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Aircraft accidents are extremely rare in the aviation sector. However, their consequences can
be very dramatic. One of the most important problems is runway excursions, when an aircraft
exceeds the end (overrun) or the side (veer-off) of the runway. After performing exploratory
analysis and hypothesis tests, a Bayesian-network-based approach was considered to provide
information from risk scenarios involving landing procedures. The method was applied to a real
database containing key variables related to landing operations on three runways. The objective
was to analyse the effects over runway overrun excursions of failing to fulfil expert recommen-
dations upon landing. For this purpose, the most influential variables were analysed statistically,
and several scenarios were built, leading to a runway ranking based on the risk assessed.
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1. INTRODUCTION. Aviation has grown from the first commercial flight in 1914 to
the present with more than 120,000 landings and 12 million passengers per day globally
in 2018, according to the Air Transport Action Group (ATAG, 2018). Forecasts on the
increase of commercial flights are optimistic, with the number of passengers expected to
double by 2030. Despite the large number of flight operations, the amount of accidents and
incidents remains low. However, their consequences can be very dramatic in both losses of
lives and economic costs. According to Boeing (2017), there were a total of 1948 accidents
in the period 1959–2016 worldwide (388 from 2007 to 2016). 31·98% of those accidents
had fatal consequences (15·98% in 2007–2016).

In the last 50 years, there has been a major reduction in the number of accidents. This is
due to improvements in technology and risk management. The research and development
departments of aviation companies and the international aviation agencies have made an
effort to evaluate various risks. Since these cannot be fully eliminated, the main objective is
to provide procedures for their efficient and optimal management. It was not until 2006 that
the International Civil Aviation Organization (ICAO) published the first risk management
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guidelines (ICAO, 2006). The proposals were widely accepted by air transport authorities
and aviation manufacturers. Two updates were released in 2009 and 2013. However, the
number of accidents (especially runway overruns) worsened in the period 1992–2011 with
the increase in flight operations (Rosenkrans, 2012).

There are many types of accidents and incidents in aviation see, for example, Evans
(2014). Some of the most serious happen during landing. This phase is critical as pilots
must consider many factors and make the right decisions quickly (Gerard, 2006; You et al.,
2013; Wang et al., 2014; Boyd and Stolzer, 2016). According to Boeing (2016), in the last
ten years 49% of accidents in commercial flights occurred during the final approach or land-
ing. There are many factors affecting landing manoeuvres. Jenkins and Aaron (2012) point
to the following causes as the most relevant in landing accidents: unstabilised approach,
tail or crosswind, high speed, long landing or poor use of reverse thrust. Other authors such
as Chang et al. (2016), Hunter et al. (2011) and Ahmed et al. (2014) focus on environment,
containment runways and weather as risk factors. Rosenkrans (2012) defined some recom-
mendations that should be followed to reduce risks, such as crossing the threshold at the
right height at moderate speed, beginning the landing at the specified zone and properly
using reverse thrust and other braking systems. The Flight Safety Foundation (FSF) also
provides recommendations to reduce the risk of runway excursions (FSF, 2009).

Runway excursions happen during landings when an aircraft lands short (undershoot)
exceeds the end (overrun) or the side (veer-off) of the runway (see Wong et al., 2006).
In the period 2010–2014, 87 out of 415 accidents with damage were runway excursions,
resulting in a total of 174 deaths according to the International Air Transport Association
(IATA) (IATA, 2015). Overruns are especially relevant since they account for 22% of all
accidents and incidents in air transportation, and 44% of runway excursions are overruns.

There are many risk factors potentially affecting runway overrun. To discover them, it
is necessary to analyse the conditions before landing and the information obtained after an
accident occurs. Van Es (2005) analysed data from 400 runway overruns covering 35 years.
Later, Van Es et al. (2009) dealt with identifying the main factors in runway overruns and
proposed a risk index. Ayres et al. (2013) described a frequency model to determine the
location of runway overruns and analysed the influence of several risk factors.

