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Abstract
Our purpose is to estimate the posterior distribution of the parameters of interest for controlled
branching processes (CBPs) without prior knowledge of the maximum number of offspring
that an individual can give birth to and without explicit likelihood calculations. We consider
that only the population sizes at each generation and at least the number of progenitors of
the last generation are observed, but the number of offspring produced by any individual
at any generation is unknown. The proposed approach is twofold. Firstly, to estimate the
maximum progeny per individual we make use of an approximate Bayesian computation
(ABC) algorithm for model choice and based on sequential importance sampling with the
raw data. Secondly, given such an estimate and taking advantage of the simulated values of
the previous stage, we approximate the posterior distribution of the main parameters of a
CBP by applying the rejection ABC algorithm with an appropriate summary statistic and a
post-processing adjustment. The accuracy of the proposed method is illustrated by means
of simulated examples developed with the statistical software R. Moreover, we apply the
methodology to two real datasets describing populations with logistic growth. To this end,
different population growth models based on CBPs are proposed for the first time.
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1 Introduction

We focus our attention on inferential issues related to controlled branching processes. A
controlled branching process is a discrete-time stochastic process that models populations
developing in the following manner: the population begins with a fixed number of individ-
uals or progenitors; each of them, independently of the others and according to a common
probability distribution, gives birth to offspring, and then ceases to participate in subsequent
reproduction processes. Thus, each individual lives for one unit of time and is replaced with
a random number of offspring. Moreover, since by several reasons of an environmental,
social, or other nature the number of progenitors which take part in each generation might be
controlled, a random mechanism is introduced in the model to determine the number of off-
spring with reproductive capacity in each generation. Mathematically, a controlled branching
process (CBP) is a process {Zn}n∈N0 defined recursively as

Z0 = N , Zn+1 =
φn(Zn)∑

j=1

Xnj , n ∈ N0, (1)

where N0 = N ∪ {0}, N ∈ N, {Xnj : n ∈ N0; j ∈ N} and {φn(k) : n, k ∈ N0} are indepen-
dent families of non-negative integer valued random variables and the empty sum in (1) is
considered to be 0. The random variables Xnj , n ∈ N0, j ∈ N, are assumed to be independent
and identically distributed (i.i.d.) with distribution p = {p j = P(X01 = j) : j ∈ N0} and in
terms of population dynamics they represent the number of offspring given by the j-th pro-
genitor of the n-th generation.Moreover, {φn(k)}k∈N0 , for n ∈ N0, are independent stochastic
processes with equal one-dimensional probability distributions. This property means that the
control mechanism works in an independent manner in each generation, and once the popu-
lation size at certain generation n, Zn , is known, the probability distribution of the number
of progenitors, denoted by φn(Zn), is independent of the generation. Some particular cases
collected in this general family of branching processes are the simplest model, the standard
Bienaymé–Galton–Watson (BGW) process, by considering φn(k) = k a.s. for each k, or the
branching processes with immigration, by setting φn(k) = k +Yn , where {Yn}n∈N0 is a class
of i.i.d. random variables, among others.

The recentmonograph [9] provides an extensive description of its probabilistic theory. The
behaviour of the long-time evolution of a CBP is determined by the parameters of the model
associated to the offspring and control laws. Briefly, assuming that m = E[X01] and ε(k) =
E[φn(k)], k ∈ N0, exist and are finite, and whenever the limit τ = limk→∞ k−1ε(k) exists,
the threshold parameter of this branchingmodel is τm. The extinction occurs almost surely in
subcritical populations, namely if τm < 1, and different growth rates on the non-extinction
set are obtained depending on whether τm = 1 (critical population) or τm > 1 (supercritical
population) with additional conditions. In real situations, these parameters are unknown.
Until now, the methodologies proposed in the literature for the Bayesian inference on the
offspring distribution have focused on the cases where either the support of the reproduction
law is finite and known (see [7]) or that the offspring law belongs to some one-dimensional
parametric family (see [10]). A first paper in the context of the CBP that faces the problem
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of an unknown scenario on the offspring distribution could be [8]. The statistical procedures
developed in this work did not include the estimation of the posterior distribution of the
maximum number of offspring per progenitor given the sample of population sizes at each
generation {Z0, . . . , Zn}, but this quantity was set 1+max1≤k≤n Zk as a primary approach.
Within the class of other branching processes, this problem has been only considered in the
BGW process. In particular, from a probabilistic viewpoint, the asymptotic behaviour of the
number of offspring of the most prolific individual in the n-th generation has been studied
as an extreme value problem in [1, 18]. From an inferential viewpoint, a particle Markov
Chain Monte Carlo method was introduced to estimate the support of the offspring law in
[5]. However, the drawback of this approach is that its computational feasibility strongly
depends on dealing with BGW processes with low values.

The first aim of this work is to provide a methodology to estimate the maximum progeny
that an individual in the population can bear (called maximum offspring capacity per indi-
vidual) in the general class of CBPs and regardless the magnitude of the observed samples.
Having estimated the maximum offspring capacity per individual, we also make inference
on the expected values of offspring and control laws in a CBP. To this end, we consider
the maximum offspring capacity per individual as a model index and, for the first time, we
tackle its estimation by means of a model choice procedure. Thus, we provide an algorithm
based on approximate Bayesian computation (ABC) techniques to estimate both the max-
imum number of offspring that an individual is able to give birth to and the parameters of
interest of the model. The ABC methodology in the context of CBPs was already analysed
and applied in [10] by assuming that the offspring distribution belongs to a parametric fam-
ily. This means that the family of offspring distributions is known (for instance, geometric,
Poisson or binomial distributions) and the only unknown elements are the parameters that
determine them. In this paper we drop this assumption and face the problem of making infer-
ence on the parameters of interest in a less informative scenario with respect to the offspring
distribution.

