one dense range co-Tauberian operator from
Z into X.

In Section 3 we consider Banach spaces from which there exists a Tauberian
operator to c0. In Theorem 3.1 we give a necessary and sufficient condition for
existence of a Tauberian operator T : X → c0, when X is separable. We use
this result to provide a generalization of a result in [12]. Another application
of Theorem 3.1 connected to the set NA(X∗), of all norm attaing functionals
on a dual Banach space X∗ is the following:

Let X∗∗ is separable. Then there exits a renorming of X such that for any
subspace E ⊆ X∗∗, satisfying E ∩ X = {0} and E ⊆ NA(X∗), dim E < ∞
holds, that is, X is essentially the only infinite dimensional subspace contained
in NA(X∗).

The condition for existence of a co-Tauberian operator from c0 to X is
more stringent and we need to consider special classes of Banach spaces.

All Banach spaces in this note are real and infinite-dimensional. Our
notations are standard (see [11]). For example the closed unit ball and the
unit sphere of a Banach space X will be denoted by BX and SX respectively.
All subspaces we consider are assumed to be closed.

2. Reflexive subspace and quotient

The following theorem characterizes Banach spaces containing reflexive
subspaces. As mentioned in the introduction, this parallels Theorem A with
Tauberian operator.
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Theorem 2.1. Let X be a Banach space. The following assertions are
equivalent:

(a) X contains a reflexive subspace.

(b) There exist a Banach space Z and a non-trivial one-to-one Tauberian
operator T : X → Z.

Proof. (a) ⇒ (b): Let R ⊆ X be a reflexive subspace. Without loss of
generality we assume that R has a basis {xi} and ‖xi‖ = 1. Let Q : X → X/R
be the quotient map. Then kerQ = R is reflexive and Q has closed range.
Thus Q is Tauberian (see [13]).

Now let {fi} be a bounded sequence in X∗ such that fi(xj) = δij . Define
K : X → R by

K(x) =
∞∑

i=1

2−ifi(x)xi.

Then K is a compact operator from X to R. We take Z = X/R ⊕ R and
define the operator T : X → Z by

T (x) = (Q(x) + K(x)).

We claim T is the desired one-to-one Tauberian operator.
First note that T is one-to-one. To check T is Tauberian, let us assume

x∗∗ ∈ X∗∗ be such that T ∗∗x∗∗ ∈ Z. We need to show x∗∗ ∈ X. But
T ∗∗x∗∗ = Q∗∗x∗∗ + K∗∗x∗∗ and since K is compact, we have K∗∗x∗∗ ∈ R.
Thus Q∗∗x∗∗ ∈ X/R and since Q is Tauberian we have x∗∗ ∈ X.

(b) ⇒ (a): This was proved in [13]. We include a proof for completion.
Suppose X does not contain a reflexive subspace. Let Y be any Banach space
and T : X → Y one-to-one Tauberian. If T is not an isomorphism then it
is well known that there exists a subspace Z ⊆ X such that the restriction
T |Z is a compact operator. But T |Z is Tauberian as well, hence Z must be
reflexive.

Remark 2.2. (a) A proof similar to (b) ⇒ (a) in the Theorem 2.1 actually
shows more. Namely, if T : X → Y is a Tauberian operator which is not an
isomorphism on each subspace of X of finite codimension then X contains a
reflexive subspace.

(b) In the proof of (a) ⇒ (b) in the Theorem 2.1 we made a compact
perturbation Q + K of the quotient map Q in order to obtain a one-to-one
Tauberian operator. In [9, Theorem 1], the following “perturbative” charac-
terization of Tauberian operators is given: A continuous operator T : X → Y
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is Tauberian if and only if for every compact operator K : X → Y , the
ker(T + K) is reflexive.

We now proceed to get a characterization of Banach spaces which contain
a reflexive quotient by means of co-Tauberian operators.

Theorem 2.3. Let X be a Banach space. The following assertions are
equivalent:

(a) X has a reflexive quotient.

(b) There exists a Banach space Z and a non-trivial co-Tauberian operator
T : Z → X such that T (Z) is dense in X.