To prevent these risks, it was recommended by ICAO (2018) to build Runway Safety
Areas (RSAs), which help to reduce damage in overruns and also in overshoots. In this con-
text, Arnaldo Valdés et al. (2011) proposed a probability-based approach to estimate risks
in both overrun and undershoot, offering solutions for the construction of RSAs. Drees
et al. (2014) analysed the influence of some aerodynamic variables and proposed a sensi-
tivity analysis method based on simulated data. Benedetto et al. (2014) analysed runway
deflection and rutting, trying to reduce the overrun risks with cleared and graded areas.
Also, Wilke et al. (2014) provided a risk analysis based on the runway surface. An overrun
prevention system based on the alert box defined by Ryan and Brodegard (2003) has been
patented.

Frequency models have been widely used for risk assessment in aviation accident analy-
sis. However, they provide a descriptive perspective and do not allow one to relate multiple
variables from a probabilistic point of view. Bayesian Belief Networks or simply Bayesian
Networks (BNs) (Cowell et al., 2006) constitute an especially interesting probabilistic
method for constructing risk scenarios related to aviation accidents.

Bayesian modelling is not very common in aviation literature, but it is very promis-
ing. For instance, Feng et al. (2009) applied it for aviation baggage screening, Ronald and
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Fabian (2014) for aviation delay modelling and Andres et al. (2005) for aviation human-
system risk and safety. In particular, BN’s have been applied in several settings for the
purpose of supporting probabilistic predictions in aviation risk analysis. For example, Lux-
høj and Kauffeld (2003) presented a new risk model for aviation systems that evaluates the
impact of including new technologies to reduce the negative consequences of accidents.
This BN model was implemented in the Probabilistic Decision Support System (PDSS)
software package to evaluate risks of new technology interventions. Brooker (2011) con-
sidered expert opinions to estimate rare events in a BN framework and Gu (2009) used BNs
to analyse the relationships among the main risk factors (helicopter technical dependability
measures and environmental features) for helicopter accidents.

The focus of this paper is on risk analysis for prevention of overrun excursions based
on a real dataset. Obtaining real data from aviation companies is very difficult (see, for
example, Kirkland et al. (2004)) although its availability would clearly be very useful in
that it would provide accurate information. We perform a BN model selection to fit the
available data. The optimal BN is then used to define several risk scenarios that allow
us to assess the influence of some states of the variables involved. This also lets us rank
the corresponding runways based on the risk of overrun excursion. This is based on the
probability of the event that the remaining distance to the end of the runway is less than
2,500 feet when the velocity is greater or equal to 80 knots. The higher this probability, the
higher the risk of runway overrun.

2. METHODS.
2.1. Data available. A data collection process was performed based on landing oper-

ations on three runways. They have similar operational conditions with landing lengths of
less than 7,200 feet. Their locations cannot be divulged for confidentiality reasons. The
runways will be denoted RwA, RwB, and RwC.

A total of 266 landing operations over a period of 10 months were recorded for the same
airline and aircraft type. The main variable of interest was the remaining length (in feet) of
the runway when the aircraft has a speed of 80 knots, see, for example, Burin (2011). This
variable, denoted Rw80, allows us to identify the risk of not finishing within the runway
boundaries. According to the FSF guidelines (Burin, 2011), the risk of an accident increases
considerably when the aircraft has a speed greater than 80 knots when it has a remaining
landing distance of 2,000 feet. The other variables recorded are:

• Height: This variable represents the height at threshold in feet over the runway.
• DiffIV: This represents the difference between the indicated airspeed and the final

approach speed at threshold, measured in knots. The indicated airspeed is read
directly from the instruments, whereas the final approach speed represents the air-
speed to be maintained down to 50 feet over the runway threshold (plus corrections
for wind).

• Tailwind: This is the tailwind at threshold, measured in knots.
• Xwind: This represents the crosswind at threshold, measured in knots. Xwind and

Tailwind are of interest specifically for landing overruns. Other problems such as
veer off or undershoot would also be affected by headwind but they are not included
in this research.

• Trevf: This variable describes the time in seconds that the maximum reverse thrust
is operated to provide deceleration.
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• Rw. This identifies the landing runway: A, B or C.
• Approach: This indicates whether the approach is stabilised or not.
• Abrake: This represents the autobrake activation, with three possible values: not

activated, low, or medium.