For our purpose, let us consider a CBP with an offspring distribution with an unknown
support and control laws belonging to some known one-dimensional parametric family with
unknown parameter. Let κ = sup{ j ∈ N0 : p j > 0} the maximum number of offspring
per individual, denote p(κ) = {p j (κ) = P(X01 = j) : j ∈ N0} the offspring distribution
when the maximum offspring capacity per individual is κ , and let γ be the control parameter,
with γ ∈ Γ ⊆ R. We recall that in that case, the distribution of each control variable φn(k)
only depends on k and γ , and E[φn(k)] = ε(k, γ ). Let us denote m(κ) = ∑κ

j=0 j p j (κ) and

τ(γ ) = limk→∞ k−1ε(k, γ ). We assume that m(κ) < ∞ and τ(γ ) exists for all γ ∈ Γ .
Moreover we assume the existence of the inverse of τ(·). Several preliminary simulation
studies lead us to the conclusion that to approximate the posterior distributions of the
parameters of interest reasonably well by making use of ABC methodology, we have to
assume that at least the population sizes at each generation and the number of progenitors
in the last generation are observable (see [10]). Hence, let us consider the observed sample
Z̃obs
n = {Zobs

0 , . . . , Zobs
n , φn−1(Zn−1)

obs}. Briefly, we will proceed as follows: firstly, we
draw a sample from an estimate of the posterior distribution of κ , denoted by π(κ|Z̃obs

n ),
by considering a model choice algorithm. Secondly, we generate a sample from an estimate
of the posterior distribution of ( p(̃κn), γ ), where κ̃n is a point estimate of κ . Next, from
this sample we estimate the posterior distributions of ( p(̃κn), γ ), m (̃κn) and τ(γ ) using
kernel density estimation. We denote these posterior distributions by π( p(̃κn), γ |̃κn, Z̃obs

n ),
π(m | κ̃n, Z̃obs

n ) and π(τ(γ ) | κ̃n, Z̃obs
n ), respectively.
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The performance of the proposed algorithm is firstly illustrated by two simulated exam-
ples. Next, the method is applied on two real datasets that show a logistic growth. To this
end, we model the evolution of logistic growth of populations by CBPs, which represents
another important novelty of this paper. These populations are characterised by the fact that
when their sizes are small enough, they grow with almost no restriction, but when the sizes
increase, the limited resources of the environment lead to a control on the population sizes.
As a consequence, there exists a maximum population size, usually called carrying capacity
in an ecological context, that can be supported by the ecosystem. With the aim of describing
mathematically these populations, we introduce CBPs with control distributions given by
binomial distributions whose success probabilities mainly depend on the density of the pop-
ulation. We provide several models based on different success probability functions which
are inspired in classical deterministic population growth models.

Apart from this introduction, the paper is organized as follows. In Sect. 2 we provide
a detailed description of the ABC algorithm for model choice and parameter estimation
in the context of CBPs. Section 3 gathers simulation studies to evaluate and illustrate the
performance of the proposed ABC approach. In Sect. 4 we present the application of the
proposed algorithm to two real datasets from populations that exhibit a logistic growth.
Additional information related to the examples are presented in the Appendix. In Sect. 5 we
summarise the main contributions of this work.

2 Methodology

In this section we describe the ABC approach for estimating the posterior distribution of
the main parameters of a CBP. ABC algorithms are a group of Monte Carlo algorithms
used to find posterior distributions without requiring explicit knowledge of the likelihood
function. These are very useful when the likelihood is intractable or too costly to evaluate.
The inference is mainly done with samplings from the model, and hence, their versatility in
the framework of branching processes (see the monograph [19] for further details).

In this context, the fact that the value of κ is unknown and could be even infinite, increases
the complexity of the problem of estimating the parameters of the CBP and requires the use
of methodologies for model choice with the aim of estimating the parameter κ . We assume
κ ≥ 2 to avoid trivial cases. To implement the ABC methodology, we remark that even if
our knowledge on the value of κ is very poor, we usually have some information about an
effective upper bound for κ , denoted Kmax , from the dynamics of the population that we
model via the CBP. An example of this situation is the family of K-selected species (see
[17]), which includes larger mammals such as elephants, horses, and primates, and whose
species are relatively stable populations and produce relatively low numbers of offspring. For
practical purposes and without loss of generality, throughout this paper we consider offspring
laws with finite support. Thus, κ ∈ {2, 3, . . . , Kmax }. We can take the parameter κ as a model
index. We emphasise that as a consequence, for each value of κ the parameter of interest in
the corresponding model is

( p(κ), γ ) = (p0(κ), . . . , pκ (κ), γ ) ∈ Δκ × R,

whose dimension depends on κ , and where Δκ is the κ- standard simplex in R
κ .

We recall that our final aim is to estimate the posterior π( p(κ), γ | κ̃, Z̃obs
n ), with κ̃ a

point estimate of κ , and to that end, we propose a two-fold procedure.
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2.1 First stage: estimation of�(� | ˜Zobs
n )

In the first part, we estimateπ(κ | Z̃obs
n ).We apply anABC algorithm formodel choice based

on sequential importance sampling, ABCSMC formodel choice, introduced in [20] to draw a
sample {(κ(1), p(κ(1))(1), γ (1)), . . . , (κ(N ), p(κ(N ))(N ), γ (N ))} from the joint posterior dis-
tribution of (κ, p(κ), γ ) given the observed sample Z̃obs

n , denoted by π(κ, p(κ), γ | Z̃obs
n ).

Next, using the information of the marginal sample {κ(1), . . . , κ(N )} we are able to estimate
the distribution π(κ | Z̃obs

n ). We point out that the output of the ABC SMC for model choice
is not analysed as usual in the framework of Bayesian analysis (see [20]). Instead, we use
this output to provide an estimation of κ . Precisely, having obtained an estimation of the
distribution π(κ | Z̃obs

n ), we propose the closer integer to its posterior mean as the Bayesian
point estimator for the parameter κ . We refer to this estimator as κ̃n . Our choice is justified by
the good asymptotic properties that this estimator usually exhibits even in the case of CBPs
(see [11]).

We now describe how to implement the ABC SMC algorithm for model choice to draw
samples from the posterior distribution π(κ, p(κ), γ | Z̃obs

n ). The algorithm reaches the
target distribution through a series of intermediate distributions sampling from appropriate
proposal distributions and weighting the samples by importance weights. To that end, we fix
a number of T iterations and a decreasing sequence of tolerance levels ε1 > · · · > εT . In
practice, the tolerance levels are selected as quantiles of the distances between the simulated
and observed data (see the mathematical arguments for this choice in [2]).

The first iteration consists in running the tolerance-rejection ABC algorithm for model
choice. It starts by drawing a value κ ′ from the prior distribution on themodels, denotedπ(κ).
Assuming that we have no other knowledge than the lower and upper bounds of κ , we shall
consider a uniform distribution on the points 2, . . . , Kmax , denotedU {2, . . . , Kmax }, for the
priormodel distribution.Using the fact that the reproduction and control laws are independent,
we assume that the prior distribution for the model index κ , denoted by π( p(κ), γ | κ),
satisfies

π( p(κ), γ | κ) = π( p(κ) | κ)π(γ ),

where π( p(κ) | κ) is the prior distribution of p(κ) given the model index κ and π(γ )

is a suitable prior for γ . Now, bearing in mind that the parameter p(κ) is a probability
distribution with support {0, . . . , κ}, we propose a Dirichlet distribution with a (κ + 1)-
dimensional parameter ακ , denoted D(κ + 1,ακ ), as the distribution π( p(κ) | κ). Let
us also write f (Z̃n | p(κ), γ ) to refer to the likelihood function given p(κ) and γ , with
Z̃n = {Z0, . . . , Zn, φn−1(Zn−1)}. The next steps are the usual ones in tolerance-rejection
ABC algorithms. A sample Z̃sim

n = {Zsim
0 , . . . , Zsim

n , φn−1(Zsim
n−1)} is generated by using

the previously sampled parameters and accept them if the sample is close enough to the
observed sample Z̃obs

n in terms of some distance ρ(·, ·) and the tolerance level. In this stage,
we compare directly the raw data without summary statistics. The jumps between the model
indexesmight lead to quite different dimensions of the prior distributionsπ( p(κ)|κ), for each
κ , and consequently, finding a low-dimensional summary statistic to identify parameters of
a large dimension is quite hard (see the discussion in [16]).

