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The integration of multiple genes to maximize protein expression levels represents an important
challenge in synthetic biology. This task relies on the definition of multiple protein-coding sequences,
which must be as different as possible to avoid information loss. Proteins can be encoded in different
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ways, using synonymous codons that translate into the same amino acid. Some codons are better suited
to the host than others, thus being preferable the use of the most fitting ones. However, adopting only
the most highly adapted codons would lead to very similar coding sequences. An additional criterion
is given by the fact that the designed sequences must contain a suitable guanine–cytosine (GC) ratio
in accordance with the characteristics of the host organism. Therefore, this biological task requires the
simultaneous optimization of several, conflicting objectives. This work proposes a novel multi-objective
approach for protein encoding, which tackles the problem according to a new formulation based on
three objective functions: codon adaptation index, Hamming distance between sequences, and GC
content. Our work extends the recent Butterfly Optimization Algorithm to multi-objective contexts,
integrating problem-specific operators to boost solution quality by covering the different aspects
required for accurate protein encoding. Two key structures, a taboo list and a best solution list, are
defined to conduct improved searches attending to the potential improvements that each solution in
the population can promote. Experiments conducted on nine real-world proteins reveal the attainment
of relevant solutions from different evaluation perspectives, showing significant improvements over
other single and multi-objective methods from the literature.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
A

1. Introduction

One of the major research goals in synthetic biology is to
aximize the expression levels of proteins, which perform a vast
mount of vital functions within organisms. This task is difficult
nd involves multiple complex factors. An important strategy
ommonly found in the literature is the integration, into a host
rganism, of multiple genes encoding the same protein, with the
im of increasing its expression levels proportionally [1]. That is,
y integrating n genes, the corresponding expression levels are
xpected to experiment an increase of n times. Although there
re some circumstances that impact performance [2], different
tudies agree on the usefulness and advantages contributed by
his technique. Examples of such studies include the chromoso-
al integration of genes based on flippase recombinase [3] and
ethylotrophic yeast transformants [4].
The integration of multiple genes into an organism is a com-

lex, time-consuming, and costly procedure [3]. Traditionally,
ime and cost restrictions have been addressed by integrating
he designed genes very close to each other within the host, as
hown in the case of Pichia pastoris [4] and Escherichia coli [5].
nfortunately, this close proximity among genes may lead to
omologous recombination, a metabolic process that negatively
nterferes with the integration [6]. In practical terms, a homol-
gous recombination motivates the loss of some of the genes
hen very similar or identical subsequences are used. For exam-
le, given five sequentially concatenated genes g1, g2, g3, g4, g5,
homologous recombination between g2 and g3 will result into

he loss of the information contained in these two genes, giving as
result the subsequent chain g1, g4, g5. Therefore, it is essential

o design genes by defining highly different protein-coding se-
uences (CDSs). This idea represents a first priority goal in protein
ncoding: each CDS must be as different as possible with regard
o the others.

It is technically feasible to encode a protein through multi-
le, different CDSs by using synonymous codons for each spe-
ific amino acid. Most amino acids can be expressed through
everal synonymous codons. Consequently, it is possible to de-
ign multiple encoding sequences of a protein with differences
mong sequences. However, an accurate selection of synonymous
odons for a target host is not straightforward, since different
ynonymous codons have different usage frequencies and there-
ore some synonymous codons have better adaptation properties
han others. In order to design host-fitting CDSs and enhance
xpression levels, the synonymous codons with the highest adap-
ation index should be employed for codification purposes [7].

his point has been validated in different organisms, such as

2

rachis duranensis [8], Saccharomyces cerevisiae [9], Arabidopsis
thaliana [10], bacteria [11], and viruses [12]. Nevertheless, this
second priority goal is in conflict with the avoidance of homol-
ogous recombination, as the usage of the most highly adapted
codons promotes higher sequence similarity.

Previous works have addressed the optimization of these
goals, either as multi-objective optimization problems or as
single-objective optimization problems. It can be highlighted
works like [13], in which an adaptable approach named as COOL
was proposed to conduct CDS optimization supporting adapta-
tion indexes. D-Tailor [14] defines a distance-based Monte Carlo
approach to perform the property-based design of synthetic DNA
sequences, while OPTIMIZER [15] incorporates three different op-
timization methods for codon usage optimization. Regarding the
usage of multi-objective metaheuristics in this problem, the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) was adopted
in Terai’s method [16], with the aim of designing highly-adapted
CDSs whose sequences are as different as possible. Following
this idea, a multi-objective approach inspired by the behavior of
honey bees, designated as MOABC, was proposed in [17]. Other
alternative multi-objective schemes include the MOSFLA memetic
algorithm [18] and the neighborhood-based trajectory method
MOVNS [19].

In spite of this, these previous works do not focus on op-
timizing another important property in protein encoding: the
guanine–cytosine (GC) content of the encoded sequences. The ex-
cess or lack of GC content (measured as the ratio of the nucleotide
bases G and C in a sequence) can lead to poor protein synthesis
and compromise the annealing of the synthesis [20]. Moreover,
mismatches in GC content can also affect mRNA stability [21] or
alter the mRNA secondary structure formation [22]. Therefore,
our third priority goal will be the optimization of the GC content
to encode CDSs that properly fit the GC rate of the host organism.
To the best of our knowledge, this is the first time that protein
encoding is addressed as a multi-objective problem targeting
these three important optimization goals.

The use of bioinspired algorithms represents a useful tool to
tackle complex optimization problems. An example of this kind of
approaches is the Butterfly Optimization Algorithm (BOA) [23].
BOA is a recently proposed bioinspired metaheuristic, aimed at
solving global optimization problems by mimicking the intel-
ligent foraging behavior of butterflies. This metaheuristic has
gained increased interest in recent years due to the relevant re-
sults reported in both benchmark and real-world problems [23].
In this sense, different works have explored the application of
BOA in multi-objective contexts. In [24], BOA was applied to
address constrained multi-objective optimization problems, us-
ing two main strategies: 1) an external archive to save and

retrieve non-dominated solutions throughout execution, and 2)

http://creativecommons.org/licenses/by/4.0/
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a selection strategy to identify a leader solution that guides
the optimization process. An alternative design was proposed
in [25], coupling BOA with non-dominated sorting to manage
multi-objective optimizations. The generation of new solutions in
this approach is driven by a guided search strategy, which selects
three parent candidates from top 10%, bottom 10%, and middle-
ranged individuals. Other butterfly-inspired strategies were stud-
ied in [26], employing the classic weighted-sum method to com-
bine multiple objective functions into one, thus addressing the
search as a single-objective optimization problem. Finally, BOA
was combined with machine learning techniques (i.e. support
vector machine) in [27] to conduct feature and parameter se-
lection for the processing of cardiovascular magnetic resonance
images.

This work addresses protein encoding by proposing a novel
ulti-objective approach based on the algorithmic scheme of
OA. More specifically, a new multi-objective adaptation of BOA,
esignated as Multi-Objective Butterfly Optimization Algorithm
MOBOA), is devised and implemented to accurately design CDSs
ith highly adapted codons while also avoiding homologous re-
ombination and accomplishing satisfying GC ratios. In compar-
son to previous approaches, the search engine in MOBOA is
uilt upon the definition of two lists that support the genera-
ion of new multi-objective solutions: a best solution list and a
aboo list. The best solution list identifies the most promising
on-taboo solutions, according to Pareto ranks and crowding
istances, to be used to generate new solutions. If a solution in
he best list did not manage to provide any further improve-
ents, it is replaced by a different solution and migrated to the

aboo list. This approach is devised to conduct improved multi-
bjective searches by considering the potential improvements
hat each solution in the population can promote. Furthermore,
e define problem-oriented operators to optimize the different
spects to be considered for accurate protein encoding. The pro-
osed MOBOA is subject to a thorough experimental evaluation
n nine real proteins, measuring performance through multiple
uality metrics [28], such as hypervolume, maximum spread,
et coverage, and distance to the ideal point. In order to show
he relevance of the proposed approach, comparisons of multi-
bjective and biological quality are conducted with regard to
ther five state-of-the-art methods.
The main contributions of this work can be summarized as

ollows:

• Extension of the protein encoding problem, incorporating a
new optimization criterion (GC content) to be considered. A
novel multi-objective formulation incorporating three con-
flicting objectives is described and addressed.
• Proposal of an adaptation of the recent Butterfly Optimiza-

tion Algorithm to tackle multi-objective optimization prob-
lems through bioinspired search strategies, with global and
local search phases. These strategies are supported by two
structures (a best list and a taboo list) defined to handle the
generation of new solutions.
• Application of the proposed multi-objective approach to

accurately handle protein encoding optimization, defining
multiple problem-specific operators that cover the different
optimization goals considered in the problem formulation.
• In-depth experimental evaluation of the proposal on nine

real proteins, including comparisons with other five state-
of-the-art methods for protein encoding. The relevance of
the obtained results is examined attending to different per-
spectives through four multi-objective metrics, biological
comparisons, and statistical studies.