It is also important to define how a stabilised approach was defined. According to the
FSF, IATA and Eurocontrol, an approach is stabilised when all the following criteria are
met (see https://www.skybrary.aero/index.php/Stabilised_Approach):

• The aircraft is on the correct flight path.
• Only small changes in heading/pitch are necessary to maintain the correct flight path.
• The airspeed is not more than Velocity of Reference (VREF) + 20kts indicated speed

and not less than VREF.
• The aircraft is in the correct landing configuration.
• Sink rate is no greater than 1,000 feet/minute; if an approach requires a sink rate

greater than 1,000 feet/minute a special briefing should be conducted.
• Power setting is appropriate for the aircraft configuration and is not below the

minimum power for the approach as defined by the operating manual.
• All briefings and checklists have been conducted.

In Section 4, this dataset will be analysed. We next describe the methods used for data
analysis.

2.2. Statistical methods. We performed a statistical data analysis of the database.
Firstly, exploratory techniques were used. In order to analyse the relationships between
pairs of variables, different hypothesis tests were considered. A chi-squared test was applied
to determine the possible association between the use of autobraking and the runway. A
Fisher exact test was applied for the same purpose between approach stabilisation and the
runway (as, in this case, the applicability conditions for a chi-squared test were not met).
For two quantitative variables, Spearman correlation coefficients and testing were consid-
ered to analyse the strength of the association between variables (as the conditions for a
Pearson test were not met). Finally, since Analysis of Variance (ANOVA) applicability
conditions could not be assumed, a nonparametric alternative was applied. Specifically, the
Kruskal-Wallis test (Kruskal and Wallis, 1952) was used to analyse the differences between
each quantitative variable for the different runways. Pairwise comparisons were performed
using a Mann-Whitney U test (Mann and Whitney, 1947) with a Bonferroni correction
(Dunn, 1961).

A BN is a directed acyclic graph that defines a joint probability distribution for a set of
features. Each node represents a variable and the arcs represent causal dependence between
nodes. For each node, the distribution of its variable conditioned on its predecessors in the
net is defined; it is called Conditional Probability Distribution (CPD). The complete net-
work defines a joint probability distribution, based on the CPD and the graph relationships.
This joint distribution is given by the product of the probabilities of each node conditioned
on the value of its predecessors. BNs are specifically defined for modelling uncertain and
complex risk domains. As they are defined strictly in terms of probabilities and condi-
tional independence statements, their main use would be to analyse different conditional
probability scenarios (Akhtar and Utne, 2014). They can also be applied to prediction
problems (see Banghart et al., 2017). One of the main advantages of its use is that it pro-
vides both a causal and probabilistic model, thus it is perfect for providing information
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supported by experts’ knowledge combined with conditional probabilities, resulting in a
human-interpretable decision tool (Heckerman, 2008).

BNs take all the variables in the database into consideration conjointly to construct risk
scenarios. For this task, quantitative variables were discretised by separating them into non-
overlapping intervals. For comparative purposes, six algorithms for BN were considered in
a model selection framework: Bayesian Search, Essential Graph Search, Tree Augmented
Naive Bayes, Augmented Naive Bayes, Simple Naive Bayes, and Greedy Thick Thinning,
all of which were implemented in Genie (Byoung-Hee, 2014), which was also used for
BN calculations. The performances of the algorithms when applied to the current database
were compared through five-fold cross-validation using 1,000 repetitions (Kim, 2009). The
accuracy and the Area Under the Receiver Operating Characteristic (ROC) Curve (denoted
AUC) were considered as goodness-of-fit measures. The ROC curve presents sensitivity
in the y-coordinate versus one-specificity or false positive rate in the x-coordinate. The
AUC is a measure of model performance used for classification models that varies in the
range [0, 1]. When it is close to 1, it means that the algorithm is able to adequately identify
the risky cases in which the remaining length of the runway is reduced and becoming a
risk for the landing. As we are studying the remaining runway over and above 2,500 feet,
this measure is especially interesting. It is one of the most used performance metrics when
combined with accuracy rate.

