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Abstract: A characterization of the sound absorption of a sustainable material with scarce current use
such as natural virgin cork is presented in this paper in order to explore further possible applications
in the design of acoustic solutions. Different samples of virgin cork not bonded and various decorative
panel formats were tested under random sound incidence conditions in a standardized reverberation
chamber. The samples in which the outer bark of the cork was facing upwards showed a better
behavior as an acoustic absorber, with sound absorption coefficient values generally greater than
0.6 for frequency bands between 1 and 5 kHz. The results obtained were compared with samples of
some recycled materials available in the scientific literature, such as sheep wool and PET.

Keywords: sound absorption; reverberation chamber; ISO 354; green circular economy; building material

1. Introduction

Global warming and sustainable management of the planet’s resources are two major
challenges facing society today. Construction is one of the economic activities that most
needs to transform production models, given the use of many non-renewable materials and
the high carbon footprint of their production. Some acoustic properties of a biomaterial
that usually ends up either discarded or reused, but after the addition of petroleum-based
binders, are analyzed in this work. This is virgin cork, the bark of the cork oak tree is
extracted for the first time.

The cork oak (Quercus suber L.) is a typical tree of the Mediterranean basin, cultivated
due to the use of its bark for cork production. Cork oak forests are a model of agricultural
exploitation, in which the tree must remain alive for the cork extraction (and, therefore,
fixing carbon). Furthermore, a forest can be managed in what is known as a “Dehesa”
system (ecosystem consisting of meadow or pasture artificially modified with scattered
trees such as holm oaks and cork oaks), which concerns other sustainable activities such as
extensive farming (with a lower carbon footprint than intensive), apiculture, mycoculture,
etc. [1,2]. Cork can be an excellent product in a Mediterranean green circular economy as it
is a renewable and recyclable natural material. It should be noted that its extraction does
not cause any negative impact: (a) it does not require cutting down the tree and (b) it does
not cause contamination, as it is done carefully by hand.

The cork oak is characterized by continuous growth of the subereous tissue that
protects the inner areas of the trunk and branches. Moreover, this external layer can be
extracted without the tree dying and the process can be repeated several times during the
life of the tree. Cork exploitation has three stages: a first extraction of the bark, known as
ordinary virgin cork; a second extraction, known as secondary reproduction cork, with
a limited use; and the following extractions [3]. These last two stages are known as
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reproduction cork. The first two extractions (and especially that corresponding to virgin
cork) are characterized by producing an irregular cork, both in structure and in thickness
and density. It is also quite rough, as it develops deep fractures and cracks that extend
irregularly, although generally with a longitudinal orientation. This fact is what gives cork
oak trunks and branches their typical striated appearance [4,5]. In addition, virgin cork
has a higher volumetric density than reproductive cork [6]. At the cellular level, the cell
composition of virgin cork has a higher content of suberin and extractable compounds,
such as waxes and fats [5].

The main industrial use of cork is the manufacture of stoppers for wine bottles,
although recent studies have shown that the overall environmental impact of cork stoppers
in wine bottles is higher than when using screwcaps [7]. Apart from the use for stoppers,
other uses of cork are becoming more widespread lately, given its low density, as is the
case of its use for the lightening of concrete [8] or lightweight aggregate for cement-
based materials [9]. If cork is used as a stopper, a minimum thickness without excessive
irregularities or fractures is necessary. This means that virgin cork is discarded for this use.
However, since it shares other characteristics of cork from subsequent extractions, such
as maintaining its properties over a wide temperature range [10] and not releasing toxic
substances in case of fire [5], it can also be used as a thermal and acoustic insulator.

In this regard, the reduction in noise pollution in urban environments is another
challenge facing today’s society. The European Environment Agency (EEA) has recently
published a report showing that 20% of the European population, i.e., some 113 million
people, are exposed to noise levels that are harmful to their health [11]. Prolonged expo-
sure to noise produces a variety of health effects ranging from physiological problems
(varying degrees of hearing loss, disturbances during pregnancy, negative effects on the
cardiovascular and metabolic system, etc.) to psychological (discomfort, altered mental
health, cognitive impairment in children, sleep disturbances, etc.) [12]. The development of
materials and solutions that contribute to the improvement of sound insulation of buildings
with respect to both environmental noise and community noise between dwellings is an
aspect that can positively influence the well-being of citizens [13,14]. There is a growing
interest in the positive perception of the indoor acoustic environment of a dwelling by
the building occupants and in the development of appropriate metrics to evaluate this
environment [15,16]. To this must be added the growing concern in construction for the
use of products that improve the acoustic sensation, but using components that either
give a second life to waste materials [17–24], or are eco-friendly [25–29], as is the case of
reproduction cork (obtained from the second and subsequent extractions), whose acous-
tic characteristics were studied in the loose granulated form [30] or compacted with the
addition of resins [31].

