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The Kalton-Peck Z2 space is the derived space obtained from the scale of �p
spaces by complex interpolation at 1/2. If we denote by Zreal

2 the derived space 
obtained from the scale of �p spaces by real interpolation at (1/2, 1/2), we show 
that Z2 is the complexification of Zreal

2 . We also show that Zreal
2 shares the most 

important properties of Z2: it is isomorphic to its dual, it is singular and contains 
no complemented copies of �2.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

This paper outgrowths from [4], in which, in the words of its authors, it is shown that Rochberg’s gen-
eralized interpolation spaces X(n) arising from analytic families of Banach spaces form exact sequences 
0 → X(n) → X(n+k) → X(k) → 0 and that nontriviality, having strictly singular quotient map, or having 
strictly cosingular embedding depend only on the basic case n = k = 1. Our attempt has been to bring 
down to sound earth its Open end 6.3: It is the feeling of the authors that most of the work done in this 
paper could be reproduced for real interpolation by either the K or J methods with a careful analysis of the 
work done in [Carro et al. 1995]. It would be interesting to know to what extent the same occurs for other 
interpolation methods.

That is what we will do in this first part of the paper in the following way: It is a fact well known 
to all those who know it that most interpolation methods generate exact sequences of the interpolated 
spaces; say, if [X0, X1]μ is the interpolated space obtained from the pair (X0, X1) with parameters set 
at μ, then there exists a natural exact sequence 0 [X0, X1]μ X [X0, X1]μ 0 . 
In this representation, [X0, X1]μ would be the first Rochberg space and the twisted sum space X the 

✩ This research has been supported in part by project PID2019-103961GB-C21 funded by MINCIN and project IB20038 funded 
by Junta de Extremadura.
* Corresponding author.

E-mail addresses: castillo@unex.es (J.M.F. Castillo), ymoreno@unex.es (Y. Moreno).
https://doi.org/10.1016/j.jmaa.2022.126374
0022-247X/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmaa.2022.126374
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2022.126374&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:castillo@unex.es
mailto:ymoreno@unex.es
https://doi.org/10.1016/j.jmaa.2022.126374
http://creativecommons.org/licenses/by/4.0/


2 J.M.F. Castillo, Y. Moreno / J. Math. Anal. Appl. 515 (2022) 126374
second Rochberg space. After that, higher order Rochberg spaces [21] can be rather naturally generated 
when the method provides a sequence of interpolators (see [10,11]). In this way, if R(n) denotes the nth-
Rochberg space with R(1) = [X9, X1]μ and R(2) = X, these Rochberg spaces form natural exact sequences 
0 R(n) R(n+m) R(m) 0 (see [4,3]). Once again, most –but not all– standard in-

terpolation methods fit into this schema, as it is more or less implicit in the papers of Cwikel et al. [14], 
Carro et al. [6] and Rochberg [21] and made explicit when Cwikel, Kalton, Milman and Rochberg introduce 
their unifying method [15], from now on called the CKMR method.

On the other hand, the theory created by Kalton [17] establishes that exact sequences of quasi Banach 
spaces are in correspondence with a special type of nonlinear maps called quasilinear maps. Given an exact 
sequence 0 X XΩ X 0 with associated quasilinear map Ω and another sequence 

0 X XΦ X 0 with associated quasilinear map Φ, the two exact sequences are 
called projectively equivalent [19,2] if there is an scalar λ such that the diagram

0 X

λ

XΩ X 0

0 X XΦ X 0

is commutative, which means that there is a linear map L such that λΩ − Φ is the sum of a bounded plus 
a linear map, both X → X.

The same occurs for the exact sequences of Rochberg spaces. In that case, the quasilinear maps have 
a special form and additional properties (see below) [19,10] and are called differentials [18,8,9], which 
justifies that we call the process of obtaining the associated differential out from an interpolation method 
as derivation. The derivation process for the CKRM method is described and studied in detail in [15]. We 
make a rapid survey of what the reader needs to know about the CKRM method to ease the reading of this 
paper. In the same way, we assume from the reader a certain acquaintance with exact sequences, quasilinear 
maps and interpolation methods (that can be obtained from, respectively, [16,17,1] or, all at once, from [2]).