Proof. (a) ⇒ (b): Let Y ⊆ X be a subspace of X such that X/Y is
reflexive. We denote the quotient map from X to X/Y by Q and the inclusion
map of Y into X by J . Then J is a co-Tauberian operator. Without loss of
generality we assume that X/Y has a basis {zi} and we further assume that
{zi} is normalized. Let {hi} be a bounded sequence in (X/Y )∗ such that
hi(zj) = δij . We find {yi} ⊆ BX such that Q(yi) = zi. Let K : X/Y → X be
defined by

K(z) =
∞∑

i=1

2−ihi(z)yi.

Then K is a compact operator. We now take T : Y ⊕X/Y → X as

T (y, z) = J(y) + K(z).

It is easy to check that T has dense range. An argument similar to the proof
of (a) ⇒ (b) in the Theorem 2.1 shows T ∗ is a one-to-one Tauberian operator.
Hence T is co-Tauberian.

If T is onto, then T ∗ is an isomorphic embedding of X∗ into Y ∗⊕ Y ⊥ and
so is T ∗|Y ⊥ . But T ∗|Y ⊥ is compact and this contradicts that X/Y is infinite
dimensional. Thus T is non-trivial.

(b) ⇒ (a): Let Z be a Banach space and T : Z → X be a co-Tauberian
operator such that T (Z) is dense in X. Suppose X does not have a reflexive
quotient. By definition T ∗ : X∗ → Z∗ is Tauberian and X∗ does not have
a reflexive subspace. Then by Theorem 2.1 we have T ∗ is an isomorphic
embedding and hence T has closed range.

Remark 2.4. (a) As in the Tauberian case, one can show more with a proof
similar to (b) ⇒ (a) of the Theorem 2.3. Namely, let Z be a Banach space and
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T : Z → X be a co-Tauberian operator. If X does not have a reflexive quotient
then there exists a finite codimensional subspace of X which is isomorphic to
a quotient of Z.

(b) In the proof of (a) ⇒ (b) in the Theorem 2.3 we made a compact
perturbation J + K of the inclusion map J in order to obtain a dense range
co-Tauberian operator. In [9, Theorem] the authors obtained the following
“perturbative” characterization of co-Tauberian operators: A continuous op-
erator T : X → Y is co-Tauberian if and only if for every compact operator
K : X → Y , the co-kernel Y/(T + K)(X) is reflexive.

3. Tauberian operators into c0

In this section we give necessary and sufficient condition for the existence of
Tauberian operator from a separable Banach space X to c0. We then provide
two applications of our result.

By Remark 2.2, it follows that if there exists a Tauberian operator T :
X → c0, then either X contains a reflexive subspace or X is isomorphic to a
subspace of c0. Similar conclusion holds by replacing c0 with C(K) spaces, K
scattered.

For a {gn} ⊆ SX∗ be a w∗-null sequence we define the following subspace
of X∗∗:

M({gn}) = {F ∈ X∗∗ : lim
n

F (gn) = 0}.
Following is the main result in this section:

Theorem 3.1. Let X be a separable Banach space. The following asser-
tions are equivalent:

(a) There exists a w∗−null sequence {gn} ⊆ SX∗ such that M({gn}) is
separable.

(b) There exists a Tauberian operator T : X → c0.

To prove Theorem 3.1 we need the following two lemmas.

Lemma 3.2. Let X be separable Banach space. Then for each F ∈ X∗∗\X
there is a w∗-null sequence {fi} ⊆ SX∗ such that lim F (fi) = d(F, X).

Proof. Let F ∈ X∗∗ \ X. Denote q : X∗∗ → X∗∗/X a quotient map.
Since (X∗∗/X)∗ = X⊥ there exists G ∈ SX⊥ such that G(F ) = ||q(F )|| =
d(F, X). Next, since w∗ − clSX∗ = BX∗∗∗ , there exists a net {gα} ⊆ SX∗
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such that w∗ lim gα = G. In particular, limF (gα) = G(F ) = d(F, X). Since
G ∈ X⊥, lim gα(x) = 0 for each x ∈ X. We now find the required sequence
{fn}.