Along the same lines, and combining both concerns, the use of waste materials and
eco-friendly materials, virgin cork can be found. So far, the acoustic absorption coefficient of
virgin cork remains uncharacterized, but given the macroscopic and microscopic differences
that exist, it is necessary to evaluate this parameter in order to exploit this material in
its natural state, as a decorative element with acoustic absorption capacity. As already
mentioned, it is a material that currently has little use and therefore little economic value [6].
However, it also has a low carbon footprint, as boiling is the only process to which it is
subjected in order to give it a flat shape. In this work, we present a study of its acoustic
absorption without crushing it to make agglomerates and, therefore, without adding
any type of resins or other binding elements. Experimental tests were carried out in a
reverberation chamber to determine its acoustic absorption capacity in actual environments
with random sound incidence. In addition, a study is made of the acoustic behavior of a
presentation proposal for possible application in indoor environments and, if applicable,
its commercialization.
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2. Methodology
2.1. Cork Sample Collection and Treatment

As said before, cork oak forests play a very important role in preventing soil erosion
and subsequent desertification, also acting as key elements in the preservation of biodiver-
sity in the Mediterranean basin, helping to fix population in rural areas given the need for
labor due to the scarce mechanization involved in the cork extraction process.

The age at which a cork oak can enter production depends on its radial growth. It
can range from 20–25 years in normal conditions, although it can reach 30–40 years in less
favorable environments. The time between two consecutive extractions also depends on
the area. Thus, in Portugal and southern Spain, a thickness of about 3–3.5 cm is reached in
nine years, while in northern Spain or southern France it takes more than 15 years.

The cork extraction, or cork stripping, is done manually, with two cork strippers per
tree who have good technical knowledge to avoid injuring the tree. A special stripping
axe with a curved cutting blade and a relatively long wooden arm is used. Some attempts
have been made to mechanize the process, but they have been unfeasible for practical or
economic reasons.

The cork planks are usually stacked in the field before being transported to the
mill yard, although recently there has been a tendency to transport it immediately after
extraction to the mill, avoiding storage in the field. Nowadays, this storage process takes
about six months, although it may take longer.

Afterward, the cork planks are treated with non-chlorinated water in a closed stainless-
steel autoclave at 95 ◦C for 1 h. At the end of the process, these waters constitute a waste
problem. Several studies have been devoted to its treatment in recent years with promising
results [32–35].

The main objective of boiling is to change the mechanical properties of the cork planks
to flatten them and facilitate subsequent cutting processes. After boiling, the planks are
left to air dry for about 2–3 days, in what is called a stabilization step. Finally, it is passed
through a cutter with a pair of rollers that leaves it completely flat on the inner side of
the bark.

A more detailed description of the whole process can be found in Pereira [4].

2.2. Testing Methodology

Two alternative methods are commonly used to characterize the sound absorption
of a material, the impedance tube [36] and the reverberation chamber [37]. While in
the first case the incidence of sound waves is normal to the sample, it is random in
the second one. The measured absorption properties in the second method are more
representative of the performance of a material under real conditions in room acoustics and
environmental applications [29,38]. In particular for natural virgin cork, since it presents
many discontinuities of widely varying sizes when the outer bark faces upwards (Figure 1),
the acoustic characterization of this material in the impedance tube using small samples
could lead to misleading results. Experimental tests of different samples of natural virgin
cork were carried out in this study to obtain their sound absorption coefficient (αs) together
with the practical (αp) and weighted (αw) sound absorption coefficients with random sound
incidence following the specifications of ISO 354:2003 [37] and ISO 11654:1997 [39]. The
results were compared with those obtained by alternative methods and the ASTM C423-17
standard [40].
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Figure 1. Different pieces of natural virgin cork where outer bark faces: (a) upwards; (b) downwards.