The algorithm best fitting these data was Greedy Thick Thinning (Dash and Cooper,
2004). This is a graph-structure learning algorithm that searches for a Directed Acyclic
Graph (DAG) which maximises the scoring function in the search space of all DAGs con-
taining the finite set of variables. In BN structure learning, a scoring function measures how
good a given network matches the data set. In this case, the score was calculated with the
Bayesian Dirichlet equivalent uniform (BDeu) criterion. This is based on a Dirichlet dis-
tribution with a weakly informative uniform prior, see Cooper and Herskovits (1992) and
Silander et al. (2008). The Greedy Thick Thinning algorithm starts with an empty graph at
a specific point in the structure space. In order to maximise the Bayesian score, it continues
adding neighbouring arcs until no additional arc improves the score. It then starts to remove
arcs until a local optimum is achieved. The first process is known as thickening; the second
one as thinning. The result is the model that best fits the given data.

The BN produced by this algorithm will be used in the following section to construct
risk scenarios through evidence propagation, one of the most powerful features of Bayesian
networks. With this technique, probabilities at each node can be updated via two-way prop-
agation of new information throughout the structure. The resulting probabilities will be
expressed as percentages. In each scenario, a set of evidences (represented by 100% prob-
ability in some categories) is defined according to very risky or very safe situations. We
study how these evidences influence the probabilities of runway excursions. Probability
estimates for different scenarios are reported in two tables.

3. RESULTS AND DISCUSSION. We shall present first the main exploratory results,
and then we shall apply the Bayesian-network-based approach to perform a risk analysis.

3.1. Exploratory analysis. Table 1 lists the frequency distributions of the variables
describing runway, type of approach, and autobrake activation. Runway A is the most fre-
quently used, receiving almost 40% of landing operations. Autobraking was not activated
in more than one third of the operations, while unstabilised approaches were rare (2·3%).
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Table 1. Frequency distributions for qualitative
variables.

Runway Frequency %

A 104 39·1
B 80 30·1
C 82 30·8
Type of approach Frequency %
Stabilised 260 97·7
Unstabilised 6 2·3
Autobrake activation Frequency %
No 95 35·7
Low 56 21·1
Medium 115 43·2

Table 2. Descriptive statistics of quantitative variables involved.

Height DiffIV Tailwind Xwind Trevf Rwy80

Mean 31·23 2·53 2·32 5·35 5·36 3602·10
Median 28·00 2·00 1·00 4·00 4·50 3613·46
Std. Dev. 24·53 3·89 2·87 2·98 5·57 540·19
Minimum 1·00 −7·00 0·00 1·00 0·00 1890·77
Maximum 99·00 13·00 12·00 17·00 20·00 5518·40
FSF Recom <50 <10 <10 <10 >0 >2000

Descriptive statistics of the relevant quantitative variables are presented in Table 2. The
global recommendations FSF (2009) for reducing the risk of runway excursions are largely
satisfied. For instance, both crosswind and tailwind tend to be under 10 knots; the speed
difference tends to be less than 10 knots; the height, less than 50 feet, and there remains
a length of runway greater than 2,000 feet when a speed of 80 knots has been reached.
However, some landings did not satisfy the recommendations. Specifically, 6% and 0·8%
of the landing operations were performed with crosswind and tailwind speeds greater than
10 knots, respectively; 2·3% were unstabilised; 1·9% had speed differences greater than
10 knots and, finally, 19·9% had heights at threshold above 50 feet.

Figure 1 shows box plots of the quantitative variables. The frequency distributions for
maximum reverse thrust, tailwind, crosswind, and height have a right-tailed asymmetry. All
variables except maximum reverse thrust present outliers. For Rwy80, the most worrisome
outliers are located close to 2,000 feet. The height shows quite a few risky operations above
50 feet, some of them close to 99 feet. Finally, there are more crosswind than tailwind
outliers above the maximum recommendation of 10 knots.