Let {xn} ⊆ SX be a dense sequence. Define

VF,x1,···xn = {τ ∈ X∗∗∗ : max
1≤i≤n

|τ(xi)| < 1/n, |(τ −G)(F )| < 1/n}.

Clearly, VF,x1,···xn is w∗-neighborhood of G in X∗∗∗ (recall that G(xi) =
0, i = 1, 2, · · ·n). We choose gαn ∈ VF,x1,···xn . Then F (gαn) → G(F ) and
gαn |X → 0. Finally, put fn = gαn .

Lemma 3.3. Let X be a separable Banach space and Y ⊆ X∗∗ be a
separable subspace of X∗∗. Then there exists a sequence {fn} ⊆ SX∗ with
w∗ − lim fn = 0 and such that for each F ∈ Y lim sup |F (fn)| = d(F, X).

Proof. Let {Fi} be a dense sequence in SY \X. By using Lemma 3.2, we
find, for each i, a sequence {f i

n} ⊆ SX∗ with w∗ − limn f i
n = 0 and such that

limn Fi(f i
n) = d(Fi, X). Since w∗-topology on BX∗ is metrizable, it follows

that by throwing out a finite number of f i
n’s for each i, we can get that

the set {f i
n}∞n,i=1 has 0 as only w∗-limit point. We enumerate {f i

n}∞n,i=1 in
a single sequence {fn} and claim that it satisfies our requirement. Fix F ∈
SY \X and find a sequence {Fik} such that limFik = F. Clearly d(Fik , X) →
d(F, X), k →∞. For each k find an fnk

such that |Fik(fnk
)−d(Fik , X)| < 1/k.

We have,

|F (fnk
)− d(F, X)| ≤ |F (fnk

)− Fik(fnk
)|+ |Fik(fnk

)− d(Fik , X)|
+ |d(Fik , X)− d(F,X)|

≤ ||Fik − F ||+ 1
k

+ |d(Fik , X)− d(F,X)| −−−→
k→∞

0.

Therefore, lim supn |F (fn)| ≥ d(F, X). The inverse inequality is clear since
each w∗-limit point H of the set {fn} ⊆ BX∗∗∗ belongs to BX⊥ and hence
|H(F )| ≤ ||q(F )|| = d(F, X).

Proof of Theorem 3.1. (a) ⇒ (b): Taking Y = M({gn}) in Lemma 3.3
there is a w∗-null sequence {fn} ⊆ SX∗ such that for each F ∈ M({gn}) \
X lim sup |F (fn)| = dist(F, X) > 0. Put {hn} = {fn} ∪ {gn} and define an
operator T : X → c0 as follows

Tx = (hn(x))∞n=1 ∈ c0, x ∈ X.
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It is easy to verify that T is a Tauberian operator.
(b) ⇒ (a): If T : X → c0 Tauberian then consider gn = T ∗en where en is

the standard vector basis of `1. It is easy to see that M({gn}) = X.

The proof is complete.

Corollary 3.4. Let X be a Banach space such that X∗∗ is separable.
Then there exists a non-trivial Tauberian operator T : X → c0.

Proof. Existence of a Tauberian operator follows from Theorem 3.1. Since
X∗∗ is separable X cannot be isomorphic to a subspace of c0 and the non-
triviality follows.

The following corollary generalizes a result by Johnson and Rosenthal in
[12, Corollary 4.1].

Corollary 3.5. Let X be a separable Banach space such that for some
w∗−null sequence {gn} ⊆ SX∗ , M({gn}) is separable. Then either X contains
a reflexive subspace or X is isomorphic to a subspace of c0.

Remark 3.6. The space X = c0 ⊕ l2 shows that the class of spaces which
satisfy the condition of Corollary 3.5, is wider then the class of spaces with
separable bidual.

Theorem 3.7. Let X be a Banach space such that X∗ is separable. As-
sume that X admits a Tauberian operator T : X → c0 (for instance, X∗∗ is
separable, see Corollary 3.4). Then there exist an equivalent norm |||.||| on X
and a countable set B ⊆ S(X∗,|||.|||) such that for each functional F ∈ X∗∗ \X
which attains its norm |||F |||, there is f ∈ B with F (f) = |||F |||.