This paper is organized as follows. Section 2 describes and for-
ulates the biological problem addressed in this work. Section 3
3

details the proposed multi-objective approach, illustrating the
algorithmic scheme of MOBOA and the operators defined to tackle
protein encoding. Section 4 explains the experimental methodol-
ogy herein followed and examines the attained results, compar-
ing multi-objective and biological quality with regard to other
state-of-the-art methods. Finally, Section 5 includes concluding
remarks and defines future research directions.

2. Protein encoding: Problem formulation

The protein encoding problem is aimed at designing CDSs that
can be integrated into a host to generate a specific protein with
improved expression levels. In this problem, a solution is given
by a set of CDSs that encode in alternative ways the amino acids
of the target protein using synonymous codons. These encoding
sequences are represented as strings of characters belonging to
the RNA alphabet λ = {A, C,G,U}, which denote the bases
adenine, cytosine, guanine, and uracil, respectively. The length L
of the CDSs depends on the number of amino acids that conform
the target protein, while the expert determines the number I of
CDSs desired to encode it. Fig. 1 shows an example of protein
encoding with three CDSs.

The multi-objective formulation tackled in this work involves
three objective functions to evaluate different important aspects
of this problem. Since priority must be given to encodings that
employ suitable codons with a high frequency of occurrence
in the host, the first objective evaluates the codon adaptation
indexes (CAI) of the solution. The second objective calculates
Hamming distances (HD) to evaluate differences between CDSs,
in order to avoid homologous recombination issues. The third ob-
jective examines the GC content at the third position (i.e. the third
nucleotide) of the codons, with the aim of preserving the standard
GC rates from the host genome. The following subsections explain
these objective functions in detail.

2.1. Codon Adaptation Index (CAI)

The first objective function is oriented towards evaluating the
adaptation of candidate CDSs to the host. Solutions that encode
the target protein using the most highly adapted codons must
be preferred, that is, solutions that maximize the minimum CAI
(mCAI) of their CDSs. In order to calculate mCAI, the particular CAI
value for each CDS i that composes the solution must be obtained
first. CAI can be calculated by using Eq. (1):

CAI(CDSi) =
N

√ N∏
n=1

W (codoni,n), (1)

where CDSi denotes the ith CDS in the solution, N the number
of codons that compose the CDS, and W (codoni,n) the adapta-
tion weight associated to the nth codon of CDSi. The adapta-
tion weight is calculated by dividing the usage frequency of the
employed synonymous codon by the highest frequency shown
among all possible synonymous codons (i.e. the frequency of the
most highly adapted codon). Once defined the CAI values for each
CDS, the mCAI of the solution can be calculated as follows:

mCAI = min
1≤i≤I

CAI(CDSi), (2)

where I is the number of CDSs and CAI(CDSi) the CAI value for
the ith CDS. Solutions with higher mCAI denote higher adaptation,
thus being preferable from this perspective. Please observe that
the use of average CAI values (instead of mCAI) could potentially
mask poorly adapted CDSs (with low CAI), thus not being as
accurate as a more restrictive measure like mCAI.
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Fig. 1. An example of a protein composed of 5 amino acids encoded with 3 CDSs, each one with a length of 15 nucleotides. For each CDS, the corresponding CAI
nd GC3 values are illustrated, also displaying the HD values for all the pairs of CDSs. The objective scores for this solution are given by the minimum CAI value
mCAI = 0.307), the maximum GC3 value (MGC3 = 0.419), and the minimum HD value (mHD = 0.267).
c

.2. Hamming distance between CDSs (HD)

This objective function is focused on evaluating similarity at
he nucleotide level between the CDSs that compose a solution.
nder this perspective, priority is given to candidate solutions
hat maximize the minimum HD (mHD) between CDSs. For each
air (CDSi, CDSj) in a solution, the HD between CDSi and CDSj is
alculated by using Eq. (3):

D(CDSi, CDSj) =
∑
1≤k≤L

σ (CDSi,k, CDSj,k), (3)

here L is the length of the CDS in terms of number of nucleotides
nd σ (CDSi,k, CDSj,k) measures the similarity between CDSi and
DSj at the kth nucleotide. More specifically, σ will be 0 in
ase CDSi,k = CDSj,k (both nucleotides match) and 1 otherwise
different nucleotides are observed at the kth position). After
alculating the HD values for each possible pair of CDSs in the
olution, mHD can be computed as follows:

HD = min
1≤i<j≤I

HD(CDSi, CDSj)
L

. (4)

The optimization of solutions under this objective requires
improving the pair of CDSs with the lowest HD value, that is,
the pair with more nucleotides in common. Solutions with higher
mHD are therefore preferred, since a higher mHD value denotes
that the encoded CDSs show more nucleotide diversity. As in the
mCAI case, the use of the average HD could mask hidden outliers
thus not being as suitable as mHD to evaluate differences in this
context.

2.3. GC content at the third nucleotide (GC3)

The third objective function allows adjusting the percentage
of nucleotides G and C at the third position of the codons (GC3),
in order to be coherent with the natural GC ratio of the host
organism. For each CDS i in a candidate solution, a GC3 score is
assigned by applying Eq. (5):

GC3(CDSi) =

∑
1≤n≤N δ(CDSi,n3 )

N
− GC3ideal, (5)

where N represents the number of codons, δ(CDSi,n3 ) a cost func-
tion that measures the presence of G/C at the third position of the
nth codon in CDSi (δ = 1 if a G or C is observed, δ = 0 otherwise),
and GC3ideal is the reference GC3 ratio of the host. Once computed
the GC3 score for each CDS, the maximum GC3 difference (MGC3)
of the solution can be calculated in the following way:

MGC3 = max
1≤i≤I
|GC3(CDSi)| . (6)

Lower MGC3 values denote less GC divergence in the encoded
CDSs with regard to the natural ratio of the host, thus being
preferable in this context. Therefore, this objective must be min-
imized. As previously reasoned for the other objectives, using
mean GC3 values instead of MGC3 could hide outliers, negatively
affecting the optimization of this criterion as a consequence.
4

Algorithm 1 CAI mutation operator.
Input: S: solution to be mutated, W : usage frequency weights,
Pm: mutation probability
Output: Sm: mutated solution
1: Sm ← S
2: CDS ← Identify CDS with the Lowest CAI (S, W )
3: for each Codon ∈ CDS do
4: SynonymsCodon ← Get List of Synonymous Codons (Codon)
5: if Prob(Pm|100) and |SynonymsCodon| > 1 and W (Codon) ̸= 1

then
6: NewCodon← Select Random Synonym (SynonymsCodon)
7: while W (NewCodon) <= W (Codon) do
8: NewCodon← Select Next Synonym (SynonymsCodon)
9: end while

10: Sm ← Replace Codon (Sm, CDS, Codon, NewCodon)
11: end if
12: end for

3. Multi-objective butterfly optimization algorithm

In order to codify accurate CDSs for a target protein, we define
a novel multi-objective approach that undertakes the encoding
process through different problem-oriented operators coupled
with bioinspired algorithmic strategies. This section details the
search operators devised to generate new candidate solutions for
this problem and presents the MOBOA optimization framework.