This study was performed in the normalized reverberation chamber located at the
School of Technology of the University of Extremadura in Cáceres (Spain) [41], which was
acoustically conditioned and satisfactorily complies with the requirements established in
the ISO 354:2003 [37], ISO 3741:2010 [42], and ISO 3740:2019 [43]. The tests were carried out
in accordance with ISO 354:2003 [37] using a Brüel and Kjær 2260 type 1 sound level meter
with building acoustics software module, a Brüel and Kjær microphone type 4189, a Brüel
and Kjær 4292 omnidirectional sound source, and a Lab Gruppen LAB 300 power amplifier.

The reverberation times (RT) were measured by the interrupted noise signal method
using pink noise. The sound level meter was set to record data in one-third octave bands
in a frequency range between 100 Hz and 5 kHz, and the average reverberation time of the
12 source-microphone combinations was obtained for each of the frequencies in the chosen
range. Measurements of the reverberation time of the empty chamber were carried out on
each test day. The temperature and relative humidity inside the chamber were within the
ranges established by the ISO 354:2003 standard [37] during the tests (>15 ◦C and 30–90%).

2.3. Samples Analyzed

Different samples of natural virgin cork were configured for the tests, whose main
characteristics are shown in Table 1. They were placed on the floor of the reverberation
chamber in accordance with the type A mounting indicated in annex B of the ISO 354:2003
standard [37]. Samples S1 and S2 had an area of 10.2 m2 and their edges were covered
with an acoustically reflective frame. In the first case (S1), the outer bark of the cork faced
upwards, while in the second case (S2), the outer bark faced downwards. Sample S3 is a
decorative absorber panel proposed as a final product for possible commercialization. Its
exposed side had a majority composition of sample type S1 with decorative cork elements
from sample type S2. According to the ISO 354 standard [37], if the edges of the sample
are commonly exposed in a real application, they should not be covered during the test.
Thus, the area of the edges was considered in the total surface area of the sample, resulting
in a value of 10.1 m2. Samples S4, S5, S6, and S7 were other final product proposals for
possible commercialization. They are other decorative combinations, similar to sample
S3, but smaller to allow for modular installation. As in the previous case, their perimeter
was not covered in the tests, and the area of the edges was considered in the total surface
of the sample. Each of these four samples had a total surface area of 2.64 m2 and were
manufactured in such a way that the exposed side had a majority composition of sample
S1 with different decorative patterns of cork elements from sample S2. Figure 2 shows the
samples tested in the experimental tests (Figure 2a–d) and some details of the samples S4,
S5, S6, and S7 (Figure 2e–h).
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Table 1. Characteristics of the tested cork samples.

Sample Area (m2) Average Thickness (cm) Description

S1 10.2 6 Outer bark facing upwards
S2 10.2 6 Outer bark facing downwards

S3 10.1 4 Panel with outer bark facing upwards (S1) with cork decorative
elements of S2

S4 2.64 4 Panel with outer bark facing upwards (S1) with diagonal decorative
elements of S2

S5 2.64 4 Panel with outer bark facing upwards (S1) with square decorative
elements of S2

S6 2.64 4 Panel with outer bark facing upwards (S1) with V-shaped decorative
elements of S2

S7 2.64 4 Panel with outer bark facing upwards (S1) with horizontal line
decorative elements of S2
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2.4. Calculation Method

First, following the guidelines of ISO 354:2003 [37], the sound absorption coefficient
(αs) was obtained for each natural virgin cork sample using Equation (1), where AT is the
equivalent sound absorption area and S is the area of the test sample.

αs = AT/S (1)

Secondly, the weighted sound absorption coefficient (αw) of each sample was obtained
following the procedure established in ISO 11654 [39] from the sound absorption coeffi-
cients obtained in each frequency band. This standard indicates that the form factors must
be given for those cases where the practical sound absorption coefficient (αp) exceeds the
value of the displaced reference curve by 0.25 or more. Thus, together with the value of
αw, the notation L, M, and H was respectively specified when the excess occurs at 250 Hz,
500 or 1000 Hz, and 2000 or 4000 Hz. From the value of αw, the tested sample could be
classified into six different classes according to its absorption capacity (Table 2).