Proof. Let {ti} be any sequence in SX∗ such that ||.|| − cl co{±ti} = BX∗ .
Denote {ei} the canonical basis of l1 = c∗0 and put gi = 1

2T ∗ei, i = 1, 2, . . .
and

B = ±
∞⋃

i=1

{ti ± gj}∞j=i, V ∗ = w∗ − cl coB.

Let |||x||| = max{f(x) : f ∈ V ∗}, x ∈ X. Clearly the norm |||.||| is
equivalent to the initial one and B(X, |||.|||)∗ = V ∗.

We show that B satisfies the statement of the proposition.

Claim: For each F ∈ X∗∗ \X, |||F ||| > ||F ||.
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To see this, without loss of generality we may assume that ||F || = 1. Put
γ = lim sup |F (gi)| and find j so that F (tj) > 1−γ/4. Next there exists k ≥ j
such that |F (gk)| > 3

4γ. We then have

|F (tj + signF (gk)gk)| = |F (tj) + (signF (gk))F (gk)| ≥ 1− γ

4
+

3
4
γ = 1 +

γ

2

which proves that claim.
Assume that F ∈ X∗∗\X attains its norm |||F |||. The dual space X∗, being

separable, has the Krein-Milman property and hence, F attains its norm on
some extreme point of B(X, |||.|||)∗ . By the Milman theorem

extB(X, |||.|||)∗ ⊆ w∗ − clB = B ∪ (w∗ − clB \B).

However, F cannot attain the norm |||F ||| on any point of w∗ − clB \ B.
Indeed, since {gi} is w∗-null, each such point belongs to BX∗ and as we proved
above |||F ||| > ||F ||. Therefore F attains its norm |||F ||| on some point of B
which completes the proof.

For a Banach space X the set NA(X) of all norm-attaining functionals on
BX has been studied extensively. In [2] the authors considered the “space-
ability” of the set NA(X), that is, whether NA(X) ∪ {0} contains a linear
subspace. The following corollary shows that if X∗∗ is separable, then there
exists a renorming of X such that X is essentially the only subspace contained
in NA(X∗).

Corollary 3.8. Suppose X∗∗ is separable. Then there exists an equiv-
alent norm ‖| · |‖ on X such that if E ⊆ NA(X∗) is a closed subspace then
dim E/(E ∩X) < ∞.

Proof. Suppose X∗∗ is separable. By [12, Corollary 4.1], X∗∗ is saturated
by reflexive subspaces. Now consider the norm ‖| · |‖ constructed in the The-
orem 3.7. Let E ⊆ NA(X∗). If dim E/(E ∩ X) = ∞, then there exists a
subspace Z ⊆ E, Z ∩X = {0}. But by Theorem 3.7, there exists a countable
set B ⊆ S(X∗) such that for each F ∈ Z there is f ∈ B with F (f) = ‖|F‖|.
Also any f ∈ B acts naturally as a linear functional on Z. Hence Z has a
countable boundary and by [5], Z is saturated by c0 and cannot contain any
reflexive subspace. This contradiction proves the corollary.
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4. Co-Tauberian operators from c0

In this section we consider co-Tauberian operators from c0 to X. Analo-
gous to the Tauberian case, it follows from Remark 2.4 that if T : c0 → X is
co-Tauberian then either X has a reflexive quotient or X is isomorphic to a
quotient of c0 and in the later case, it is well known that X is isomorphic to
a subspace of c0.

Recall that a series
∑

xn in X is called weakly unconditionally convergent
(wuC for short) if for every x∗ ∈ X∗,

∑ |x∗(xn)| is convergent. It is well
known that if

∑
xn is wuC then there is an M > 0 such that ‖∑n

j=1 αjxj‖ ≤
M max1≤j≤n |αj | for all n and for all scalars αj . In [7], the following property
was considered: Let X be a Banach space. Denote by A the set of all series∑

fn in X∗ such that
∑ |fn(x)| is convergent for each x ∈ X. Let

∑∗ fn

denotes the w∗-limit point in X∗ of the series
∑

fn. The space X is said to
have Property (X ) if

{F ∈ X∗∗ :
∑

F (fn) = F (
∑∗fn) ∀ ∑

fn ∈ A} = X.