It is worth to mention that in order to quantify the disparities between the simulated and
the observed data we can use many different functions. However, based on the results of
previous studies (see [10]), a good discrepancy measure in the CBP setting should satisfy
the non-negative property, the identity of indiscernible and the symmetry, but it should also
compare the simulated and observed data in relative terms to avoid any issue due to the
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magnitude of each coordinate. For these reasons, we propose the following function:

ρ(x, y) = de

(
x
y
,
y
x

)
, with x = (x1, . . . , xL), y = (y1, . . . , yL) ∈ R

L+,

where x
y = ( x1y1

, . . . , xL
yL

), yx = (
y1
x1

, . . . ,
yL
xL

), R+ = (0,∞) and de is the Euclidean distance.

Finally, at the end of this stage, all the outputs (κ(i), p(κ(i))(i), γ (i)) are assigned the same
weight ω(i)

1 = 1/N , for i = 1, . . . , N .
We can now describe the first iteration of the ABC SMC algorithm for model choice on

κ as follows:

Algorithm: ABC SMC algorithm for model choice on κ

Specify a decreasing sequence of tolerance levels ε1 > . . . >

εT > 0 for T iterations.
For i = 1 to N, do

Repeat
Generate κ ′ from U {2, . . . , Kmax }
Generate p(κ ′) from D(κ ′ + 1,ακ ′) and γ ′ from π(γ ).
Generate Z̃sim

n from f (Z̃n | p(κ ′), γ ′)

Until ρ(Z̃sim
n , Z̃obs

n ) ≤ ε1.

Set (κ
(i)
1 , p(κ(i)

1 )(i), γ
(i)
1 ) = (κ ′, p(κ ′), γ ′).

Set ω
(i)
1 = 1/N.

End for

To run the following iterations, the idea is to draw the parameters from proposal distribu-
tions that are closer to the target distributions so that we can reduce the variance of the final
sample. For each iteration t , t = 2, . . . , T , we have to specify a joint proposal distribution
for each p(κ∗) and γ ∗, denoted by qt ( p(κ), γ | p(κ∗), γ ∗). However, in real applications
finding a joint distribution that leads to a good performance of the ABC SMC algorithm
represents a challenge.

To that end, it is important to highlight that despite the independence between offspring
and control distributions, once the sample is given, their posterior distributions are usually
highly correlated, as shown empirically in the second simulated example in Sect. 3 (see
Fig. 12, left). Indeed, the outputs (κ ′, p(κ ′), γ ′) of each iteration of the algorithm satisfy
τ(γ ′)m(κ ′) ≈ τm, where recall m(κ) = ∑κ

j=0 j p j (κ), τ(γ ) = limk→∞ k−1ε(k, γ ), with
ε(k, γ ) = E[φn(k)], and τm represents the true value of the threshold parameter. Thus, the
use of component-wise perturbation proposals might lead to an inappropriate structure of the
true posterior. Taking into account the relationship described above, we suggest the following
proposal distribution:

qt ( p(κ), γ | p(κ∗), γ ∗) = qt ( p(κ) | p(κ∗), γ ∗)qt (γ | p(κ), p(κ∗), γ ∗). (2)

We set qt ( p(κ) | p(κ∗), γ ∗) to be a Dirichlet distribution with mean vector p(κ∗) and
variance controlled by a single tuning parameter a > 0, i.e., a Dirichlet distribution of
order κ∗ + 1 and parameter a p(κ∗), D(κ∗ + 1, a p(κ∗)). Given a value p(κ) from qt ( p(κ) |
p(κ∗), γ ∗), we fix qt (γ | p(κ), p(κ∗), γ ∗) as the distribution of the variable τ−1(U∗/m(κ)),
where τ−1(·) is the inverse of the function τ(·), the random variable U∗ follows a normal
distribution with mean τ(γ ∗)m(κ∗) and some variance σ 2

t , N (τ (γ ∗)m(κ∗), σ 2
t ), andm(κ) is
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the offspringmean of the distribution p(κ). Notice that we keep the variability of the proposal
distribution fixedwhen the value p(κ∗) is perturbed, however an adaptive dispersion is chosen
to perturb the control parameter γ . In particular, σ 2

t is twice the weighted empirical variance
of selected γ ’s in the t − 1 iteration (see [6] for further discussion on optimality of proposals
for ABC SMC).

For a step-by-step description of the remaining iterations of the algorithm in the first phase,
let us writePt = {(κ(1)

t , p(κ(1)
t )(1), γ

(1)
t ) . . . , (κ

(1)
t , p(κ(N )

t )(N ), γ
(N )
t )}, for the output of the

t stage of the algorithm. Moreover, let us denote Pt (κ) the family defined by the elements of
Pt such that κ( j)

t = κ , j = 1, . . . , N . We also write 1A to refer to the indicator function of
the set A and ωt = (ω

(1)
t , . . . , ω

(N )
t ) to refer to the vector of weights in the iteration t .

Algorithm: Continuation of the ABC SMC algorithm for model choice on κ

For t = 2 to T, do

For i = 1 to N, do
Repeat

Generate κ∗ from U {2, . . . , Kmax }.
Generate (κ∗, p(κ∗), γ ∗) from Pt−1(κ

∗) with the
corresponding weights ωt−1.
Sample ( p(κ∗)∗∗, γ ∗∗) from qt ( p(κ), γ | p(κ∗), γ ∗) described in (2).
Sample Z̃sim

n from f (Z̃n | p(κ∗)∗∗, γ ∗∗).

Until ρ(Z̃sim
n , Z̃obs

n ) ≤ εt.

Set (κ
(i)
t , p(κ(i)

t )(i), γ
(i)
t ) = (κ∗, p(κ∗)∗∗, γ ∗∗).