Table 2. Classification of the samples according to the weighted sound absorption coefficient (αw)
following ISO 11654.

Sound Absorption Classes αw

A 0.90; 0.95; 1.00
B 0.80; 0.85
C 0.60; 0.65; 0.70; 0.75
D 0.30; 0.35; 0.40; 0.45; 0.50; 0.55
E 0.25; 0.20; 0.15

Unclassified 0.10; 0.05; 0.00

2.5. Sound Absorption Indexes According to the ASTM C423-17 Standard

In order to evaluate the sound absorption capability of the samples, single number
grading methods which are independent of frequencies were used. These indexes are
useful for a practical evaluation of the performance of sound porous absorbers. The
ASTM C423-17 standard [40] defines the Noise Reduction Coefficient (NRC) and the Sound
Absorption Average (SAA) for this purpose. NRC is defined as the average of the sound
absorption coefficients for 250, 500, 1000, and 2000 Hz rounded off to the nearest multiple
of 0.05. SAA is defined as the average of the sound absorption coefficients for 200, 250, 315,
400, 500, 630, 800, 1000, 1250, 1600, 2000, and 2500 Hz, rounded off to the nearest 0.01.

3. Results and Discussion
3.1. Samples of Standardized Size

Samples S1, S2, and S3 of natural virgin cork were tested in this section to obtain the
different sound absorption coefficients. Figure 3 shows the sound absorption coefficient
(αs) in one-third octave bands (Figure 3a) and the practical sound absorption coefficient
(αp) in octave bands (Figure 3b) obtained for each of these samples, together with the
expanded repeatability uncertainty for 95% confidence (Ur (95%)) calculated according
to ISO 12999-2:2020 [44]. The results obtained for S1 show higher absorption than S2 at
medium and high frequencies starting from the 800 Hz band, taking αs values equal to or
higher than 0.60 up to 5 kHz. However, the absorption at low and medium frequencies up
to 500 Hz does not exceed the value of 0.25. In the case of sample S2, the results obtained
show a behavior of the absorption coefficient with higher values in the 500 Hz one-third
octave band, where αs reaches a value of 0.65. Below the 400 Hz band, the coefficient takes
values below 0.3, while, for frequencies above 630 Hz, the value ranges between 0.3 and 0.4.
The differences found in the absorption curves of samples S1 and S2 would be due to the
different surface structure of the top face of each sample (Figure 1a,b). Sample S1 presents
a visible face with an irregular surface structure filled with cavities, compared to sample
S2, which presents a much more uniform surface structure. These differences could explain
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the higher absorption in the 1 to 4 kHz octave bands of sample S1. However, the behavior
observed in the 500 Hz octave band, where sample S2 shows a higher absorption than
S1, would require future investigations, either in a test chamber or in an impedance tube,
to find the reasons for these differences, that could be related to the existence of an air
layer underneath and the appearance of resonant effects. On the other hand, sample S3,
corresponding to a decorative absorbing panel with an area of 10.1 m2 whose face exposed
to view is composed mostly of exposed bark as in S1 with decorative cork elements as in
sample S2, has a behavior closer to sample S1. However, it presents a higher absorption in
the frequency bands between 200 and 500 Hz, reaching a maximum difference of 0.17 at
400 Hz with respect to S1, while the absorption curve is a little smoother in the frequency
bands from 800 and 5000 Hz. Similarly, Figure 3b shows the results obtained for αp in
octave bands between 250 and 4000 Hz according to ISO 11654 [39]. In general terms,
the absorption curves for αp present a similar shape to those obtained in Figure 3a for
αs. Regarding the expanded uncertainty of αs and αp, there are practically no differences
between samples S1, S2, and S3. They all present the maximum uncertainty value in
the 5 kHz band, with a maximum value ranging between 0.08 and 0.09 depending on
the sample.