We need to consider the following weak*-version of Property (X ). For a
wuC-series

∑
xn we denote by

∑∗ xn the w∗-limit point in X∗∗.

Definition 4.1. A dual Banach space X∗ is said to have Property (X ∗)
if any F ∈ X∗∗∗ which satisfies

∑
F (xn) = F (

∑∗ xn) for every wuC-series∑
xn in X, must be in X∗.

The proof of the following lemma is straightforward.

Lemma 4.2. Suppose T : c0 → X is a co-Tauberian operator. Then X∗

has Property (X ∗).

We now consider a natural class of Banach spaces satisfying Property (X ∗).
Recall that a subspace Y ⊆ X is called an L-summand if there exists E ⊆ X
such that X = Y ⊕1 E. A Banach space X which is L-summand in X∗∗ is
called an L-embedded space. X is called M -embedded if X⊥ as a subspace
of X∗∗∗ is an L-summand. The book [10] is a standard reference for M− and
L-embedded spaces.

If X is a separable M -embedded space, its dual X∗ is a separable L-
embedded space (see [10]).

Lemma 4.3. Suppose X is a separable M -embedded space. Then for each
F ∈ X∗∗∗ \ X∗ there exists a wuC-series

∑
xn in X such that F (

∑∗ xn) −∑
F (xn) > 1

2dist(F, X∗) and ‖∑∗ xn‖ = 1.
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Proof. Let F ∈ X∗∗∗ \ X∗. Since X∗∗∗ = X∗ ⊕1 X⊥ we can write F =
x∗+τ, x∗ ∈ X∗, τ ∈ X⊥, τ 6= 0. Thus dist(F,X∗) = ‖τ‖. Take 0 < ε < 1

4‖τ‖.
Then we can find an x∗∗ ∈ SX∗∗ such that ‖F‖−ε < F (x∗∗) = x∗∗(x∗)+τ(x∗∗).
But ‖F‖ = ‖x∗‖+ ‖τ‖ and hence τ(x∗∗) > 1

2‖τ‖. Since X is M-embedded, by
[10, Theorem I. 2. 10] for each x∗∗ ∈ X∗∗ there exists wuC-series

∑
xn in X

such that x∗∗ =
∑∗ xn. Observe that

∑
τ(xn) = 0.

Lemma 4.4. Let X be a separable M -embedded space and N ⊆ X∗∗∗ be
a separable subspace. Then there exists a wuC-series

∑
xn in X such that

if F ∈ N , satisfies
∑

anF (xn) = F (
∑∗ anxn) for all bounded sequence (an),

then F ∈ X∗.

Proof. Let (Fn) be a dense sequence in SN \X∗. Since X∗ is L-embedded,
we can write X∗∗∗ = X ⊕1 X⊥ and thus each Fn can be decomposed as
Fn = xn + τn with ‖Fn‖ = ‖x∗n‖+ τn‖. Then dist(Fn, X) = ‖τn‖.

By the Lemma 4.3, for each n there exists a wuC-series
∑

k xnk in X such
that τn(

∑∗
k xnk) > 1

2‖τn‖ > 0,
∑

k τn(xnk) = 0 and ‖∑∗
k xnk‖ = 1.

We get Nn infinite disjoint subsets of N such that N = ∪Nn. Ordering
appropriately, we assume Nn = {mn

i }∞i=1 where mn
1 < mn

2 < · · · . We now take
ynk = 2−nxnmn

k
, k ∈ Nn. Then

∑
nk ynk is a wuC-series in X.

Let F ∈ SN \ X∗. Choose 0 < ε < dist(F, X∗)/10. Since {Fn} is dense
in SN \ X∗, it follows that there exists an n such that ‖F − Fn‖ < ε. Take
ank = 2n, if k ∈ Nn and ank = 0 otherwise.