Set

ω
(i)
t = π( p(κ(i)

t )(i) | κ
(i)
t )π(γ

(i)
t )

∑N
j=1 ω

( j)
t−1qt ( p(κ

(i)
t )(i), γ

(i)
t | p(κ( j)

t−1)
( j), γ

( j)
t−1)1{κ(i)

t =κ
( j)
t−1}

.

End for
For every k = 2, . . . , Kmax, normalise the weights.

End for

2.2 Second stage: estimation of�( p(˜�n), � | ˜�n, ˜Zobs
n )

Having obtained the estimate for κ , denoted κ̃n , given by the closest integer to the mean of
the sample {κ(1), . . . κ(N )} drawn in the first stage, we now describe how to draw a sample
from the ABC approximation of the distribution π( p(̃κn), γ |κ̃n, Z̃obs

n ).
Besides the approximation of the marginal posterior distribution of the model index, the

output of the first stage provides a sample from the ABC estimate of the marginal poste-
rior distributions of parameters, i.e. π( p(κ), γ |κ, Z̃obs

n ), for κ = 2, . . . , Kmax . Although
the ABC methodology for the inference on κ works quite well without the use of sum-
mary statistics as pointed out before, its use does improve the output of the ABC algorithm
when the aim is to make inference on the parameters once the model index is known (see
[10]). Thus, our proposal is to proceed as follows: when the first stage is implemented all
the generated parameter values together with their data sets in the last iteration are stored.
Consequently, they can be used to run an ABC algorithm to estimate the posterior dis-
tribution of the parameters of the model given κ = κ̃n without having to generate new
data. Let us denote as {Z̃(1)

n , . . . , Z̃(N )
n } the simulated data corresponding to the sample

{(κ(1), p(κ(1))(1), γ (1)), . . . , (κ(N ), p(κ(N ))(N ), γ (N ))}, and let {κ(i1), . . . , κ(iL )} be all the
elements of the sample {κ(1), . . . , κ(N )} such that κ(il ) = κ̃n , for l = 1, . . . , L . Next, we use
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of the simulated marginal values

{( p(κ(i1))(i1), γ (i1), Z̃(i1)
n ), . . . , ( p(κ(iL ))(iL ), γ (iL ), Z̃(iL )

n )},
to check the rejection condition in the tolerance-rejection ABC algorithm considering a
suitable summary statistic. We use the following summary statistic

S(Z̃n) =
(

n∑

i=1

Zi ,

∑n
i=1 Zi∑n−1
i=0 Zi

,
φn−1(Zn−1)

Zn−1
,

Zn

φn−1(Zn−1)

)
. (3)

This statistic results from adding a fourth coordinate to the one in [10]. The properties of the
model (see [9]) ensure that in a general setting, as n → ∞,

∑n
i=1 Zi∑n−1
i=0 Zi

→ τm,
φn−1(Zn−1)

Zn−1
→ τ,

Zn

φn−1(Zn−1)
→ m,

almost surely on {Zn → ∞}, regardless of whether we consider parametric frameworks for
the offspring or control distributions. Consequently, the third and the new coordinate enable
us to identify each factor of the threshold parameter. Our simulation results show that the four
dimensional summary statistic proposed improves the results compared to previous summary
statistics.More details about the efficiency of adding a newcoordinate to the summary statistic
can be found in [14].

Finally, we apply a post-processingmethod based on a local linear regression on the output
sample. The outputs p(κ(i j ))(i j ) are (κ̃n+1)-dimensional vectors whose coordinates sum one,
but, after regression, some of them could be negative. Such outputs must be removed from
the sample (see [10] for details on both methods).

3 Simulated examples

Our methodology is illustrated via several simulated examples. First, we show how well
the methodology works in situations as described above, where the reproduction law has
finite support. More precisely, we fix the value of the threshold parameter τm and consider
different CBPs where we vary the support of the offspring distribution, the mean of the
offspring distribution m, and the control parameter γ in such a way that the value of τm
remains constant for all of the cases. Second, we return to the previous simulated study in
[10]. Our aim is to estimate the posterior distribution of the parameters of interest without
assuming a parametric offspring distribution. The true offspring distribution in this scenario
has an infinite support, but we show our methodology is also useful in this context if the main
aim is to approximate the posterior distributions of stable parameters, namely, the offspring
mean and control parameter.

3.1 Example 1

We begin our simulation study focusing on offspring distributions with finite support. We
show the suitability of the methodology in this framework by considering reproduction laws
with different supports and means, and also various control laws with different parameters,
keeping the same threshold parameter.

To that end, we explore four different models/cases of CBPs where the initial number
of individuals is Z0 = 1 and the control variables φn( j) follow binomial distributions with
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Table 1 Value of the parameters
of each CBP

κ � γ m τm

Case 1 4 0.9 0.8 3.6 2.88

Case 2 10 0.36 0.8 3.6 2.88

Case 3 7 0.8 0.5 5.6 2.88

Case 4 10 0.8 0.36 8 2.88

Table 2 Values of the cumulative distribution function associated with each offspring distribution

0 1 2 3 4 5 6 7 8 9 10

Case 1 0.0001 0.004 0.052 0.344 1.000

Case 2 0.012 0.076 0.241 0.487 0.729 0.893 0.970 0.994 0.999 1.000 1.000

Case 3 0.000 0.000 0.005 0.033 0.148 0.423 0.790 1.000

Case 4 0.000 0.000 0.001 0.001 0.006 0.033 0.121 0.322 0.624 0.893 1.000

parameters ξ( j) and γ , where ξ( j) = j + �log( j), for each j ∈ N, ξ(0) = 0, and �x
denotes the integer part of a number x . We observe that these control laws are a mixture of
a deterministic component and a random one. The introduction of these control functions
can be explained in an ecological context, where, first, we allow the introduction of new
individuals in the ecosystem as described by the deterministic function ξ(·), and next, the
binomial control models situations as the emigration or death of individuals due to their hunt
by predators. Here, γ represents the probability that an individual does not participate in the
subsequent reproduction process as it is no longer present in the ecosystem. We note that for
these CBPs ε( j, γ ) = γ ξ( j) and τ = γ . For our purpose, we vary the value of the control
parameter γ across the four cases. For the reproduction law we chose binomial distributions
with different sizes, κ , and probabilities of success, �, in such a way that the four models
satisfy τm = 2.88, i.e. the CBPs are supercritical. The values of the parameters are gathered
in Table 1. We emphasise that our choice of the parameters enables us to compare the results
obtained by the methodology proposed when examining different finite supports and types
of skewness of the offspring distribution (see Table 2).