1. Preliminaries: the CKRM method

Let Ban be the class of all complex Banach spaces. A mapping X : Ban → Ban will be called a 
pseudolattice if

(i) for each B ∈ Ban the space X (B) consists of B-valued sequences {bn}n∈Z and if
(ii) whenever A is a closed subspace of B it follows that X (A) is a closed subspace of X (B) and if
(iii) there exists a positive constant C > 0 such that, for all A, B ∈ Ban, and all bounded linear operators 

T : A → B and every sequence {an}n∈Z ∈ X (A), the sequence {T (an)}n∈Z ∈ X (B) satisfies the 
estimate

‖{T (an)}n∈Z‖X (B) ≤ C(X )‖T‖A→B‖{an}n∈Z‖X (A).

Fix a pair of pseudolattices X = {X0, X1}. Given a compatible pair of Banach spaces B = (B0, B1, Σ)
—i.e., a pair of spaces B0, B1 considered as subspaces of another Banach space Σ— we define J (X, B) to 
be the space of all (B0 ∩ B1)-valued sequences {bn}n∈Z for which the sequence {ejnbn}n∈Z ∈ Xj(Bj) for 
j = 0, 1. This space is normed by

‖{bn}n∈Z‖J (X,B) = max ‖{ejnbn}‖Xj(Bj).
j=0,1
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The pseudolattice pair X is nontrivial if, for the special one-dimensional Banach pair (C, C) and each 
z ∈ A = {z ∈ C : 1 < |z| < e} (the open annulus) there exists {bn}n∈Z ∈ J (X, (C, C)) such that the 
series 

∑
n∈Z znbn converges to a nonzero number. The pseudolattice pair X is Laureant compatible if it is 

nontrivial and for every z ∈ A the Laureant series 
∑

n∈Z znbn converges absolutely with respect to the 
norm of B0 +B1. Therefore the sum of this series is an analytic function of z in A and can be differentiated 
term-by-term. The series for its derivative 

∑
n∈Z nzn−1bn also converges absolutely in B0 + B1. See both 

claims at [15, page 248].
Given a compatible pair B = (B0, B1) of Banach spaces and 0 < θ < 1, we define the interpolation space

BX,θ to consist of all elements of the form b =
∑

n∈Z eθnbn with {bn}n∈Z ∈ J (X, B), endowed with the 
natural quotient norm:

‖b‖BX,θ
= inf

{
‖{bn}n∈Z‖J (X,B) : b =

∑
n∈Z

eθnbn

}
.

According to the previous claims one may “think” every element {bn}n∈Z ∈ J (X, B) as the analytic map ∑
n∈Z znbn, where z ∈ A, with all the precautions. This is, we shall informally write {bn}n∈Z =

∑
n∈Z znbn. 

Therefore, we have the natural evaluation map δθ : J (X, B) −→ BX,θ given by the rule δθ({bn}n∈Z) =∑
n∈Z eθnbn.

Intermission: The module structure. Banach spaces Z with a 1-unconditional basis admit an obvious struc-
ture of �∞-module given by the product �∞ × Z → Z in which (ξx)(n) = ξ(n)x(n). We are especially 
interested in the situation in which one deals with pairs B = (B0, B1) of spaces with a joint 1-unconditional 
basis. In such case, we say a pseudolattice pair X admits an �∞-module structure if there is C > 0 such 
that for every {bn}n∈Z ∈ J (X, B) and a ∈ �∞, the following holds:

(1) {a · bn}n∈Z ∈ J (X, B)
(2) ‖{a · bn}n∈Z‖J (X,B) ≤ C‖a‖∞‖{bn}n∈Z‖J (X,B)

The natural example is X = {�p0 , �p1} because one trivially has ‖a · bn‖Bj
≤ ‖a‖∞‖bn‖Bj

, j = 0, 1; and 
thus, ‖{a · ejnbn}n∈Z‖�pj (Bj) ≤ ‖a‖∞‖{ejnbn}n∈Z‖�pj (Bj) for j = 0, 1. End of the intermission

Given C ≥ 1 a C-extremal for a given b ∈ BX,θ is a sequence {bn}n∈Z so that δθ({bn}n∈Z) = b and 
‖{bn}n∈Z‖ ≤ C‖b‖. We write S(b) = {bn}n∈Z and say that S is C-bounded selector for the map δθ. We will 
work under the condition that the shift operator is an isometry on Xj(Bj) for j = 0, 1, see [15, Lemma 3.6.]
(as it is the case of �p-spaces). This is enough to obtain a rather technical condition, X admits differentiation, 
[15, Lemma 3.11] which in practice yields that the associated differential map Ω can be obtained as the 
Σ-valued map