We now estimate

F (
∑∗

nkankynk)−
∑

nk ankF (ynk) = F (
∑∗

kxnk)−
∑

k F (xnk)

> Fn(
∑∗

kxnk)− ε−∑
k Fn(xnk)− ε

≥ 1
2

dist(F, X)− 3ε > 0.

This completes the proof.

Let X be a Banach space and
∑

xn is a wuC-series in X∗. We define the
following subspace of X∗∗∗,

N(
∑

xn) = {F ∈ X∗∗∗ : F (
∑∗anxn) =

∑
anF (xn)

for all bounded sequence (an)}.
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Theorem 4.5. Let X be a separable M -embedded space. The following
assertions are equivalent:

(a) There exists a wuC-series
∑

xn in X such that N(
∑

xn) is separable.

(b) There exists a co-Tauberian operator T : c0 → X.

Proof. (a) ⇒ (b): Taking N = N(
∑

xn) in Lemma 4.4, there exits wuC-
series

∑
yn in X such that for each F ∈ N \ X∗ there exists a bounded

sequence (bn) with the property
∑

bnF (yn) 6= F (
∑∗ bnyn). Take zn = yn for

n odd and zn = xn for n even.
We now define the required co-Tauberian operator T : c0 → X. Let {un}

be the standard unit vector basis of c0. We first take Tun = zn. Now for any
u ∈ c0, there exists {αn} scalars and αn → 0 such that u =

∑
αnun. Extend

T to whole of c0 by taking Tu =
∑

αnzn. Note that
∑

zn is wuC-series in
X, and therefore, T is well-defined.

We now verify that T is co-Tauberian, that is T ∗ is Tauberian. Suppose on
the contrary, there exists F ∈ X∗∗∗\X∗ such that T ∗∗∗F ∈ `1. By Lemma 4.4,
we fix a bounded sequence {bn} such that

∑
bnF (yn) 6= F (

∑∗ bnyn). Since
T ∗∗∗F ∈ `1, we have (T ∗∗∗F )(

∑∗ anun) =
∑

anF (T ∗∗(un)) for all bounded
sequences (an). This implies F (

∑∗ an(zn) =
∑

anF (zn). Taking an = 0 for
n odd we observe that F ∈ N . But taking an = bn for n odd and 0 for n even
we get the contradiction to the choice of

∑
yn. Thus T ∗ is Tauberian.

(b) ⇒ (a): If T : c0 → X is co-Tauberian take xn = Tun. It is easy to see
N(

∑
xn) = X∗ and X being an M -embedded space, X∗ is separable.

Let X be a separable L-embedded space. In a recent work [16], H. Pfitzner
has shown that X has Property (X ). Moreover, from his proof it follows:

Lemma 4.6. Let X be a separable L-embedded space and X∗∗ = X⊕1 E.
Let F ∈ X∗∗. If F = x + τ, x ∈ X, τ ∈ E, there exists

∑
fn in X∗, satisfying∑ |fn(x)| < ∞ for each x ∈ X, such that F (

∑∗ fn)−∑
F (fn) = dist(F,X) =

‖τ‖ and ‖∑∗ fn‖ = 1.

A slight modification of the proof of Lemma 4.4 now gives,

Lemma 4.7. Let X be a separable L-embedded space and N ⊆ X∗∗ be
a separable subspace. Then there exists a series

∑
fn in X∗ such that if

F ∈ N , satisfies
∑

anF (fn) = F (
∑∗ anfn) for all bounded sequence (an),

then F ∈ X.

Following the same line of proof as in Theorem 4.5, we have,
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Theorem 4.8. Let X be a separable L-embedded space. The following
assertions are equivalent:

(a) There exists a series
∑

fn in X∗ satisfying
∑ |fn(x)| < ∞ for each

x ∈ X, such that the following subspace of X∗∗ is separable:

N(
∑

fn) = {F ∈ X∗∗ : F (
∑∗anfn) =

∑
anF (fn)

for all bounded sequence (an)}.

(b) There exists a Tauberian operator T : X → `1.

Remark 4.9. The notion of M -embedded Banach space is an isometric
property. However, it is clear that Theorem 4.5 holds true with the assumption
that X is isomorphic to a separable M -embedded space.
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