For each case described above we simulated the first 10 generations of a CBP and we
ran the ABC SMC algorithm for model choice with each of the corresponding samples as
observed data (see Table 4 in Appendix for details on the samples). For that purpose, we
assumed that our only knowledge on the offspring distribution is an upper bound for κ , and
the fact that the control laws for a population size j are binomial distributionswith parameters
ξ( j) and γ , with γ ∈ (0, 1) unknown. To run the ABC SMC algorithm for model choice we
fixed T = 3 iterations, an upper bound Kmax = 15, ακ = (1, . . . , 1), where the prior for γ is
a beta distribution with both parameters equal to 1, and the tuning parameter is a = 30. The
choice of the value of a was justified by the results of several simulated experiments to avoid
that the proposal distribution becomes a Dirac measure at the point where it is perturbed. We
simulated pools of 4 ·105, 2 ·106, 20 ·106 of non-extinct CBPs at the corresponding iterations
and fixed as the tolerance levels ε1 , ε2 and ε3 the quantiles of orders 0.0125, 0.0025, and
0.00025, respectively, of the sample of the distances between the paths of the simulated and
observed processes. As a result, for each sample path observed we obtained a sample of
size 5000 of the corresponding posterior distribution of κ . The barplots of these samples are
given in Fig. 1 in the Cases 1 and 2, and in Fig. 2 in the Cases 3 and 4. In the Case 1, with
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Fig. 1 Estimate of the posterior of κ obtained in the first step of the ABC SMC algorithm for model choice in
Example 1. Left: Case 1. Right: Case 2

Fig. 2 Estimate of the posterior of κ obtained in the first step of the ABC SMC algorithm for model choice in
Example 1. Left: Case 3. Right: Case 4

κ = 4, the distribution is concentrated around 4 and the point estimate is κ̃n = 5 due to the
tail of the distribution. In the Case 2, with κ = 10, κ̃n = 7 while the posterior distribution is
right-skewed too. The posterior distribution in the Case 3, with κ = 7, has a similar shape,
but with support {6, . . . , 15}, and κ̃n = 9. Finally, in the Case 4, with κ = 10, the posterior
distribution is more symmetric than in the previous cases and the point estimate is κ̃n = 12.
Taking into account the cumulative distribution function associated with each of the offspring
distributions (see Table 2), the proposed estimate of κ̃n in each case is quite reasonable.

We continued with the second step of our methodology by performing the tolerance-
rejection algorithm and the post-processing method with the summary statistic to draw
samples from distributions that approximate the posteriors π(m | κ̃n, Z̃obs

n ) and π(γ |
κ̃n, Z̃obs

n ) in each case. The estimates of the joint posterior π(m, γ | κ̃n, Z̃obs
n ) densities

and their marginal posterior distributions for each case are displayed in Figs. 3, 4, 5, 6. In
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Fig. 3 Case 1. Estimates of the posterior distributions via the ABC algorithm with the local linear regression
adjustment with κ̃n = 5. Left: Contour plot of the estimates of the joint density π(m, γ | κ̃n , Z̃obs

n ), together
with the curve τm = 2.88. The red point corresponds to the true values of the parameters and the grey point
corresponds to the sample means. Centre: Estimate of π(m | κ̃n , Z̃obs

n ). Right: Estimate of π(γ | κ̃n , Z̃obs
n ).

Red dashed vertical lines represent the true value of the parameter, grey solid vertical lines are the sample
means, and blue dashed-dotted vertical lines correspond to 95% HPD intervals

Fig. 4 Case 2. Estimates of the posterior distributions via the ABC algorithm with the local linear regression
adjustment with κ̃n = 7. Left: Contour plot of the estimates of the joint density π(m, γ | κ̃n , Z̃obs

n ), together
with the curve τm = 2.88. The red point corresponds to the true values of the parameters and the grey point
corresponds to the sample means. Centre: Estimate of π(m | κ̃n , Z̃obs

n ). Right: Estimate of π(γ | κ̃n , Z̃obs
n ).

Red dashed vertical lines represent the true value of the parameter, grey solid vertical lines are the sample
means, and blue dashed-dotted vertical lines correspond to 95% HPD intervals

all cases one can observe that the estimated densities obtained are centred around the true
values and their spread is relatively small. These results indicate that the method retrieves
the parameters of interest reasonably well, which is a key property to predict the evolution
of the population.

Besides the four particular examples presented above, in the second part of this subsec-
tion, we analyse in more detail the accuracy of the methodology to estimate the posterior
distributions for κ when the support of the reproduction law is finite. Specifically, for each
of the previous four models, we simulated the first 10 generations of 100 processes starting
with one individual for each of the cases (i.e., 100 different observed samples), and we ran
the ABC SMC algorithm for model choice algorithm with each of these observed samples.
To this aim, the same number of iterations, prior distributions, tuning parameter as above are
set, but we considered simulated pools of 16,000, 80,000 and 800,000 of non-extinct CBPs
at the corresponding iterations and fixed as the tolerance levels ε1 , ε2 and ε3 the quantiles
of orders 0.0125, 0.0025, and 0.00025, respectively, of the sample of the distances between
the simulated and the observed processes. As a result, for each of the 100 observed paths we
obtained a sample of size 200 drawn from the posterior of κ , and we computed the Bayesian
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Fig. 5 Case 3. Estimates of the posterior distributions via the ABC algorithm with the local linear regression
adjustment with κ̃n = 9. Left: Contour plot of the estimates of the joint density π(m, γ | κ̃n , Z̃obs

n ), together
with the curve τm = 2.88. The red point corresponds to the true values of the parameters and the grey point
corresponds to the sample means. Centre: Estimate of π(m | κ̃n , Z̃obs

n ). Right: Estimate of π(γ | κ̃n , Z̃obs
n ).

Red dashed vertical lines represent the true value of the parameter, grey solid vertical lines are the sample
means, and blue dashed-dotted vertical lines correspond to 95% HPD intervals

Fig. 6 Case 4. Estimates of the posterior distributions via the ABC algorithm with the local linear regression
adjustment with κ̃n = 12. Left: Contour plot of the estimates of the joint density π(m, γ | κ̃n , Z̃obs

n ), together
with the curve τm = 2.88. The red point corresponds to the true values of the parameters and the grey point
corresponds to the sample means. Centre: Estimate of π(m | κ̃n , Z̃obs

n ). Right: Estimate of π(γ | κ̃n , Z̃obs
n ).