3.1. Search operators

A key element to attain accurate optimization capabilities lies
on the definition of suitable operators that exploit the charac-
teristics of the tackled problem. Following these characteristics,
we have devised different search operators based on the concept
of mutation. A mutation modifies randomly selected decision
variables of a candidate solution in order to obtain a new solution
that can potentially be better than the original one. This idea
contributes to the exploration of the problem search space. The
mutation operators herein proposed (four in total) are aimed
at improving solutions by considering the three main aspects
targeted for optimization (mCAI, mHD, MGC3), as well as in-
troducing random variability and diversity to avoid stagnation
issues. Each instantiation of the mutation procedure selects in a
random way the specific operator to be applied, with the same
probability for all mutations. Considering that a solution is given
by a set of CDSs i.e. a set of I character strings of length L, the basic
mechanism employed by the designed operators is the replace-
ment of codons (i.e. character triplets encoding an amino acid)
by one of their synonymous codons, with a mutation probability
of Pm.

Algorithm 1 shows the first mutation operator, which is fo-
used on improving the mCAI objective. This mutation targets the
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Algorithm 2 HD mutation operator.
Input: S: solution to be mutated, Pm: mutation probability
utput: Sm: mutated solution
1: Sm ← S
2: CDS1, CDS2← Identify CDS Pair with the Lowest HD (S)
3: for each Codon ∈ CDS1 do
4: SynonymsCodon ← Get List of Synonymous Codons (Codon)
5: if Prob(Pm | 100) and |SynonymsCodon| > 1 then
6: CurrPair_HD← Calculate Pair HD (CDS1, CDS2, Codon)
7: Curr_mHD ← Calculate mHD (CDS1, S, Codon)
8: BestPair_HD←−1
9: Best_mHD←−1

10: for each NewSynon ∈ SynonymsCodon do
11: if NewSynon ̸= CurrSynon then
12: NewCDS1 ← Change Synonymous Codon (CDS1,

CurrSynon, NewSynon)
13: NewPair_HD ← Calculate Pair HD (NewCDS1, CDS2,

Codon)
14: New_mHD← Calculate mHD (NewCDS1, S, Codon)
15: if New_mHD > Curr_mHD and New_mHD >

Best_mHD then
16: Best_mHD← New_mHD
17: BestSynon← NewSynon
18: else if Best_mHD = −1 and New_mHD = Curr_mHD

and NewPair_HD > CurrPair_HD and NewPair_HD >

BestPair_HD then
19: BestPair_HD← NewPair_HD
20: BestSynon← NewSynon
21: end if
22: end if
23: end for
24: if Best_mHD ̸= −1 or BestPair_HD ̸= −1 then
25: Sm ← Replace Codon (Sm, CDS1, CurrSynon, BestSynon)
26: end if
27: end if
28: end for

CDS with the lowest CAI value, so each codon in this CDS will
be replaced with a better adapted synonymous codon under a
probability of Pm. More specifically, the new synonymous codon
is randomly taken from the list of all synonymous codons with
better adaptation than the original codon. While processing the
CDS, if one of the codons selected for replacement is already the
best one (W (Codon) = 1) or has not synonymous codons, the
eplacement of such codon will not be effective. Therefore, the
esult of this first mutation is a mutated solution with a better or
qual mCAI value.
The second mutation operator pursues the attainment of a

ew mutated solution with better mHD properties than the orig-
nal one. Algorithm 2 illustrates the steps of this operator. In
his case, the CDSs subject to mutation are those that show the
owest HD in the solution, that is, the most similar pair of CDSs.
ne of the CDSs in this pair is mutated such that each codon
hat compose it is replaced by a different synonymous codon
ith a probability of Pm. Due to the fact that changing codons

n a CDS has a potential impact in the mHD value of the whole
olution, it must be ensured that, with each codon change, the
D values between the mutated CDS and the other ones do not
xperiment a worsening. The replacement will take place 1) if
he mHD value of the whole solution is improved or 2) if an
mprovement is observed in the HD value of the targeted pair and
he mHD value of the solution is not deteriorated. The result of
his second mutation is consequently a mutated solution with a
etter or equal mHD value.
5

Algorithm 3 GC3 mutation operator.
Input: S: solution to be mutated, GC3ideal: host GC3 content, Pm:
mutation probability
Output: Sm: mutated solution
1: Sm ← S
2: CDS,GC3← Identify CDS with the Highest GC3 Difference (S,

GC3ideal)
3: for each Codon ∈ CDS do
4: SynonymsCodon ← Get List of Synonymous Codons (Codon)
5: if Prob(Pm|100) and |SynonymsCodon| > 1 then
6: NewCodon← Select Random Synonym (SynonymsCodon)
7: while ((GC3 < 0 and NewCodon[3] ̸∈ {G, C}) or

(GC3 > 0 and NewCodon[3] ∈ {G, C})) do
8: NewCodon← Select Next Synonym (SynonymsCodon)
9: end while

10: Sm ← Replace Codon (Sm, CDS, Codon, NewCodon)
11: GC3← Update GC3 (CDS, GC3ideal)
12: end if
13: end for

Algorithm 4 Random mutation operator.
Input: S: solution to be mutated, Pm: mutation probability
utput: Sm: mutated solution
1: Sm ← S
2: for each CDS ∈ Sm do
3: for each Codon ∈ CDS do
4: SynonymsCodon← Get List of Synonymous Codons (Codon)

5: if Prob(Pm|100) and |SynonymsCodon| > 1 then
6: NewCodon← Select Random Synonym (SynonymsCodon)

7: if NewCodon = Codon then
8: NewCodon← Select Next Synonym (SynonymsCodon)
9: end if
0: Sm ← Replace Codon (Sm, CDS, Codon, NewCodon)
1: end if
2: end for
3: end for

The main goal of the third mutation operator, illustrated in
Algorithm 3, is to improve the MGC3 value of the solution. For
this purpose, the mutation targets the CDS with the largest GC3
divergence with regard to the host GC3 ratio. Each codon in
this CDS is replaced by a different synonymous codon with a
probability of Pm. The choice of the synonymous codon is driven
y its suitability to match the host ratio: a synonymous codon
ith G or C at the third nucleotide will be chosen if the CDS

acks GC3 content, otherwise a synonymous codon without G or
will be used instead. If there are available multiple synonymous
odons that improve or maintain the current GC3 value, the one
o be used is chosen randomly. As a result, the mutated solution
ill show a better or equal MGC3 value.
The fourth operator is based on a random replacement ap-

roach, which is shown in Algorithm 4. This mutation considers
ll the CDSs in the solution, randomly replacing their codons
y other synonymous codons with a probability of Pm. Since

this mutation is designed to introduce variability and promote
solution diversity, the new synonymous codons are chosen at
random without considering any of the three aspects targeted in
the previous operators.

Regarding the time complexity, the first three operators
(Algorithms 1, 2, and 3) have a similar complexity: O(Synonyms·
CodMut), where Synonyms is the number of synonymous codons
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and CodMut is the number of codons that are finally mutated.
his number can be estimated as CodMut = N·Pm, where N

is the number of codons that compose the CDS and Pm is the
utation probability. Besides, the number of synonymous codons
an be between 1 and 6, therefore, in the worst case, the time
omplexity is O(6·CodMut). In the case of the fourth operator
Algorithm 4), its time complexity is: O(I·CodMut), where I is the
umber of CDSs. The number of CDSs has a limited size, generally,
etween 2 and 10, hence, in the worst case, the time complexity
s O(10·CodMut). In conclusion, the main factors are N (which
depends on the complexity of the problem instance to solve) and
the configuration parameter Pm.

3.2. MOBOA algorithmic design

The proposed method is based on BOA, a bioinspired meta-
heuristic that has been recently proposed for global optimiza-
tion [23]. This algorithm mimics the natural behavior of butter-
flies, which use their sense of smell to locate food sources and
mating partners. The conclusions derived from [23] point out
that BOA is able to obtain significant results in comparison to
other approaches on a set of 30 single-objective benchmarks and
three real-world engineering problems, namely spring design,
welded beam design, and gear train design. Further research
has verified the relevance of this algorithm when dealing with
multiple objectives in constrained optimization problems [24],
four-bar truss and disk brake design [25], and feature selection
for cardiovascular magnetic resonance processing [27]. Taking
into account the promising search capabilities of this algorithm,
we herein introduce MOBOA, a new multi-objective approach to
address the protein encoding problem.