Table 3 presents Spearman correlation coefficients for pairwise variables and their p-
values (p). Six, out of fifteen, pairwise variable associations, were not significant; the
greatest significant correlation coefficient was 0·383 (p < 0·001), obtained for speed differ-
ence and height. The variable Rwy80 has significant negative correlations with all the other
variables, showing that the remaining length of the runway at 80 knots decreases as height,
crosswind, tailwind, speed difference or maximum reverse thrust increases. An increase
in any of these variables would suggest an increase in the risk of runway excursions.
Nevertheless, none of these associations seems strong.
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Figure 1. Box plots for: height, DiffIV, Tailwind, Xwind, Trevf, and Rwy80.

Aviation safety experts stress that landing operations are influenced by the characteris-
tics and state of the runway (Daidzic and Shrestha, 2008). Table 4 provides a comparison
between stabilised and unstabilised landings depending on the runway used. The highest
number of unstabilised landings among the three runways observed occurred in Runway
C. However, Fisher’s exact test showed that there is no significant association between the
type of approach and runway (p = 0·674).

On the other hand, Table 5 presents the contingency table for autobrake activation and
runway. Autobraking was used with less intensity on Runway C and with greater intensity
on Runway A. In this case, the chi-squared test showed a significant statistical association
between use of autobraking and runway (p < 0·001).
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Table 3. Pairwise Spearman correlation coefficients and two-sided p-values.

Height DiffIV Tailwind Xwind Trevf Rwy80

Height Spearman p 1·000 0·383 −0·171 0·139 0·024 −0·200
. 0·000 0·005 0·024 0·692 0·001

DiffIV Spearman p 0·383 1·000 0·034 0·085 0·056 −0·207
0·000 . 0·580 0·168 0·365 0·001

Tailwind Spearman p −0·171 0·034 1·000 0·052 0·138 −0·283
0·005 0·580 . 0·400 0·025 0·000

Xwind Spearman p 0·139 0·085 0·052 1·000 0·059 −0·198
0·024 0·168 0·400 . 0·341 0·001

Trevf Spearman p 0·024 0·056 0·138 0·059 1·000 −0·162
0·024 0·056 0·138 0·341 . 0·008

Rwy80 Spearman p −0·200 −0·207 −0·283 −0·198 −0·162 1·000
0·001 0·001 0·000 0·001 0·008 .

Table 4. Type of approach by runway.

Type of approach

Stabilised Unstabilised

Runway Freq. % Row % Col. Freq. % Row % Col.

A 102 98·1% 39·2% 2 1·9% 33·3%
B 79 98·8% 30·4% 1 1·3% 16·7%
C 79 96·3% 30·4% 3 3·7% 50·0%

Table 5. Autobrake activation by runway.

Automatic brake

No Low Medium

Runway Freq. % Row % Col. Freq. % Row % Col. Freq. % Row % Col.

A 22 21·2% 23·2% 12 11·5% 21·4% 70 67·3% 60·9%
B 31 38·8% 32·6% 22 27·5% 39·3% 27 33·8% 23·5%
C 42 51·2% 44·2% 22 26·8% 39·3% 18 22·0% 15·7%

Table 6. Descriptive statistics of the quantitative variables by runway.

Runway

A B C

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Height 38·0 26·2 21·4 14·8 32·2 27·0
DiffIV 2·4 3·5 1·7 4·1 3·6 4·0
Tailwind 2·4 3·0 2·8 2·9 1·8 2·7
Xwind 6·5 3·5 5·2 2·8 4·0 1·7
Trevf 5·9 5·4 4·9 5·8 5·1 5·6
Rwy80 3365·3 486·8 3831·3 522·7 3678·9 506·9

Table 6 provides descriptive statistics of the quantitative variables by runway. Some
differences can be observed. Landing operations performed on Runway A had the greatest
height, crosswind, and maximum reverse thrust averages. This runway also had the shortest
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Figure 2. Box plots for the quantitative variables by runway.

remaining length average when the speed had fallen to 80 knots (although the minimum
observation happens in Runway C), further evidence that this runway had the greatest
excursion risk. Runway B seems to be following all the recommendations with more
allowance, while Runway C only provides more allowance for crosswind and tailwind
(both mean values are below those obtained for Runways A and B). Figure 2 provides box
plots of all the variables by runway.