Ω(b) = δ′θS(b) =
∑
n∈Z

neθ(n−1)bn. (1)

Observe that Ω does not take (necessarily) values in BX,θ.
If X is a pseudolattice pair with �∞-module structure and B = (B0, B1) is a pair of spaces with a joint 1-

unconditional basis, the corresponding differential map Ω for BX,θ is a centralizer in the sense of Kalton [18], 
which means that for all ξ ∈ �∞ and x ∈ BX,θ and for some constant C > 0 one has Ω(ξx) − ξΩ(x) ∈ BX,θ

and ‖Ω(ξx) − ξΩ(x)‖ ≤ C‖ξ‖∞‖x‖. This follows easily from the fact that the pseudolattice {�p0 , �p1} has 
an �∞-module structure.

Let as before B be a compatible couple with ambient space Σ. The derived space dBX,θ is the set of 
couples (x, y) ∈ Σ ×BX,θ for which the following quasi-norm
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‖x− Ω(y)‖BX,θ
+ ‖y‖BX,θ

makes sense and is finite, where Ω is the differential (1). This yields the exact sequence

0 BX,θ dBX,θ BX,θ 0

in which the isometric inclusion is x → (x, 0) and the “isometric” quotient map is (σ, x) → x. If BX,θ

contains no (uniform) copies of �n1 for every n ∈ N then the quasi-norm of dBX,θ is equivalent to a norm 
is equivalent to a norm by a result of Kalton [17] and dBX,θ is thus a Banach space. In the case we will 
consider BX,θ = �2 so the condition is satisfied.

The CKMR method and the real interpolation method. Even the meaning of “the real interpolation method” 
is somewhat ambiguous since there are many real methods. This is not a problem since one usually uses the 
K− and J− methods, and these are equivalent [1, Chapter 3, 3.3]. In this paper however we will need to rely 
on the original “espaces de moyennes” real method of Lions and Peetre [20] out of which the K− and J−
methods stem. This method involves a discrete and a continuous version and four parameters (ξ0, ξ1, p0, p1), 
that we will set at p0 = 1, p1 = ∞, ξ0 = 1, ξ1 = −1 for the pair (�1, �∞) and that when adequately 
fixed produce and equivalent method to the standard real interpolation [1, Chapter 3,3.12]. Regarding the 
equivalence with the CKMR method, the pseudolattice corresponding to the real method correspond to 
the choice Xj = �pj

and admits differentiation since the shift operator is clearly an isometry on �pj
(Bj)

for j = 0, 1, see [15, Lemma 3.6]. The equivalence with the CKRM method in practice means to multiply 
by the weight e−nθ. See the discussion in [15, Paragraphs 2 and 4, page 251] and keep this observation in 
mind for later. The advantage of using the CKRM method is the explicit existence of differentials with the 
manageably simple formula (1), something that is much harder to obtain from the descriptions in either 
[14] or [6].

If we denote by �2(R) the real infinite dimensional separable Hilbert space and by �2 the complex Hilbert 
space, one has:

• As it is well known [19,8] the complex method applied to the pair (�∞, �1) produces the interpola-
tion space (�∞, �1)1/2 = �2 and the celebrated Kalton-Peck space Z2 as derived space with associated 
differential

KP(x) = 2x log |x(n)|
‖x‖ .

• The real interpolation method applied to the pair (�∞, �1) produces the interpolation space (�∞, �1)1/2,1/2
= �2(R) with derived space Zreal

2 , that will be referred to as the real Kalton-Peck space, and associated 
differential K Preal to be calculated in the next section.

2. The real Kalton-Peck space

What we will do is to approach the real method as a CKMR method.