Red dashed vertical lines represent the true value of the parameter, grey solid vertical lines are the sample
means, and blue dashed-dotted vertical lines correspond to 95% HPD intervals

point estimate κ̃n . Thus, we got a sample of size 100 of estimates, κ̃n,1, . . . , κ̃n,100, for each
model/case. The corresponding relative frequencies of the values of κ are provided in Table
3. We recall that the Cases 1 and 2 have the same offspring mean and control parameter, but
the offspring distribution in Case 2 is concentrated in greater values than in Case 1 (see Table
2). Our results indicate that the algorithm proposed is able to distinguish and to identify both
cases reasonably well, as was reported above in the study developed above for each particu-
lar case. We also observe that the skewness of the reproduction law has some impact on the
shape of the probability distribution of the Bayesian point estimator of κ , κ̃n . Indeed, the first
offspring distribution is left-skewed, and the method tends to overestimate the value of κ ,
while the second one is right-skewed and the method tends to underestimate it. In particular,
in the Case 1, the choices 5 and 6 cover the 86% of the values of the sample, where 5 has
a relative frequency of 48%. In the Case 2, the choices 6, 7 and 8 cover the 72%, where 7
has a relative frequency of 30%; notice in this case that the cumulative probabilities for the
values 6, 7, and 8, are 0.97, 0.994, and 0.999, respectively. Regarding the Cases 3 and 4,
we remark that both of them have different offspring means and control parameters, and the
methodology is able to discriminate satisfactorily between both. Precisely, the choices 9 and
10 represent the 78% of the values of the sample in the Case 3 whereas 11 and 12 correspond
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Table 3 Relative frequencies of
the values of κ in the sample
κ̃n,1, . . . , κ̃n,100 for each model

κ Case 1 Case 2 Case 3 Case 4

2

3

4 0.08 0.03

5 0.48 0.16

6 0.38 0.21

7 0.06 0.30

8 0.21 0.13

9 0.09 0.34

10 0.44 0.01

11 0.08 0.31

12 0.01 0.53

13 0.14

14 0.01

15

Fig. 7 Case 1. Box-plots of Bayes point estimates of m and γ , m̃n,1, . . . , m̃n,100 and γ̃n,1, . . . , γ̃n,100, based
on the samples of 100 simulated processes. Horizontal red line corresponds to the true value of the parameter

to the 84% in the Case 4. It is also important to highlight that the range of selected values
of κ̃n for all the cases are different (see Table 3), and consequently, the performance of the
method enables us to estimate adequately the support of the offspring distributions.

Next, for each observed path we obtained a sample of the ABC approximation of the
posterior distributions of π(m|κ̃n, Z̃obs

n ) and π(γ |κ̃n, Z̃obs
n ) and we took the means of these

samples as Bayesian point estimates of m and γ , m̃n,1, . . . , m̃n,100 and γ̃n,1, . . . , γ̃n,100.
The box-plots of these estimates are given in Figs. 7, 8, 9, and 10 in Cases 1, 2, 3, and 4,
respectively. These show that the sample of each posterior distribution is centred around
the true value of each parameter and their dispersion is not considerable. Thus, they lead to
accurate estimates of the posterior of the parameters.

3.2 Example 2

We continue our simulation study with one of the examples in [10]. The considered CBP
starts with Z0 = 1 individual, the offspring distribution is a geometric distribution with
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Fig. 8 Case 2. Box-plots of Bayes point estimates of m and γ , m̃n,1, . . . , m̃n,100 and γ̃n,1, . . . , γ̃n,100, based
on the samples of 100 simulated processes. Horizontal red line corresponds to the true value of the parameter

Fig. 9 Case 3. Box-plots of Bayes point estimates of m and γ , m̃n,1, . . . , m̃n,100 and γ̃n,1, . . . , γ̃n,100, based
on the samples of 100 simulated processes. Horizontal red line corresponds to the true value of the parameter

Fig. 10 Case 4. Box-plots of Bayes point estimates ofm and γ , m̃n,1, . . . , m̃n,100 and γ̃n,1, . . . , γ̃n,100, based
on the samples of 100 simulated processes. Horizontal red line corresponds to the true value of the parameter
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Fig. 11 Estimate of the posterior
distribution of κ in ABC SMC
algorithm for model choice in
Example 3.2

parameter q = 0.4 and the control variables φn( j) follow a binomial distribution with
parameters ξ( j) and γ = 0.75, where the function ξ(·) was introduced in the previous
example. The offspring mean and variance are m = 1.5 and σ 2 = 3.75, the control means
are ε( j, γ ) = γ ξ( j) = 0.75ξ( j), j ∈ N0, τ = γ = 0.75, and the threshold parameter
is τm = 1.125. Thus, taking into account the value of this last parameter, the CBP is
supercritical. The simulated path and the observed sample Z̃ obs

n of the first 30 generations of
such a process are presented in Table 5 in Appendix. Note that the offspring distribution has
infinite support.

In Sect. 4.1 of [10]we provided some inferential results obtained by usingABC algorithms
under the hypothesis of a parametric offspring distribution. Recall that this latter implies that
we assumed that we knew the parametric family of probability distribution to which the
offspring distribution belonged, but the value of the parameter was unknown. We now deal
with the estimation of the posterior distributions of the stable parameters of the model as the
offspring mean and the control parameter in a different framework. To that end, throughout
this example, we understand the maximum offspring capacity per individual as a number κ

such that the probability that an individual gives birth to more than κ offspring is sufficiently
small, i.e., we look for a realistic upper limit for the offspring capacity of the majority of
the individuals of the population. Our goal is to estimate the posterior distribution of the
maximum offspring capacity per individual with the aim of identifying the stable parameters
of the model properly. Thus, we assume that we can propose a reasonable upper bound,
Kmax , of this maximum offspring capacity in view of the knowledge of the population that
we are modeling, as discussed in Sect. 2. Wemake use of the observed sample to estimate the
joint posterior distributions of the mean offspring and control parameter by assuming that our
only knowledge on the offspring distribution is Kmax , and the fact that the control laws for
a population size j are binomial distributions with parameters ξ( j) and γ , with γ ∈ (0, 1)
unknown.

We implemented the ABC SBC algorithm for model choice described in Sect. 2 by setting
the same number of iterations, prior distributions, pools of non-extinct simulated processes,
tolerance levels and tuning parameter as in Example 1. We therefore obtained a sample of
length 5000 at each iteration. The resulting barplot of the sample obtained from the estimate
of the posterior distribution π(κ | Z̃obs

n ) is shown in Fig. 11. The closest integer to the sample
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Fig. 12 Estimates of the posterior distributions via the ABC algorithm with the local linear regression adjust-
ment with κ̃n = 5. Left: Contour plot of the estimate of the joint density π(m, γ | κ̃n , Z̃obs

n ) with the curve
τm = 1.125. The red point indicates the true value of the parameters and the grey one represents the sam-
ple means. Centre: Estimate of π(m | κ̃n , Z̃obs

n ). Right: Estimate of π(γ | κ̃n , Z̃obs
n ). Red dashed vertical

lines represent the true value of the parameter, grey solid vertical lines represent the sample means, and blue
dashed-dotted vertical lines correspond to 95% HPD intervals

mean of the posterior distribution of κ is 5, and then, we propose κ̃n = 5. We note that the
probability that the true offspring distribution, a geometric distribution of parameter 0.4, is
less than or equal to 5 is 0.9533. Consequently, the choice of 5 as the maximum number of
offspring per individual is appropriate to explain the evolution of our data reasonably well.