MOBOA conducts the optimization process by using a popula-
tion of solutions, which are iteratively refined through different
search operators in order to find new high-quality solutions to the
problem. In multi-objective optimization, the goal is not to find a
single optimal solution, but a Pareto set i.e. a set of solutions that
optimize simultaneously the considered objective functions [29].
Candidate solutions must be evaluated according to the three
objective functions considered in the problem formulation (mCAI,
mHD, and MGC3) and then compared from a multi-objective
perspective e.g. by using Pareto dominance. Given two solutions
Sa and Sb, it is said that Sa dominates Sb if and only if Sa is better
than Sb in at least one objective and it is not worse than Sb in the
remaining objectives. A multi-objective optimizer will therefore
pursue the set of non-dominated solutions, that is, the set of
solutions that represent the best tradeoffs among objectives.

Algorithm 5 shows the algorithmic design of MOBOA. At the
beginning, two data structures are declared (lines 1 and 2 in
Algorithm 5): 1) a Pareto front file (PF ) aimed at storing the
non-dominated solutions found by the algorithm throughout its
execution and 2) a taboo list (TabooList) that contains solutions
hat will not be employed under certain circumstances in the
eneration of new candidate solutions. The population struc-
ure employed by the algorithm is initialized with PopulationSize
tarter solutions (line 3), which are randomly generated with
he exception of one solution that is initialized by using the
odons with the best usage frequencies (W = 1). This ini-
ial population is sorted by calculating Pareto ranks and crowd-
ng distances (line 4), two standard measurements from [30]
hat are widely used in multi-objective optimization. The Pareto
anks allow classifying the solutions in different fronts consid-
ring the convergence property, using for this purpose Pareto
ominance. Solutions within the same rank are ordered through
he diversity-oriented crowding operator, which estimates the
ensity of solutions surrounding each one in the front.
After these initial steps, the algorithm iterates MaxCycles times

line 5) over the population in order to refine it by generating
6

Algorithm 5 MOBOA pseudocode.
Input: PopulationSize: number of solutions in the population,
MaxCycles: maximum number of iterations, W : usage frequency
weights, GC3ideal: host GC3 content, Pm: mutation probability, Ps:
switch probability
Output: PF : non-dominated solutions
file
1: PF ← ∅
2: TabooList ← ∅
3: Population ← Initialize Solutions (Population, PopulationSize,

W )
4: Population ← Pareto Ranking and Crowding Sorting

(Population, PopulationSize)
5: for Cycle← 1 to MaxCycles do
6: BestList ← Identify Best Solutions (Population,

PopulationSize, TabooList)
7: for i← 1 to PopulationSize do
8: if rand() < Ps then
9: Sb ← Select Solution from the Best List (BestList)
0: Sm ← Apply Mutation (Sb, W , GC3ideal, Pm)
1: if Sb dominates Sm then
2: TabooList ← Update Taboo (Population, TabooList∪Sb)

3: BestList ← Update Best Solutions (Population,
TabooList , BestList \ Sb)

4: end if
5: else
6: Sm ← Apply Mutation (Population[i], W , GC3ideal, Pm)
7: end if
8: Population← Population ∪ Sm
9: end for
0: Population ← Pareto Ranking and Crowding Sorting

(Population, 2 ∗ PopulationSize)
1: PF ← Update Non-Dominated File (PF , Population)
2: end for
3: return PF

new candidate solutions. Each iteration begins with the identi-
fication of the six best non-taboo solutions in the population,
according to rank and crowding. These best solutions are used to
define a list (BestList , line 6) that will be employed as a potential
reference for the generation of new solutions. For each solution
Si in the population (line 7), a new candidate one is obtained
by alternating the mutation procedure, with a switch probability
Ps (line 8), over a solution selected from the best list (global
search phase, lines 9–14) or over Si (local search phase, lines
15–17). When applying a global search, the mutated solution is
derived from a solution randomly selected from BestList (line 9),
applying one of our mutation operators (line 10). In case the
selected solution dominates the mutated one (line 11, i.e. no
improvement was attained), this selected solution is moved from
BestList to TabooList and the next most promising non-taboo
solution from the population, following rank and crowding, is
included in BestList to replace it (lines 12 and 13). The taboo
list will be reset in case all the solutions from the population
have already been considered for inclusion in BestList . Regarding
the local search phase, the mutated solution is derived from the
currently processed solution Si (line 16). Fig. 2 depicts an example
that illustrates the global and local search phases in MOBOA.

After applying the mutation, the resulting candidate solu-
tion is added to the population (line 18). These mutation steps
are repeated for each solution in the population, generating
PopulationSize new mutated solutions that must compete with
the original ones. Consequently, before starting a new iteration
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Fig. 2. Example of global and local searches in MOBOA.
f the algorithm, the population is sorted and readjusted to
reserve the most promising PopulationSize solutions, using for

this purpose Pareto ranks and crowding distances (line 20). At the
end of each iteration, the PF structure is updated with the new
non-dominated solutions available in the population (line 21).
Once MaxCycles iterations of the main loop have been performed,
the algorithm returns as output the PF structure containing the
generated non-dominated solutions (line 23).

On analyzing the algorithm design of MOBOA, it can be ob-
served that the multi-objective proposal inherits from BOA the
switch between global and local searches, with a probability Ps,
to better explore different directions of the search space and en-
hance the optimization process. Moreover, MOBOA includes the
use of two solution lists (best and taboo solutions) coupled with
Pareto-based strategies to better pursue solutions with good con-
vergence and diversity, two key quality aspects in multi-objective
optimization. Finally, the proposal incorporates problem-oriented
mutation operators specifically designed to boost the quality of
solutions for accurate protein encoding.

We have already detailed the exploration mechanisms used in
our proposal. Regarding the exploitation mechanisms, three of the
four mutation operators herein proposed improve the solutions
by considering the three main aspects targeted for optimization
(mCAI, mHD, MGC3), respectively. Therefore, the mutation opera-
tors clearly contribute to the exploitation by trying to improve the
best solutions already known. Our proposal also uses two lists:
the best list (which stores the best solutions in the population)
and the taboo list (which stores solutions whose improvement
failed). Both lists are very useful to lead the exploitation on the
most promising solutions. The algorithm knows and maintains, in
every moment, the best solutions thanks to the use of the Pareto

ranks and crowding distances.

7

Regarding the time complexity, since, in MOBOA (Algorithm
5), ‘Apply Mutation ()’ is called one time per evaluation, in
general, this part will govern the time complexity of MOBOA,
with a final complexity of O(10·CodMut·MaxEvaluations), consid-
ering the worst case. In conclusion, the main factor to control is
MaxEvaluations, that is, the maximum number of evaluations to
perform.

4. Experimental results

This section provides insight into the experimental evaluation
conducted to examine the results obtained by the proposal. As
stated in Section 2, to the best of our knowledge, this is the
first time that protein encoding is tackled as a multi-objective
optimization problem involving the mCAI, mHD, and MGC3 ob-
jectives jointly. In order to conduct a comparative evaluation with
other methods, we will employ as a reference other algorithmic
approaches that address alternative single and multi-objective
formulations of the problem. More specifically, the following
state-of-the-art methods will be employed as a reference for
comparisons: a web-based single-objective approach known as
COOL [13], which is mainly aimed at optimizing codon adaptation
indexes, and four multi-objective methods for protein encoding:
Terai’s method [16], MOABC [17], MOSFLA [18], and MOVNS [19].
To effectively evaluate the search strategies proposed in this
paper with regard to other alternative approaches, we consider
for each competing method the operators originally defined and
reported in the corresponding works.