Proposition 1. (Lions-Peetre) The differential associated to (�p0 , �p1)θ,p = �p is

KPreal(a) = e−θ
∑
m

−
(

p

p0
− p

p1

)[
log |a(m)|

‖a‖

]
a(m)em, (2)

for a ∈ �p and 1 = 1−θ + θ , 0 < θ < 1 and 1 ≤ p0, p1 < ∞. Here [ · ] means “the entire part of”.
p p0 p1
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Proof. That �p = (�p0 , �p1)θ,p is established in [20, Theorem (I.I), Chapitre VII]. With the same language 
and notation of the paper, observe that the starting point for the proof of this is that the space of moyennes 
is S(p0, ξ0, R; p1, ξ1, R) = R with the decomposition a = (. . . , 0, a, 0, . . . ), namely a(m) =

∑+∞
−∞ wn(m) with 

w0(m) = a(m) and wn(m) = 0 otherwise.
Let us work with the CKMR method, fix C > 1 and obtain a C-extremal; namely, given a = (a(m))m

we look for {vn}n∈Z such that

(a) δθ({bn}n∈Z) = a.
(b) ‖{bn}n∈Z‖ ≤ C‖a‖�p .

The proof of [20, Theorem (I.I), Chapitre VII] contains the idea to obtain the C-extremals for the moyennes 
method: set λ = p

p0
− p

p1
so that

{
p0(1 + λθ) = p,

p1(1 − λ(1 − θ)) = p,

‖a‖ = 1. Define {vn}n∈Z by vn(m) = wn+[λ log |a(m)|](m), which yields vn(m) = w0(m) = a(m) when 
n = −[λ log |a(m)|] and 0 otherwise. The translation to the CKRM method is multiplication by the weight 
e−nθ as mentioned above mentioned and thus we get:

bn(m) =
{
e−nθa(m), n = −[λ log |a(m)|]
0, otherwise.

(3)

It is clear that (a) holds. We check (b):

‖{bn}n∈Z‖p0
�p0 (�p0 ) =

∑
n

‖bn‖p0
�p0

=
∑

n=−[λ log |a(m)|]

∣∣e−nθa(m)
∣∣p0

≤
∑
m

e−θ(−λ log |a(m)|)p0 |a(m)|p0

=
∑
m

|a(m)|p0+λθp0

=
∑
m

|a(m)|p = 1.

Analogously, ‖{enbn}n∈Z‖�p1 (�p1 ) ≤ 1 and thus this element is a C-extremal. Now, the corresponding dif-
ferential will be, according to (1),

KPreal(a) =
∑
n∈Z

neθ(n−1)bn

=
∑
n∈Z

neθ(n−1)e−nθa(m)em

= e−θ
∑
n∈Z

a(m)em

= e−θ
∑

−[ λ log |a(m)| ]a(m)em

n∈Z
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= e−θ
∑
m

−
(

p

p0
− p

p1

)
[ log |a(m)| ] a(m)em

for ‖a‖ = 1. Homogeneity yields (2). �
We prove now the result in the title:

Theorem 1. The space Z2 is the complexification of Zreal
2 .

Proof. We show first that there is a commutative diagram

0 �2 Z2 �2 0

0 �2(R)

eθ ı

Zreal
2 �2(R)

ı

0

in which the vertical arrow ı is plain inclusion of the real �2(R) into the complex �2. Indeed

∥∥(KPı− eθıKPreal
)
a
∥∥

2 =

∥∥∥∥∥2
∑
m

log |a(m)|
‖a‖ a(m)em − 2eθe−θ

∑
m

[
log |a(m)|

‖a‖

]
a(m)em

∥∥∥∥∥
2

=

∥∥∥∥∥2
∑
m

(
log |a(m)|

‖a‖ −
[
log |a(m)|

‖a‖

])
a(m)em

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
∑
m

1
2a(m)em

∥∥∥∥∥
2

= ‖a‖2.

We have thus shown that K Pı − eθıK Preal : �2(R) −→ �2(R) is a bounded map, which yields the diagram 
above. The vertical middle dotted arrow exists by the nature of the diagram.

We now invoke the results in [7, Section 4] where it is shown that the complexification of the real twisted 
Hilbert space generated by the map K Pr(x) = x log |x|

‖x‖ on �2(R) is the Kalton-Peck Z2 space (generated 
by K P) (and the same occurs after multiplying K P by any nonzero scalar). Since we have shown that 
K P|�2(R)) = K Pr and K Preal are projectively equivalent, Z2 is a complexification of Zreal

2 . �
We now translate three important properties from Z2 to Zreal

2 while adding a few original fea-
tures to the proofs, something that could be interesting on its own. Recall that an exact sequence 
0 X XΩ X 0 with associated quasilinear map Ω (or the quasilinear map Ω) 

is called singular when the quotient map is a strictly singular operator. This occurs [12] if and only if the 
restriction of Ω to any infinite dimensional subspace is never the sum of a bounded plus a linear map [2].