Next, we considered the marginal samples corresponding to κ̃n = 5 and applied the
rejection condition in the tolerance-rejection ABC algorithm and a local linear regression
adjustment making use of the summary statistic in (3), as described in Sect. 2.2. The results
are plotted in Fig. 12. Precisely, we represented the estimated posterior densities of π(m |
κ̃n, Z̃obs

n ) and π(γ | κ̃n, Z̃obs
n ) and the contour plot of the estimated joint posterior density of

π(m, γ | κ̃n, Z̃obs
n ) together with the curve τm = 1.125 (recall that in this case τ = γ ). This

figure illustrates the correlation betweenm and γ given the observed sample. The results show
that the proposed ABC algorithm estimates of the posterior densities are quite accurate. It is
worthy to point out that the implementation of the proposed methodology is computationally
simple, and provides a useful approach to make inference on the parameters of interest in a
scenario that requires very little information about the true offspring law. This latter is a great
advantage versus the previous methodology considered in [10] that assumed the knowledge
of the parametric offspring family to which the true offspring law belonged.

4 Real data examples

In this section our aim is to apply the described methodology to real datasets that represent
the logistic growth of populations. These kinds of populations are characterized by an initial
approximately exponential growth of the number of individuals till they reach an equilibrium
value around which they fluctuate. This equilibrium value, denoted as Ke, mainly depends
on the maximum population size supported by the environment. We refer to the latter value
as the carrying capacity of the population, denoted as K (see [3]). Population-size dependent
branching processes (PSDBPs) are often used to model these kind of data (see, for instance,
[4], [12], or [15] and references therein). The PSDBP is a modification of a BGW process.
Briefly, the assumption of identical offspring distribution for all the individuals in the BGW
process is replaced with the assumption of offspring distributions in each generation which
depend on the population sizes. In particular, in order to fit logistic growth data the repro-
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duction laws depend on the current population size, the carrying capacity and on some other
parameters. However, the existence of a carrying capacity does not necessarily imply that the
reproductive capacity of an individual changes along generations, but rather the probability
that an individual successfully becomes a progenitor. Consequently, we propose a CBP to
model population logistic growths by considering control laws defined by binomial distri-
butions with a success probability depending on the current population size, z, the carrying
capacity, K , and the offspring mean, m. We refer to z/K as density. More precisely, the
random variable φ0(z) is distributed following a binomial distribution of size z and success
probability given by a function s(m, z, K ). We consider that the process begins with a much
smaller initial number of individuals Z0 than K andm > 1. Under this consideration we have
E[Zn+1 | Zn = z] = mzs(m, z, K ). Although the probabilistic evolution of the described
CBP with binomial control can be represented equivalently as a PSDBP, from a practical
view point the structure of a CBP makes easier to interpret the parameters involved.

Different functions s(m, z, K ) can be defined to introduce a density-dependent growth
inspired by deterministic models. Given their practical relevance we highlight the following
ones and the corresponding deterministic models on which the functions s(m, z, K ) are
based:

sV (m, z, K ) = (1 − z/K ), Verhulst logistic equation,

sL,θ (m, z, K ) = m−(z/K )θ , θ > 0, θ -logistic model,
sH ,β(m, z, K ) = (1 + (m − 1)z/K )−β, β > 0, Hassell model,
sG(m, z, K ) = m− log(z+1)/ log(K+1), Gompertz model.

In particular, θ = 1 for the second function yields the Ricker model while β = 1 in the
third function gives us the Beverton-Holt model.We notice that, as is reasonable, a high value
of density implies a low probability of being progenitor in all the models. The equilibrium
value Ke can be determined by solving the equation E[Zn+1 | Zn = z] = z. The respective
equilibrium values are KV

e = (1−m−1)K , K L,θ
e = K , K H ,β

e = K (m1/β −1)/(m−1), and
KG
e = K .
With the aim of making inference on the offspring mean and the equilibrium value for

logistic growth data we implemented the ABC SBC algorithm for model choice and estima-
tion of the parameters in Sect. 2 by considering the binomial control distributions introduced
above, with the control parameter γ = K . We tackled the estimation in two real datasets:
yeast data and seal data. We set the same number of iterations, pools of non-extinct simulated
processes, tolerance levels and tuning parameter as in the previous simulated examples. The
details on the prior distributions are given below for each dataset.

4.1 Yeast dataset

The yeast dataset was already studied in [21] (see Figure 1 (a) in this paper) and it collects the
yeast cell numbers in a replicate by colony scan-o-matic from 0 and 72 hours of growth at 20
min intervals. These data are plotted in grey in Fig. 13 below. Note the high dimension of the
data and that given the nature of the data, the observed sample is only given by the total size
of each generation. To perform the algorithm, we set Kmax = 6 and the prior distribution
for γ = K as an uniform distribution on (1 · 107, 1.1 · 107) interval. We note that a yeast
cell might reproduce more than once in 20 minutes and κ therefore represents the maximum
number of yeast cells produced by a cell in this period of time.

To choose the best choice of the θ -logistic and Hassell models, we ran the algorithm for
a grid of values of the θ and β parameters and selected the corresponding models which
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Fig. 13 Fitted logistic (expected
values) curves together with the
observed values (grey dots). For
the θ -logistic model θ = 0.55 and
for the Hassell model β = 0.05

Fig. 14 Estimates of the posterior distributions via the ABC algorithm and the local linear regression
adjustment with the Hassell model with β = 0.05. Left: Contour plot of the estimate of the joint density
π(m, Ke | κ̃n , Z̃obs

n ). The grey point represents the sample means. Centre: Estimate of π(m, | κ̃n , Z̃obs
n ).

Right: Estimate of π(Ke, | κ̃n , Z̃obs
n ). Grey solid lines are the sample means and blue dashed-dotted vertical

lines correspond to 95% HPD intervals

provide the best adjustments. We based our decision on R2
g , the fraction of variance in the

growth data explained by the different logistic regression models, which is the adjustment
measure considered in [21]. In Fig. 13 we plotted a point estimates of the expected values of
each generation size given by the different logistic regressionmodels and provide the fraction
of variance explained by each of them. The maximum value of R2

g is provided by Hassell
logistic growth model with β = 0.05, R2

g = 0.9946. It is worthy to point out that this latter
value is similar to the one obtained in the study developed in [21]. For this model, we also
estimated the joint posterior distribution of the offspring mean,m, and the equilibrium value,
Ke, and the corresponding marginal distributions in Fig. 14.