4.1. Datasets

In order to evaluate the proposal over different problem in-
stances, nine real-world proteins, described in Table 1, have been
employed in the experimentation.
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Table 1
Protein instances used in the experiments.
Code Name CDSs Length (AA) CDSs*Length

Q5VZP5 DUS27_HUMAN 2 1158 2316
A4Y1B6 FADB_SHEPC 3 716 2148
B3LS90 OCA5_YEAS1 4 679 2716
B4TWR7 CAIT_SALSV 5 505 2525
Q91X51 GORS1_MOUSE 6 446 2676
Q89BP2 DAPE_BRADU 7 388 2716
A6L9J9 TRPF_PARD8 8 221 1768
Q88X33 Y1415_LACPL 9 114 1026
B7KHU9 PETG_CYAP7 10 38 380

Table 2
Parameter settings for MOBOA.
Parameter Description Value

PopulationSize Number of solutions in the population 100
MaxCycles Maximum number of iterations 100
Pm Mutation probability (CDSs*Length)/100%
Ps Switch probability 50%

Table 3
Nadir and ideal values used for normalization.
Objective Nadir value Ideal value

mCAI 0 1
mHD 0 0.5
MGC3 0.6 0

These proteins have been selected according to two important
haracteristics: length (in terms of amino acids, AA) and number
f CDSs needed to encode them. Due to the importance of both
ttributes in protein encoding complexity, the choice of these
roteins was driven by the idea of maintaining a balance be-
ween both characteristics while also providing a suitable range
f different problem sizes in both attributes. Each protein, in
ASTA format, was obtained from the Universal Protein Resource
UniProt) website.2 The host organism targeted in these experi-
ents was Saccharomyces cerevisiae, in accordance with previous

esearch [16] from which codon usage frequencies were taken.
he Kazusa DNA Research Institute establishes the reference GC3
atio in this host genome to 38.10% [31].

.2. Implementation, experimentation and parameter settings

The configuration of the methods tested in this work con-
idered the following guidelines. For the case of population-
ased methods (including MOBOA), the size of the population
as established to 100 individuals (solutions). The stop crite-
ion was set to 10000 fitness evaluations for all the methods
nder comparison. In this way, we ensure that all the evaluated
ethods perform the same number of fitness evaluations to
uarantee the fairness of the comparison. As studied in [16], a
top criterion involving 10000 fitness evaluations is enough to
llow the attainment of competitive results in this problem, in
erms of multi-objective and biological quality. The rest of the
arameters for each method were set according to the values
ecommended by their authors. Table 2 summarizes the param-
ter settings employed in MOBOA, which were configured via
arametric studies.
Throughout the experimentation, 31 independent runs per

rotein instance were performed to ensure the statistical relia-
ility of the attained results. Table 3 provides the ideal and nadir
alues for each objective function, which were used to normalize

2 https://www.uniprot.org/uniprot/
 f

8

objective scores to the range [0,1] with the aim of avoiding poten-
tial bias. This value normalization procedure has been used when
calculating the metrics employed in this experimental evaluation.

Regarding implementation details, the C/C++ programming
language has been used to implement MOBOA.

4.3. Results and comparative evaluation

As previously introduced, the results obtained by MOBOA
are validated through a comparative evaluation with different
state-of-the-art tools, including both single-objective approaches
(COOL [13]) and multi-objective methods (Terai’s method [16],
MOABC [17], MOSFLA [18], and MOVNS [19]). These comparisons
have been performed by evaluating the results reported by each
method using the three objective functions considered in the
tackled problem formulation (mCAI, mHD, and MGC3). In order to
evaluate the attained solutions attending to different properties,
four widely adopted performance metrics are employed in this
experimental evaluation, namely hypervolume (HV), maximum
spread (MS), set coverage (SC), and the distance to the ideal
point [28]. Furthermore, the biological assessment of the solu-
tions is conducted by inspecting how each method is able to
satisfy the different biological properties herein considered.

Our evaluation methodology also involves statistical tests [32]
to determine if the proposed method is able to attain statisti-
cally significant improvements over the state of the art, with a
confidence level of 95%. More specifically, the parametric test of
analysis of variance (ANOVA) is applied in case the compared
samples verify two conditions: 1) they follow a normal distribu-
tion (according to the Kolmogorov–Smirnov test) and they show
equal variances (according to the Levene test). Otherwise, the
nonparametric test of Mann–Whitney U is applied if any of these
conditions is not satisfied. Due to the characteristics of the con-
sidered performance metrics, these statistical tests will be applied
to examine HV and MS samples, while SC and the distances to
the ideal point will be calculated by using as a reference the
median-hypervolume fronts.

4.3.1. Hypervolume
HV is a widely-adopted multi-objective metric that quantifies

the region of the objective space covered by the output of a multi-
objective optimizer. Since we are dealing with a problem with
three objective functions, HV in our case calculates the volume
of a three-dimensional objective space covered by the reported
Pareto solutions. Higher HV values denote better multi-objective
quality. Given a set of solutions A reported by a multi-objective
algorithm, HV can be calculated by using Eq. (7):

HV (A, r) = Leb
( |A|⋃

i=1

h(ai, r)
)

, (7)

where Leb denotes the Lebesgue measure, |A| the number of
olutions in A, and h(ai, r) is the volume covered by the ith
olution in A with regard to the reference point r , which is
ormed with the nadir values of each objective.

Table 4 reports, for each protein instance, the median HV
esults obtained by MOBOA and the state-of-the-art methods,
long with the corresponding quartile deviations. It can be ob-
erved that the proposed MOBOA method is able to obtain the
est HV values in all the considered protein instances, with an
verage score of 46.49%. Although improvements are observed in
ll the tested proteins, it is specially remarkable the performance
btained by MOBOA for Q5VZP5, where the method reports a
edian HV value of 74.86% that noticeably improves the re-
ults of the competing methods COOL (0.18%), Terai (45.83%),
OABC (46.86%), MOSFLA (50.83%), and MOVNS (59.06%). There-

ore, these results denote that MOBOA provides more satisfying

https://www.uniprot.org/uniprot/
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Table 4
Comparisons of median hypervolume results (format: median±quartile_deviation)
with Terai [16], MOABC [17], MOSFLA [18], MOVNS [19], and COOL [13]. The
best values for each protein instance are highlighted in bold.
Protein MOBOA Terai MOABC

Q5VZP5 74.86%±0.001% 45.83%±0.002% 46.86%±0.004%
A4Y1B6 50.12%±0.002% 40.67%±0.001% 41.05%±0.002%
B3LS90 49.72%±0.001% 40.24%±0.000% 41.71%±0.002%
B4TWR7 43.10%±0.001% 36.37%±0.001% 38.17%±0.001%
Q91X51 44.67%±0.002% 38.71%±0.003% 39.76%±0.003%
Q89BP2 42.80%±0.002% 36.87%±0.002% 38.06%±0.003%
A6L9J9 40.35%±0.001% 35.03%±0.003% 35.91%±0.003%
Q88X33 36.98%±0.002% 30.01%±0.002% 31.06%±0.003%
B7KHU9 35.82%±0.004% 26.81%±0.002% 28.79%±0.005%
Average 46.49% 36.73% 37.93%

Protein MOSFLA MOVNS COOL

Q5VZP5 50.83%±0.002% 59.06%±0.004% 0.18%±0.000%
A4Y1B6 41.88%±0.003% 43.55%±0.003% 0.33%±0.000%
B3LS90 38.67%±0.002% 42.47%±0.003% 0.38%±0.000%
B4TWR7 38.67%±0.002% 37.51%±0.001% 0.51%±0.000%
Q91X51 40.02%±0.001% 40.28%±0.004% 0.21%±0.000%
Q89BP2 38.33%±0.002% 38.17%±0.003% 0.25%±0.000%
A6L9J9 36.41%±0.003% 35.92%±0.003% 0.51%±0.000%
Q88X33 31.94%±0.003% 29.85%±0.003% 1.14%±0.000%
B7KHU9 30.82%±0.005% 28.32%±0.007% 9.44%±0.008%
Average 38.62% 39.46% 1.44%

solutions from the HV perspective, as they manage to dominate
a larger volume of the objective space. In order to illustrate this
point, Fig. 3 depicts the median Pareto fronts obtained by each
method for two of the tested proteins, Q5VZP5 and A4Y1B6.

In order to verify if the observed improvements are statisti-
ally significant, we have performed a statistical analysis of the
ttained hypervolume samples. Tables 5 and 6 report the results
f the different steps of the statistical procedure (Kolmogorov–
mirnov, Levene, ANOVA/Mann Whitney), along with the con-
lusions on statistical significance. For all the protein instances
nder evaluation, MOBOA achieves statistically significant im-
rovements (p-values < 0.05) over the state-of-the-art methods.
herefore, it can be concluded that MOBOA is able to obtain
ignificant results attending to this first performance metric.