Another comparison between samples S1, S2, and S3 can be made by considering
global indicators of sound absorption (Table 3). First of all, if the indicators proposed by
ISO 11654 [39] are considered, it is observed that the three samples show some differences
with respect to the weighted sound absorption coefficient (αw). Although S1 and S2 show
the same value of 0.35, the MH form factors in the case of S1 indicate a better performance
in terms of sound absorption at medium (500 Hz and 1 kHz) and high frequencies (2 and
4 kHz). In the case of S3, the sample presents an αw value of 0.4, which is slightly higher
than the previous ones, and the H form factor, which means that the αp values at high
frequencies are considerably higher than those of the shifted reference curve. Despite these
differences, all three samples have the same expanded repeatability uncertainty for 95%
confidence and a type D sound absorption classification. On the other hand, if the NRC
and SAA indicators proposed by ASTM C423-17 [40] are considered, it is observed that
samples S1 and S3 present a higher sound absorption than S2, with sample S3 being the
one that obtains better values for NRC.

Table 3. Sound absorption indicators for samples S1, S2, and S3.

Sample αw Ur (95%) Sound Absorption Class NRC SAA

S1 0.35 (MH) 0.04 D 0.40 0.42
S2 0.35 0.04 D 0.35 0.35
S3 0.40 (H) 0.04 D 0.45 0.42

3.2. Decorative Absorber Panels

As previously indicated in the Section 2, samples S4, S5, S6, and S7 are samples of
decorative absorbent panels manufactured as final product proposals for possible com-
mercialization, but with a smaller size than sample S3 in order to allow for a modular
installation. In all of them, the exposed face is mostly composed of exposed bark as in
sample S1 and the only variation between samples is the decorative pattern of the normal
cork elements as in sample S2. Figure 4 presents the sound absorption coefficient (αs) in
one-third octave bands (Figure 4a) and the practical sound absorption coefficient (αp) in
octave bands (Figure 4b) obtained for each of these samples, along with the expanded re-
peatability uncertainty for 95% confidence (Ur (95%)). It can be observed how, starting from
the 250 Hz band, the absorption of these samples increases progressively with frequency
up to 800 Hz and similarly, although S6 and S7 present slightly better absorbing behavior
than S4 and S5 in this frequency range. Starting at 1 kHz, samples S4, S5, and S7 follow a
similar trend with αs values generally ranging between 0.6 and 0.75. However, sample S6
presents slightly lower values in this frequency range, with values between approximately
0.5 and 0.6. In the case of αp in octave bands, the trend of the absorption curve is similar to
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that of αs. The expanded uncertainty of αs and αp shows no differences among the four
samples studied, presenting a maximum of approximately 0.1 in the 5 kHz band.
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If a comparison is made between samples S4, S5, S6, and S7 from ISO 11654 [39] global
sound absorption indicators (Table 4), the weighted sound absorption coefficient (αw) of the
different samples ranges from 0.3 to 0.45. Sample S6 shows the highest value, however, the
form factors of the other three samples indicate that the αp values are considerably higher
than those of the shifted reference curve at medium (M) and/or high (H) frequencies, as
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appropriate. The differences in αw and in the form factors of each sample do not result in
a different sound absorption classification or in a variation of the expanded repeatability
uncertainty. On the other hand, if a comparison is made from the NRC and SAA indicators
of ASTM C423-17 [40], a more similar absorbent behavior of all samples is found. In this
case, sample S7 presents a slightly higher SAA value.

Table 4. Sound absorption indicators for samples S4, S5, S6, and S7.

Sample αw Ur (95%) Sound Absorption Class NRC SAA

S4 0.35 (MH) 0.04 D 0.45 0.43
S5 0.30 (MH) 0.04 D 0.40 0.41
S6 0.45 0.04 D 0.45 0.43
S7 0.40 (H) 0.04 D 0.45 0.45

3.3. Comparison with Other Recycled Materials

Given the described growing need for the use of sustainable materials, it was consid-
ered of interest to make a comparison of these samples of natural virgin cork with some
recycled materials tested in a standardized reverberation chamber and with similar sample
sizes. Figure 5a shows the results obtained for the sound absorption coefficient (αs) and
Figure 5b shows the practical sound absorption coefficient (αp), together with the expanded
repeatability uncertainty for 95% confidence (Ur (95%)), for samples of materials such as
sheep wool mixed with PET as a binder [29] and PET (40 mm thick and 1400 g/m2) from
recycled bottles [24], in addition to samples S1, S2, and S3 of natural virgin cork. We have
not found any other published works in the scientific literature on natural or recycled
materials studied in standardized reverberation chambers. The values of αs (Figure 5a)
and αp (Figure 5b) show that both the sheep wool and PET samples present a better ab-
sorbing behavior than samples S1, S2, and S3 of natural virgin cork in the whole frequency
range. Sheep wool also has higher absorption coefficients than PET for medium and high
frequencies. It is in the high-frequency range where natural virgin cork samples S1 and S3
approach the absorption curve of PET, while sample S2 reaches values similar to those of
sheep wool and PET in the 400 and 500 Hz bands. If the global sound absorption indicators
of Table 5 such as αw, NRC, and SAA are also considered in the analysis, it is observed that
the sound absorption capacity of the natural virgin cork samples is lower than those of
sheep wool and PET.