4.2 Seal dataset

The seal dataset collects the average annual harbor seal haul-out counts in the coastal estuarine
environment of Washington State, USA, from 1975 to 1999. These are provided in Table 6
in the Appendix (see [13] for further details on this dataset) and represented in Fig. 15. It is
worthy to point out that these data show missing values and a greater dispersion than yeast
data. In this case we use the same value of Kmax as in the yeast data example and for prior
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Fig. 15 Fitted logistic (expected
values) curves together with the
observed values (grey dots). For
the θ -logistic model θ = 2 and
for the Hassell model β = 1.25

Fig. 16 Estimates of the posterior distributions via the ABC algorithm and the local linear regression
adjustment with the θ -logistic model θ = 2. Left: Contour plot of the estimate of the joint density
π(m, Ke | κ̃n , Z̃obs

n ). The grey point represents the sample means. Centre: Estimate of π(m, | κ̃n , Z̃obs
n ).

Right: Estimate of π(Ke, | κ̃n , Z̃obs
n ). Grey solid lines are the sample means and blue dashed-dotted vertical

lines correspond to 95% HPD intervals

distribution of γ = K we set a uniform distribution on the interval (5000, 10000). Based on
the values of R2

g the best adjustment is provided by θ -logistic model with θ = 2. For this
model the estimated joint posterior distribution of the offspring mean,m, and the equilibrium
value, Ke, and the corresponding marginal distributions, which are plotted in Fig. 16.

5 Concluding remarks

We dealt with the Bayesian estimation of the main parameters of a CBP in a general context.
Precisely, we assumed a parametric framework for the control laws and a non-parametric
one for the offspring distribution without any knowledge about its support The two main
goals in this setting were to estimate the posterior distribution of the maximum number of
offspring per individual, κ , and to estimate the posterior distribution of other parameters such
as the offspring mean and control parameter based on the Bayes point estimate of κ under
the quadratic loss function. To that end, we considered the sample defined by the population
sizes in all the generations and the number of progenitors in the last generation.

The methodology that we proposed consists of two steps. In the first one, we used the
parameter κ as a model index and applied a SMC ABC algorithm for model choice with
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the raw data to draw a sample from the estimate of the posterior distribution of κ . From this
sample, we also proposed the sample mean as point estimate of the value of κ . In the second
step, given this point estimate and the samples obtained in the last iteration of the method in
the previous step, we made use of an ABC algorithm together with a local linear regression
adjustment to draw samples from the estimates of the posterior distribution of the parameters
of interest related to the offspring and control distribution. In this stage, we introduced an
appropriate summary statistic to identify the parameters of the model.

Our empirical results support the suitability of themethodology proposed. First, via several
simulated examples, we showed that SMCABC algorithm formodel choice with the raw data
enables us to obtain a sample of the posterior distribution of κ relatively easily and identify
the main parameters of the reproduction and control laws through the second stage of the
algorithm with the summary statistic. Indeed, the resulting posterior distributions are centred
around the true value of the parameters. Second, turning to the simulation study in [10] we
applied the method to estimate the posterior distribution of the offspring mean and control
parameter when the support of the offspring distribution is infinite. In this setting, as indicated
above, the parameter κ is now interpreted as such a quantity satisfying that probability that
an individual has at most κ offspring is large enough, that is a realistic upper bound for the
reproduction capacity of the majority of the individuals. Again, the results obtained are quite
satisfactory even in this miss-specified model framework.

We also used our methodology to estimate the posterior distribution of the offspring mean
and the equilibrium value for two real datasets that present logistic growth of populations.
To the best of our knowledge, this was the first time that CBPs were used as models for
populations whose evolution is conditioned by the existence of a maximum capacity of the
environment in which evolve. We highlight that the methodology is quite flexible and works
reasonably well even with missing values, as happens in seal dataset, and with high value
data, as happens in both examples—mainly in the yeast one. In both datasets the adjusted
models fit the observed data quite well, providing suitable estimates of the parameters of
interest.

We finally remark that in situations where the knowledge on the reproduction law is
limited, the computational simplicity of the methodology makes it an appropriate way to
generate samples of the the estimate of the posterior distributions of the target parameters.
This represents a clear progress compared to previous works in this setting such as [5, 8, 10,
11], even when working with high value data.
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Appendix

Simulated examples: Example 1

The data of the particular simulated examples in Sect. 3.1 developed in the first part are
provided in Table 4.

Table 4 Observed samples for
the particular cases studied in
Example 1

Case 1 Case 2 Case 3 Case 4

Z0 1 1 1 1

Z1 4 5 7 10

Z2 12 21 31 53

Z3 30 59 82 131

Z4 84 168 237 372

Z5 249 467 617 1045

Z6 728 1242 1637 3085

Z7 2148 3614 4328 8539

Z8 6165 10282 12368 24730

Z9 17883 29600 34593 69854

Z10 51412 85501 96321 202339

φ9(Z9) 14281 23668 17238 25309

Simulated examples: Example 2

The data of the simulated example in Sect. 3.2, previously analysed in [10], are provided
in Table 5. Recall that for the simulated CBP, which starts with Z0 = 1 individual, the
reproduction law is a geometric distribution with parameter q = 0.4, and for each k ∈ N0, the

Table 5 Simulated data and observed sample Z̃obs
30 in bold

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zn 1 4 6 4 11 6 9 19 26 14 10 11 9 12 14 15

φn(Zn) 1 3 5 3 10 7 7 13 19 9 9 9 7 8 12 12

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Zn 9 3 6 13 17 23 35 58 75 73 103 107 141 166 216

φn(Zn) 5 3 7 13 15 18 32 46 61 51 78 83 100 131 ·
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probability distribution of the control variableφn(k) is a binomial distributionwith parameters
ξ(k) and γ = 0.75, with ξ(k) = k + �log(k), for each k ∈ N and ξ(0) = 0.

Real data examples: Seal dataset

Table 6 gathers the average annual harbor seal haul-out counts in the coastal estuarine envi-
ronment of Washington State from 1975 to 1999. These data were previously provided and
analysed in [13] (see Table 1 in the aforementioned paper).

Table 6 The average annual harbor seal haul-out counts

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Zn 1694 1742 2082 2570 · 2864 4408 5197 4416 4203 6008 4807

Year 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Zn 7600 6796 6475 · 8681 7761 8161 5786 6492 7191 7643 ·
Year 1999

Zn 7117
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