.3.2. Maximum spread
Secondly, the attained results are evaluated by using the MS

etric, which is focused on examining the range of objective
unction values found by a multi-objective method. This metric
s calculated by using the extreme points of the generated Pareto
ront A, as expressed in Eq. (8):

S(A) =

√ M∑
m=1

(
|A|
max
i=1

f im −
|A|
min
i=1

f im)2, (8)

where M refers to the number of objective functions, |A| the
ize of the non-dominated solutions set A, max|A|i=1 f

i
m the solution

howing the maximum score for the objective m, and min|A|i=1 f
i
m

the solution with the minimum score for m. Higher MS scores
are preferable since they denote a more diversified and extended
front.

The median MS results and quartile deviations obtained by
MOBOA and the state-of-the-art methods are shown in Table 7.
According to this metric, our proposal is able to attain the most
satisfying MS properties in overall terms, achieving the best score
in 6 out of 9 protein instances while also reaching the best
average value (0.78).

Statistical tests over the obtained MS samples were applied
to better examine the differences observed with the other meth-

ods. The results of this statistical analysis are given in Tables 8

9

and 9. Comparing method by method, it can be observed that
MOBOA reports statistically significant MS improvements with
regard to Terai’s method in 5 protein instances. Statistically sig-
nificant differences are also observed in comparison to MOABC
and MOSFLA in 6 instances. In this sense, it is worth remarking
that the improved MS scores reported by the MOABC tool in
the Q5VZP5 protein were found to be non-significant (p-value =
0.83), which denotes the attainment of comparable MS perfor-
mance in this scenario when using MOBOA. Finally, the proposed
MOBOA statistically outperforms MOVNS and COOL in 8 and 9
instances, respectively. It can then be concluded that MOBOA
also accomplishes relevant performance according to this second
metric.

4.3.3. Set coverage
The SC metric is a binary indicator that directly compares

the fronts reported by two multi-objective optimizers. Given two
solution sets A and B, SC(A,B) determines how many solutions
from B are covered by at least one solution in A, that is, the
percentage of solutions from B that are weakly dominated (⪰)
by A. Eq. (9) illustrates this calculation:

SC(A,B) =
|{b ∈ B; ∃ a ∈ A : a ⪰ b}|

|B|
, (9)

where |B| is the number of solutions in B. A SC(A,B) value of 1
(100%) denotes that all the solutions in B are covered by at least
one solution from A. Conversely, if SC(A,B) is equal to 0 (0%), the
solutions from A did not manage to cover any of the solutions in
B. As this metric is not symmetric (SC(B,A) ̸= 1−SC(A,B)), both
SC(A,B) and SC(B,A) have to be calculated to verify the degree
of coverage of each optimizer over the other.

Tables 10 and 11 report the SC values derived from the pair-
wise comparison between MOBOA and the literature methods,
using for this purpose the median-hypervolume fronts. More
specifically, Table 10 includes the percentage of solutions from
the state-of-the-art methods that are covered by MOBOA, while
Table 11 shows the percentage of solutions from MOBOA that are
covered by the remaining approaches.

Focusing first on Table 10, MOBOA is able to significantly
dominate the solutions from Terai’s method, MOABC, MOSFLA,
and MOVNS in most of the tested protein instances. In average
terms, MOBOA covers a range between 68.10% and 97.04% of the
solutions reported by these approaches. Regarding COOL, it is
worth clarifying that this tool reports a small number of different
solutions due to its single-objective nature, thus impacting the SC
scores as expressed in Eq. (9).

On the other side, the SC values in Table 11 highlight that
the state-of-the-art methods only managed to cover very low
percentages of the solutions reported by MOBOA. Particularly,
average coverage percentages between 0% (by COOL) and 1.16%
(by MOSFLA) are observed, which emphasize the high quality of
the solution sets achieved by the proposal.

4.3.4. Distance to the ideal point
In multi-objective optimization, the ideal point is defined as a

utopian point that has the best scores for each objective func-
tion separately. Since the objectives are in conflict with each
other, it is impossible to reach it. However, the concept of ideal
point can be employed to evaluate the performance of multi-
objective optimizers by identifying which method generates the
closest solution to the ideal point. The information provided by
this metric is also valuable to select a solution of the front for
decision-making purposes.

Taking into account that all the objective values are normal-
ized to the range [0,1], the ideal point in our case would be
(1,1,0), that is, mCAI = 1, mHD = 1, and MGC3 = 0. The distance to
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Fig. 3. Scatter plots of the median Pareto fronts from MOBOA and the state-of-the-art methods for Q5VZP5 and A4Y1B6. The plots show the different projections
y pairs of objectives.
his ideal point can be measured by taking the objective scores
or each solution in A and calculating afterwards the Euclidean
istances with regard to (1,1,0). Lower distances denote better
pproximations to the ideal point.
For each method, the evaluation of minimum distances to the

deal point can be found in Table 12. It can be observed that
OBOA achieves the best performance from this perspective,

eaching the closest solutions to the ideal point in all the scenar-
os herein examined. Average distances of 0.58 to the ideal point
an be attained by using MOBOA, which improves the results
rom the alternative multi-objective tools (0.69 to 0.60) and COOL
0.99).

In conclusion, the four multi-objective metrics employed in
he evaluation (HV, MS, SC, and distance to the ideal point)
gree on the significant solution quality obtained by the proposed
pproach. The combination of bioinspired searches, Pareto-based
trategies supported by the explicit distinction between best and
aboo solutions, and problem-specific operators defines a suitable
ramework to conduct the multi-objective optimization of protein
10
encodings, in accordance with the results achieved with regard to
the state of the art.

4.3.5. Biological comparisons
The final step in this comparative analysis involves the eval-

uation of the three key aspects considered in protein encod-
ing (mCAI, mHD, and MGC3), in order to inspect the biological
quality of the solutions reported by each method. The extreme
points of the median-hypervolume Pareto fronts are employed
as a reference to conduct this comparison. Table 13 shows the
results obtained for the mCAI. In this particular case, all the
methods attain comparable performance, since COOL is focused
on optimizing this aspect and the remaining methods include
greedy solutions specifically adjusted to match the host adapta-
tion requirements. Regarding mHD, Table 14 shows that MOBOA
achieves the best results in 7 out of 9 proteins, attaining the
best mHD performance in average terms (0.58). In this sense, the
other methods report average mHD results that range from 0.02
(COOL) to 0.54 (MOSFLA). Finally, the comparison of MGC3 scores
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Table 5
Statistical testing of hypervolume samples for Q5VZP5, A4Y1B6, B3LS90, B4TWR7, and Q91X51. ‘‘–’’
values denote that the distribution of samples did not meet the conditions to undergo Levene test.
Protein Q5VZP5 A4Y1B6 B3LS90 B4TWR7 Q91X51

Kolmogorov–Smirnov test

MOBOA 0.200 0.019 0.006 0.200 0.091
Terai’s method 0.200 0.200 0.200 0.200 0.200
MOABC 0.200 0.146 0.200 0.200 0.055
MOSFLA 0.062 0.036 0.200 0.200 0.200
MOVNS 0.200 0.200 0.200 0.200 0.018
COOL 0.000 0.000 0.000 0.000 0.001

Levene test

MOBOA vs Terai’s method 0.000 – – 0.094 0.026
MOBOA vs MOABC 0.001 – – 0.505 0.740
MOBOA vs MOSFLA 0.000 – – 0.923 0.055
MOBOA vs MOVNS 0.000 – – 0.000 –
MOBOA vs COOL – – – – –

ANOVA or Mann–Whitney p-value

MOBOA vs Terai’s method 0.000 0.000 0.000 0.000 0.000
MOBOA vs MOABC 0.000 0.000 0.000 0.000 0.000
MOBOA vs MOSFLA 0.000 0.000 0.000 0.000 0.000
MOBOA vs MOVNS 0.000 0.000 0.000 0.000 0.000
MOBOA vs COOL 0.000 0.000 0.000 0.000 0.000

Statistical significance?