Proposition 2.

(1) Zreal
2 is isomorphic to its dual.

(2) K Preal is singular.
(3) Zreal

2 does not contain complemented copies of �2

Proof. Assertion (1) is consequence of the Kalton-Peck inequality |xy log x
y | ≤ Cxy for positive x, y > 0

(see [19]) which means, as we will explain next, that the quasilinear map that defines the dual sequence 
0 �∗2 Z∗

2 �∗2 0 is −K P. The same occurs to K Pr, hence to K Preal. The details can 
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be found with different levels of depth in [19,3,11,13]. We follow [13]: Two quasilinear maps Ω : B → A and 
Φ : A∗ → B∗ are called bounded duals one of the other if there is C > 0 such that for every b ∈ B, a∗ ∈ A∗

one has

|〈Ωb, a∗〉 + 〈b,Φa∗〉| ≤ C‖b‖‖a∗‖.

If Ω generates the exact sequence 0 → A ı→ A ⊕Ω B
π→ B → 0 with inclusion ı(a) = (a, 0) and quotient map 

π(a, b) = b; and Φ is a bounded dual of Ω then Φ generates the dual sequence 0 → B∗ π∗
→ (A ⊕Ω B)∗ ı∗→

A∗ → 0, with the meaning that there is an operator D : B∗ ⊕Φ A∗ −→ (A ⊕Ω B)∗ given by

〈D(b∗, a∗), (a, b)〉 = 〈b∗, b〉 + 〈a∗, a〉

making the diagram (here ı′(b∗) = (b∗, 0) and π′(b∗, a∗) = a∗)

0 B∗ ı′

B∗ ⊕Φ A∗ π′

D

A∗ 0

0 B∗
π∗

(A⊕Ω B)∗
ı∗

A∗ 0

commutative. Now, the Kalton-Peck inequality above shows that −K P is a bounded dual of K P.
To prove (2) it is enough to show that there no subspace W ⊂ �2 so that the restriction K Preal

|W is bounded. 
And this occurs, by the transfer principle [12,5,2], if and only if there is no sequence (un) of consecutive 
blocks so that the restriction of K Preal to the subspace W = [(un)n] spanned by those blocks is bounded. 
We work with K P, which is slightly simpler, with an argument which is immediately valid for K Pr, hence 
for K Preal.

Normalize the elements un in c0 so that ‖un‖∞ = 1. Let |x| denote the size of a finite element x, i.e. 
the cardinal of its support, and set un =

∑
j∈Fn

λn,jej with |Fn| = |un|. The element 
∑N

un is such that 

‖ 
∑N

un‖∞ = 1, ‖ 
∑N

un‖1 =
∑N ‖un‖1 and ‖ 

∑N
un‖2 =

(∑N ‖un‖2
2

)1/2
. The holomorphic function

f(z) =

⎛
⎝n=N∑

n=1

∑
j∈Fn

|λn,j |2z
⎞
⎠

(1/2)(2z−1)
N∑

un

is obviously a selector for 
∑N

un since f(1/2) =
∑N

un. We estimate its norm. Since

f(1) =

⎛
⎝n=N∑

n=1

∑
j∈Fn

|λn,j |2
⎞
⎠

1/2
N∑

un =
(

N∑
‖un‖2

2

)1/2 N∑
un

and thus ‖f(1)‖∞ =
(∑N ‖un‖2

2

)1/2
=

∥∥∥∑N
un

∥∥∥
2
, the same occurs on points 1 + it. On the other hand, 

since

f(0) =

⎛
⎝n=N∑

n=1

∑
j∈Fn

1

⎞
⎠

−1/2
N∑

un =
(

n=N∑
n=1

|un|
)−1/2 N∑

un

and thus
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‖f(0)‖1 =

∥∥∥∑N
un

∥∥∥
1(∑N |un|

)1/2 =
∑N ‖un‖1(∑N |un|

)1/2

=
∑N ∑

j∈Fn
|λn,j |(∑N |un|
)1/2 ≤

∑N |un|1/2‖un‖2(∑N |un|
)1/2

≤

(∑N |un|
)1/2 (∑N ‖un‖2

2

)1/2

(∑N |un|
)1/2

=
(

N∑
‖un‖2

2

)1/2

=

∥∥∥∥∥
N∑

un

∥∥∥∥∥
2

the same occurs on points eit. This yields that Ω 
(∑N

un

)
= f ′(1/2) is an acceptable differential. Now, if

g(z) =

⎛
⎝n=N∑

n=1

∑
j∈Fn

|λn,j |2z
⎞
⎠

(1/2)(2z−1)