Table 5. Sound absorption indicators for some samples.

Sample αw Ur (95%) Sound Absorption Class NRC SAA

Sheep Wool 0.75 0.04 C 0.70 0.70
PET 0.70 (H) 0.04 C 0.60 0.62

Virgin cork (S1) 0.35 (MH) 0.04 D 0.40 0.42
Virgin cork (S2) 0.35 0.04 D 0.35 0.35
Virgin cork (S3) 0.40 (H) 0.04 D 0.45 0.42

Two options can be considered taking into account the actual possible applications of
these materials as acoustic absorbers. On the one hand, materials with absorbing properties
are usually used inside double walls in order to reduce the effect of coupling by standing
waves in the cavity and, therefore, increase acoustic insulation, or within perforated panels
in acoustic screens. In this type of application, considering the values of the absorption
coefficients of the different materials and the final objective pursued, in general, the use of
sheep wool or PET can be more interesting than the use of virgin cork. Although, in a more
complete analysis, other criteria related to the on-site installation process, production costs,
sustainability, etc. should also be included. In this sense, it should be noted that the virgin
cork studied is a fully ecological material, not recycled, with no added agglomerating
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products and with little water treatment, which has been considered a waste material until
now but can have a quite interesting acoustic use.
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These materials are also used as acoustic absorbers in the vertical and horizontal walls
of interior spaces to reduce the reverberation time and improve the sensation of acoustic
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comfort. Theatres, auditoriums, concert halls, conference halls, etc. are types of enclosures
that require specific room conditioning according to their use. Some international standards
recommend values for reverberation time in certain types of enclosures [45]. The use of
absorbers in these spaces, therefore, requires a format with decorative characteristics in
accordance with those of the enclosure. In this case, the natural virgin cork samples S3,
S4, S5, S6, and S7 could have a greater interest of use, since they represent final proposals
of absorbent decorative panels for their possible commercialization. In addition, their
production process is simple and energetically sustainable since they do not require any
added treatment and directly present their own aesthetics.

4. Conclusions

This article presents a study to characterize the sound absorption of a sustainable and
currently little-used material, natural virgin cork, in order to explore other possible uses
of this material with a low carbon footprint and reduced cost in the design of acoustic
solutions for insulation, conditioning, and noise control.

Different samples of virgin cork not bonded were tested under random sound in-
cidence conditions in a standardized reverberation chamber according to ISO 354. The
samples in which the outer bark of the cork was facing upwards showed better behavior as
an acoustic absorber, with values of the absorption coefficients αs and αp equal to or greater
than 0.6 for frequency bands between 1 and 5 kHz.

Several proposals for decorative absorbent panels were also studied as final products
for modular installation in those enclosures where room conditioning is desired to reduce
reverberation time. Similar results were obtained for the four-panel formats studied for
the absorption coefficients αs and αp, although with slight variations between them in the
medium and high-frequency ranges.

A comparison of its behavior as an acoustic absorber was carried out with respect to
other recycled materials tested in a standardized reverberation chamber, such as sheep
wool mixed with PET as a binder and PET from recycled bottles. Different indicators show
that the sheep wool and PET samples present a better absorbing behavior than the natural
virgin cork samples in the whole frequency range. However, it should be noted that not all
samples can be considered as final products for installation as an in-situ sound absorber, as
in some cases the customization process could lead to some modifications in the absorbing
behavior. In this sense, the choice of one material or another for the different types of
acoustic solutions for insulation, conditioning, and noise control may depend not only
on purely acoustic criteria, but also on other criteria associated with on-site installation,
production costs, sustainability, aesthetics, etc.
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