MOBOA vs Terai’s method Yes Yes Yes Yes Yes
MOBOA vs MOABC Yes Yes Yes Yes Yes
MOBOA vs MOSFLA Yes Yes Yes Yes Yes
MOBOA vs MOVNS Yes Yes Yes Yes Yes
MOBOA vs COOL Yes Yes Yes Yes Yes
w
v

Table 6
Statistical testing of hypervolume samples for Q89BP2, A6L9J9, Q88X33, and
B7KHU9. ‘‘–’’ values denote that the distribution of samples did not meet the
conditions to undergo Levene test.
Protein Q89BP2 A6L9J9 Q88X33 B7KHU9

Kolmogorov–Smirnov test

MOBOA 0.200 0.050 0.068 0.200
Terai’s method 0.200 0.200 0.200 0.167
MOABC 0.200 0.200 0.200 0.060
MOSFLA 0.200 0.200 0.102 0.200
MOVNS 0.000 0.000 0.006 0.200
COOL 0.000 0.001 0.001 0.166

Levene test

MOBOA vs Terai’s method 0.037 0.021 0.350 0.631
MOBOA vs MOABC 0.012 0.000 0.219 0.199
MOBOA vs MOSFLA 0.000 0.024 0.114 0.231
MOBOA vs MOVNS – – – 0.008
MOBOA vs COOL – – – 0.000

ANOVA or Mann–Whitney p-value

MOBOA vs Terai’s method 0.000 0.000 0.000 0.000
MOBOA vs MOABC 0.000 0.000 0.000 0.000
MOBOA vs MOSFLA 0.000 0.000 0.000 0.000
MOBOA vs MOVNS 0.000 0.000 0.000 0.000
MOBOA vs COOL 0.000 0.000 0.000 0.000

Statistical significance?

MOBOA vs Terai’s method Yes Yes Yes Yes
MOBOA vs MOABC Yes Yes Yes Yes
MOBOA vs MOSFLA Yes Yes Yes Yes
MOBOA vs MOVNS Yes Yes Yes Yes
MOBOA vs COOL Yes Yes Yes Yes

in Table 15 reveals that MOBOA obtains the best results in all
the tested proteins, thus going a step further with regard to the
state-of-the-art methods also in this aspect.

In conclusion, the biological comparisons support the idea that
OBOA represents a valuable approach to undertake the multi-
bjective design of CDSs with suitable host adaptation and GC
ontent rates, while also showing significant encoding differences
o avoid homologous recombination.
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Table 7
Comparisons of maximum spread median results (format: median±quartile_deviation)
ith Terai [16], MOABC [17], MOSFLA [18], MOVNS [19], and COOL [13]. The best
alues for each protein instance are highlighted in bold.
Protein MOBOA Terai MOABC
Q5VZP5 1.0695±0.163 1.1885±0.003 1.1991±0.002
A4Y1B6 0.7943±0.011 0.7344±0.003 0.7128±0.009
B3LS90 0.7751±0.004 0.7225±0.004 0.7127±0.005
B4TWR7 0.7449±0.006 0.7373±0.002 0.7113±0.008
Q91X51 0.8375±0.004 0.7932±0.005 0.7810±0.004
Q89BP2 0.8010±0.005 0.7610±0.006 0.7492±0.006
A6L9J9 0.7201±0.009 0.7052±0.002 0.6882±0.012
Q88X33 0.6121±0.008 0.6387±0.010 0.6291±0.015
B7KHU9 0.6822±0.012 0.7151±0.005 0.7241±0.026
Average 0.7819 0.7773 0.7675

Protein MOSFLA MOVNS COOL
Q5VZP5 0.8666±0.188 0.8660±0.004 0.0022±0.000
A4Y1B6 0.7239±0.007 0.6529±0.005 0.0036±0.000
B3LS90 0.7299±0.007 0.6508±0.006 0.0028±0.000
B4TWR7 0.7285±0.010 0.6184±0.010 0.0042±0.000
Q91X51 0.7936±0.005 0.7001±0.009 0.0000±0.000
Q89BP2 0.7608±0.006 0.6591±0.005 0.0000±0.000
A6L9J9 0.7108±0.011 0.5944±0.009 0.0000±0.000
Q88X33 0.6609±0.015 0.5667±0.018 0.0162±0.015
B7KHU9 0.8092±0.015 0.6729±0.016 0.1448±0.013
Average 0.7538 0.6646 0.0193

5. Conclusions and future work

In this work, we introduced a novel multi-objective opti-
mization method for encoding proteins with multiple genes. Un-
like previous efforts to address this problem, the multi-objective
approach herein proposed, designated as MOBOA, is the first
that considers for optimization the codon adaptation, Hamming
distance, and GC nucleotide content together, which represent
important biological quality aspects for accurate protein encod-
ing. MOBOA contributes with a search engine that combines
bioinspired global and local searches, Pareto-based optimization
supported by lists of best and taboo solutions, and a re-defined
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Table 8
Statistical testing of maximum spread samples for Q5VZP5, A4Y1B6, B3LS90, B4TWR7, and Q91X51.
‘‘–’’ values denote that the distribution of samples did not meet the conditions to undergo Levene
test.
Protein Q5VZP5 A4Y1B6 B3LS90 B4TWR7 Q91X51

Kolmogorov–Smirnov test

MOBOA 0.000 0.124 0.192 0.200 0.200
Terai’s method 0.200 0.085 0.200 0.080 0.200
MOABC 0.200 0.200 0.200 0.200 0.200
MOSFLA 0.000 0.200 0.200 0.138 0.043
MOVNS 0.200 0.200 0.200 0.200 0.200
COOL 0.000 0.000 0.000 0.000 0.000

Levene test

MOBOA vs Terai’s method – 0.476 0.680 0.929 0.799
MOBOA vs MOABC – 0.212 0.741 0.632 0.876
MOBOA vs MOSFLA – 0.215 0.282 0.272 –
MOBOA vs MOVNS – 0.001 0.464 0.096 0.003
MOBOA vs COOL – – – – –

ANOVA or Mann–Whitney p-value

MOBOA vs Terai’s method 0.929 0.000 0.000 0.063 0.000
MOBOA vs MOABC 0.827 0.000 0.000 0.000 0.000
MOBOA vs MOSFLA 0.000 0.000 0.000 0.000 0.000
MOBOA vs MOVNS 0.000 0.000 0.000 0.000 0.000
MOBOA vs COOL 0.000 0.000 0.000 0.000 0.000

Statistical significance?

MOBOA vs Terai’s method No Yes Yes No Yes
MOBOA vs MOABC No Yes Yes Yes Yes
MOBOA vs MOSFLA Yes Yes Yes Yes Yes
MOBOA vs MOVNS Yes Yes Yes Yes Yes
MOBOA vs COOL Yes Yes Yes Yes Yes
Table 9
Statistical testing of maximum spread samples for Q89BP2, A6L9J9, Q88X33, and
B7KHU9. ‘‘–’’ values denote that the distribution of samples did not meet the
conditions to undergo Levene test.
Protein Q89BP2 A6L9J9 Q88X33 B7KHU9

Kolmogorov–Smirnov test

MOBOA 0.015 0.200 0.200 0.200
Terai’s method 0.200 0.047 0.200 0.200
MOABC 0.200 0.200 0.061 0.200
MOSFLA 0.200 0.042 0.200 0.200
MOVNS 0.040 0.200 0.200 0.200
COOL 0.000 0.001 0.200 0.200

Levene test

MOBOA vs Terai’s method – – 0.662 0.123
MOBOA vs MOABC – 0.038 0.057 0.005
MOBOA vs MOSFLA – – 0.038 0.246
MOBOA vs MOVNS – 0.074 0.019 0.391
MOBOA vs COOL – – 0.769 0.017

ANOVA or Mann–Whitney p-value

MOBOA vs Terai’s method 0.000 0.025 0.000 0.006
MOBOA vs MOABC 0.000 0.000 0.014 0.000
MOBOA vs MOSFLA 0.000 0.137 0.000 0.000
MOBOA vs MOVNS 0.000 0.000 0.000 0.442
MOBOA vs COOL 0.000 0.000 0.000 0.000

Statistical significance?