Significance tests were applied. Kruskal-Wallis tests were applied to analyse whether
there were statistically significant differences in the variables of interest for the three run-
ways. Such differences were observed for all quantitative variables (p < 0·05) except for
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Table 7. Accuracies for the six algorithms evaluated.

Algorithms Accuracy

Bayesian Search 0·49
Essential Graph Search 0·41
Tree Augmented Naive Bayes 0·73
Augmented Naive Bayes 0·61
Naive Bayes 0·56
Greedy Thick Thinning 0·78

maximum reverse thrust (p = 0·376). Pairwise comparisons were carried out for each pair
of runways using penalised Mann-Whitney U tests. The height difference was statistically
significant between Runways A and B (p < 0·001). There were also differences in speeds at
Runways B and C (p = 0·024) (with Runway C being the one presenting the greatest speed
variations) and in tailwind (p < 0·05) for B and C again (but in this case with Runway B
being that with the greatest value). With respect to crosswind, there were differences for all
pairs of runways (p < 0·05). The same was the case for the remaining runway lengths at
80 knots (p < 0·001). Runway A had the lowest average remaining length and the greatest
average crosswind.

3.2. Bayesian networks for risk assessment. With this background in mind, we per-
formed a BN analysis. For comparison of the different BN models, the specifications given
in Section 2.2 have been followed (six models; five-fold cross-validation with 1,000 repe-
titions; accuracy and AUC comparison). We define a binary outcome with only two events
to be observed: Rwy80 < 2, 500 and Rwy80 ≥ 2, 500. As in this database there are very
few cases under the recommendation of the Flight Safety Foundation; we will try to iden-
tify landings not only under 2,000 feet, but also close to them (<2,500). This is intended
to make the requirement stricter. Table 7 lists the accuracies of the six algorithms after
cross-validation. The Greedy Thick Thinning algorithm has the greatest accuracy (0·78),
followed by the Tree Augmented Naive Bayes (0·73).

ROC curves present a false positive rate (one-specificity) versus sensitivity. The area
under the ROC curve (AUC) is a measure of performance used for classification models. It
is the most used performance metric together with accuracy rate.

Figure 3 presents the ROC curves and AUCs for the six algorithms following the cross-
validation procedure. Again, the best performance was for the Greedy Thick Thinning
algorithm (AUC = 0·998), followed by the Tree Augmented Naive Bayes (AUC = 0·968).

Given that it had the best results, the Greedy Thick Thinning algorithm was run to con-
struct the final BN used. The space of states for Rwy80 was then divided into six intervals:
<2,500, [2,500, 3,000), [3,000, 3,500), [3,500, 4,000), [4,000, 4,500), ≥4,500.

The estimated marginal probabilities in the BN (in the form of percentages) associated
with each state are presented for each node in Figure 4. Relationships are represented by
arcs, for which aviation experts checked that the connections represented were meaningful.

We performed a sensitivity analysis to observe if small changes in the predictors have
an important effect on the prediction of the feature measuring the runway remaining at 80
knots. In Figure 4, the nodes are shown in a graduated red colour so that the more intense
the colour, the greater influence this variable has on the conditional probability of the tar-
get node (Rwy80): runway, height at threshold, speed difference, autobrake activation and
maximum reverse thrust seem the most influential variables. Figure 5 provides a tornado
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Figure 3. ROC curves and AUCs using different algorithms for Rwy<2,500: (a) Greedy Thick Thin-
ning; (b) Bayesian Search; (c) Essential Graph Search; (d) Tree Augmented Naive Bayes; (e) Augmented
Naive Bayes; (f) Naive Bayes.

chart with which to analyse the influence of each state on the target variable, showing the
ten most relevant states or state combinations. In particular, the figure shows the changes in
P[Rwy80 < 2, 500] when varying the probability of the states shown at each bar by ±20%.
Green denotes an increase of 20%, whereas red denotes a decrease of 20%. For instance,
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Figure 4. Graphical representation of the BN considered.

considering the top bar, if the probability of landing on Runway A increases by 20%, then
P[Rwy80 < 2, 500] rises to 0·125. On the other hand, if the probability of landing on Run-
way A decreases by 20%, then P[Rwy80 < 2, 500] declines to 0·121. Although, at first
sight, this might seem a rather small probability difference, it implies four more accidents
per 1,000 operations. Since aviation accident rates tend to be very low, this could be a major
point of analysis to bear in mind so as to try to reduce even small risks.