=

⎛
⎝∑

n,j

|λn,j |2z
⎞
⎠

z−1/2)

then log g(z) = (z − 1
2 ) log

(∑
n,j |λn,j |2z

)
and thus

g′(z)
g(z) = (z − 1

2)
∑

n,j 2|λn,j |2z log |λn,j∑
n,j |λn,j |2z

+ log

⎛
⎝∑

n,j

|λn,j |2z
⎞
⎠

which yields

g′(1/2)
g(z) = log

⎛
⎝∑

n,j

|λn,j |

⎞
⎠ = log

∑
n

‖un‖1

Therefore

f ′(1/2) = log
∑
n

‖un‖1

(∑
n

un

)
.

This implies that Ω|W is unbounded. The same occurs to K Pr and K Preal. Consequently, K Preal is singular.
To prove (3) we make a detour.

Lemma 1. If 0 �2
j

Z
ρ

�2 0 is an exact sequence with ρ strictly singular and j
strictly cosingular then Z does not contain complemented copies of �2

Proof. Assume then that Z contains a complemented copy B of �2 and let P : Z → B be a projection. 
Either ker ρ|B is finite or infinite dimensional. If it is finite dimensional, ρ is an isomorphism on some 
infinite dimensional subspace of Z, which is impossible. If it is infinite dimensional, let P ′ : B → ker ρ|B be 
a continuous linear projection, that exists because B is Hilbert. Thus P ′P : Z → ker ρ|B is a projection, as 
well as P ′P| ker ρ, which is once more impossible since j is cosingular �
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Therefore, if 0 �2
j

Z
ρ

�2 0 is a singular exact sequence for which there is a 
commutative diagram

0 �2

α

j
Z

ρ
�2 0

0 �2
ρ∗

Z∗
j∗

�2

γ

0

in which α, γ are isomorphisms then Z cannot contain complemented copies of �2 because an operator T such 

that T ∗ is strictly singular must be strictly cosingular. Thus, the sequence 0 �2(R) Zreal
2

�2(R) 0 is singular and cosingular, so the previous lemma applies. �
3. Concluding remarks

Having singular differential is a rather demanding condition. For instance:

Proposition 3. Let (X, X∗) be a real or complex interpolation pair of Banach spaces with a common uncon-
ditional basis for which there exists a continuous inclusion X∗ → X and such that (X∗, X)1/2 = �2 with 
differential Ω. If Ω is singular then X∗ does not contain �2.

Proof. IN what follows, ∼ means “proportional”. Let (un) be blocks in X∗ so that [(un)] � �2. Pick u ∈ [(un)]
and observe that

‖u‖X = sup{< y, u >: ‖y‖ ≤ 1; y ∈ X∗}

≥ sup{< y, u >: ‖y‖ ≤ 1 : y ∈ [(un)]}

= ‖u‖[(un)]∗ ∼ ‖u‖2.

Since ‖u‖X ≤ ‖u‖2 it turns out that ‖u‖X∗ ∼ ‖u‖2. Thus, the norms of X and X∗ are equivalent on [(un)], 
and this obliges Ω|[(un)] to be bounded. �

Optimistic readers could now easily believe the following conjecture:

Conjecture. Let (X, X∗) be an interpolation pair of Banach spaces with a common unconditional basis for 
which there exists a continuous inclusion X∗ → X and such that (X∗, X)1/2 = �2 with differential Ω. If Ω
is singular then X and X∗ are incomparable.

We do not have a proof for that. Optimistic readers should be warned: an example in [3] provides a space 
X incomparable with X∗, so that none of them contains �2 but such that the complex differential at 1/2 is 
an isomorphism on a complemented copy of �2. Unfortunately, neither X nor X∗ have unconditional basis 
and (X, X∗)1/2 is not �2.
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