MOBOA vs Terai’s method Yes Yes Yes Yes
MOBOA vs MOABC Yes Yes Yes Yes
MOBOA vs MOSFLA Yes No Yes Yes
MOBOA vs MOVNS Yes Yes Yes No
MOBOA vs COOL Yes Yes Yes Yes

problem-oriented mutation procedure to satisfy biological quality
requirements.

In order to evaluate the results obtained by the proposed
lgorithm, comparisons were conducted with other five alterna-
ive methods from the state of the art. For this purpose, each
ethod was experimentally tested on nine representative real-
orld proteins, which were chosen according to their balance
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Table 10
Set coverage results (SC) attained by MOBOA over Terai [16], MOABC [17],
MOSFLA [18], MOVNS [19], and COOL [13].
Protein SC(MOBOA,

Terai)
SC(MOBOA,
MOABC)

SC(MOBOA,
MOSFLA)

SC(MOBOA,
MOVNS)

SC(MOBOA,
COOL)

Q5VZP5 96.84% 95.14% 97.29% 99.55% 50.00%
A4Y1B6 98.95% 93.73% 100.00% 95.20% 0.00%
B3LS90 97.80% 76.42% 82.33% 83.56% 0.00%
B4TWR7 100.00% 91.05% 85.90% 74.43% 0.00%
Q91X51 97.70% 87.28% 94.12% 78.80% 0.00%
Q89BP2 100.00% 73.97% 91.71% 70.05% 0.00%
A6L9J9 98.51% 74.53% 82.53% 42.31% 0.00%
Q88X33 92.31% 73.33% 75.66% 45.45% 0.00%
B7KHU9 91.23% 63.64% 37.89% 23.53% 100.00%

Average 97.04% 81.01% 83.05% 68.10% 16.67%

Table 11
Set coverage results (SC) attained by the state-of-the-art methods Terai [16],
MOABC [17], MOSFLA [18], MOVNS [19], and COOL [13] over MOBOA.
Protein SC(Terai,

MOBOA)
SC(MOABC,
MOBOA)

SC(MOSFLA,
MOBOA)

SC(MOVNS,
MOBOA)

SC(COOL,
MOBOA)

Q5VZP5 1.13% 0.91% 1.13% 0.45% 0.00%
A4Y1B6 0.35% 0.35% 0.35% 0.35% 0.00%
B3LS90 0.57% 1.14% 1.71% 0.57% 0.00%
B4TWR7 0.53% 0.53% 0.53% 0.53% 0.00%
Q91X51 0.55% 0.55% 0.55% 0.55% 0.00%
Q89BP2 0.55% 0.55% 0.55% 0.55% 0.00%
A6L9J9 0.83% 0.83% 0.83% 1.65% 0.00%
Q88X33 1.22% 1.22% 1.22% 1.22% 0.00%
B7KHU9 3.57% 3.57% 3.57% 3.57% 0.00%

Average 1.03% 1.07% 1.16% 1.05% 0.00%

between lengths and number of CDSs. The attained results were
thoroughly evaluated by using multiple performance metrics (HV,
MS, SC, and distances to the ideal point) and also examining the
three key biological aspects of the problem (mCAI, mHD, and
MGC3). From a multi-objective perspective, the employed metrics
agreed on the significant quality of the Pareto fronts reported
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Table 12
Comparisons of minimum distances to the ideal point (1,1,0) with Terai [16],
MOABC [17], MOSFLA [18], MOVNS [19], and COOL [13]. The best values for
each protein instance are highlighted in bold.
Protein MOBOA Terai MOABC MOSFLA MOVNS COOL

Q5VZP5 0.3537 0.5937 0.5818 0.5664 0.4233 1.0230
A4Y1B6 0.5239 0.6416 0.6355 0.6284 0.5688 1.0041
B3LS90 0.5362 0.6297 0.6156 0.6138 0.5595 0.9963
B4TWR7 0.6186 0.6813 0.6647 0.6605 0.6244 0.9951
Q91X51 0.6065 0.6670 0.6506 0.6530 0.6125 1.0356
Q89BP2 0.6065 0.6670 0.6573 0.6597 0.6125 1.0325
A6L9J9 0.6431 0.6827 0.6713 0.6762 0.6434 1.0056
Q88X33 0.6606 0.7163 0.6935 0.6933 0.6750 0.9883
B7KHU9 0.6845 0.9415 0.7302 0.7145 0.6850 0.9002

Average 0.5815 0.6912 0.6556 0.6518 0.6005 0.9979

Table 13
Comparison of mCAI quality with Terai [16], MOABC [17], MOSFLA [18], MOVNS
[19], and COOL [13]. The best values for each instance are highlighted in bold.
Protein MOBOA Terai MOABC MOSFLA MOVNS COOL

Q5VZP5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
A4Y1B6 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
B3LS90 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
B4TWR7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
Q91X51 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
Q89BP2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
A6L9J9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997
Q88X33 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989
B7KHU9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9676

Average 1.0000 1.0000 1.0000 1.0000 1.0000 0.9962

Table 14
Comparison of mHD quality with Terai [16], MOABC [17], MOSFLA [18], MOVNS
[19], and COOL [13]. The best values for each instance are highlighted in bold.
Protein MOBOA Terai MOABC MOSFLA MOVNS COOL

Q5VZP5 0.9309 0.6079 0.6402 0.6989 0.7737 0.0023
A4Y1B6 0.6006 0.5288 0.5298 0.5496 0.5559 0.0037
B3LS90 0.6028 0.5390 0.5479 0.5658 0.5557 0.0039
B4TWR7 0.5333 0.4977 0.5017 0.5126 0.4990 0.0053
Q91X51 0.5830 0.5426 0.5471 0.5580 0.5366 0.0030
Q89BP2 0.5515 0.5172 0.5189 0.5383 0.5258 0.0034
A6L9J9 0.5128 0.4796 0.4887 0.5015 0.4887 0.0060
Q88X33 0.4503 0.4210 0.4269 0.4575 0.4211 0.0117
B7KHU9 0.4912 0.4561 0.4737 0.5134 0.4737 0.1404

Average 0.5840 0.5100 0.5194 0.5440 0.5367 0.0200

Table 15
Comparison of MGC3 quality with Terai [16], MOABC [17], MOSFLA [18], MOVNS
[19], and COOL [13]. The best values for each instance are highlighted in bold.
Protein MOBOA Terai MOABC MOSFLA MOVNS COOL

Q5VZP5 0.0003 0.0055 0.0003 0.0012 0.0012 0.2248
A4Y1B6 0.0005 0.0065 0.0028 0.0042 0.0019 0.1229
B3LS90 0.0007 0.0253 0.0204 0.0179 0.0228 0.0204
B4TWR7 0.0013 0.0119 0.0020 0.0046 0.0046 0.0244
Q91X51 0.0003 0.0221 0.0115 0.0184 0.0147 0.2800
Q89BP2 0.0007 0.0308 0.0207 0.0179 0.0207 0.2699
A6L9J9 0.0015 0.0317 0.0287 0.0241 0.0211 0.1448
Q88X33 0.0063 0.0375 0.0375 0.0375 0.0375 0.0083
B7KHU9 0.0210 0.1106 0.1106 0.1106 0.1106 0.0668

Average 0.0036 0.0313 0.0261 0.0263 0.0261 0.1291

by MOBOA, achieving statistically significant improvements over
the state-of-the-art methods. The biological comparisons also
suggested the relevance of the contributed solutions according to
the three biological criteria herein considered.

Our future research directions are aimed at further exploiting
he capabilities of the proposed MOBOA in other experimental
cenarios. Taking into account the relevant results obtained for
rotein encoding, the proposed approach will be adapted and
13
evaluated in other important bioinformatics problems, such as
phylogenetic reconstruction and RNA inverse folding. Moreover,
the application of MOBOA to other problems, which are not bioin-
formatic, is also interesting. For example, it will be analyzed its
possible application to heuristic augmentation for machine/deep
learning [33], a hot topic at present, where data augmentation is
improved thanks to the use of heuristics.
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