We then constructed ten risk scenarios using evidence propagation. This allowed us to
evaluate the risk of overrun based on hypothetical scenarios with the states of the variables
of interest considered. For each scenario, a probability of 1 (100% in percentage terms) is
set for one state in one or more nodes.

Firstly, three scenarios were defined to analyse the characteristics of each runway as
represented by the data and two further scenarios were formulated to describe situations
with maximum and minimum runway overrun risks. Table 8 presents the results of the
inference process based on the BN considered.

Comparing the first three scenarios related to runways, we observe that Runway A has
the greatest percentages of landings with more than 10 knots of tailwind (2·88%) and
crosswind (17·31%) and Runway C the lowest. Runway A also stands out in unstabilised
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Figure 5. Tornado chart for the less than 2,500 feet of runway remaining at 80 knots event.

landings (3·95%), followed by 2·19% for Runway B and 1·14% for Runway C. The activa-
tion time for maximum reverse thrust is similar for the three runways. The use of autobrake
systems is very different, however, with Runway A requiring the greatest activation of
autobraking at a medium level (67·31%) and Runway B the least (21·95%). The recom-
mendation is that these two braking systems should be used moderately during landing
roll. Runway B has the greatest percentage of moderate use of both devices. According to
all this information, Runway A could be catalogued as riskier, and landings should be taken
more carefully, for example, when situations with high wind are observed.

Speed difference is similar for the three runways. Nevertheless, for differences greater
than 9 knots, Runway A presents a slightly greater percentage than B and C. Height at
threshold differs considerably among the three runways. Again, Runway A has the greatest
percentage (32·96%) of landing manoeuvres at threshold above the recommended height of
50 feet. Runway C has a percentage of 20·78%, while Runway B is the safest in this regard
with 1·24%. In this case runway A should have stricter recommendations for landing for
the speed and the height at the threshold.

With respect to the remaining length of runway at 80 knots, Runway A has the great-
est percentage (14%) of lengths being less than 2,500 feet, followed by Runway C with
11·51% and finally by Runway B with 10·97%. Considering the accumulated percentages
for landings with more than 3,500 feet remaining, we observe that Runway B would be
the safest with 63·96%, followed by Runway C with 55·97%, and, finally, Runway A with
43·55%.

This analysis by runway is an example of the valuable insights that could be offered to
any airport, giving the main risks to be observed during landing. Each different runway has
its own characteristics and risks. A customised probability of suffering accidents could be
given for any different runway.

We next analyse the scenarios for maximum and minimum risks, according to the
FSF’s recommendations. Scenario 4 considers conditions not recommended for landing
by the FSF. This kind of landing has most probability of occurring at Runway A (92·36%),
whereas at Runway C it would be 7·64%. According to the BN model, these conditions
would be rarely met at Runway B. The opposite is the case for Scenario 5, where the
best landing conditions are considered. In this case, there is a probability of 79·52% that
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Table 8. Scenarios for excursion risk evaluation by runway.

1 2 3 4 5

Runway A 100·00 92·36 7·50
B 100·00 0·00 79·52
C 100·00 7·64 12·98
Tailwind < 1 47·12 36·25 57·32 100·00
1-3 16·35 13·75 10·98
3-7 23·08 38·75 24·39
7-10 10·58 8·75 6·10
>10 2·88 2·50 1·22 100·00
Crosswind <4 19·23 30·00 40·24 0·00 31·17
4-6 25·96 33·75 41·46 0·00 33·90
6-8 23·08 18·75 13·41 0·00 18·79
8-10 14·42 7·50 4·88 49·62 7·36
>10 17·31 10·00 0·01 50·38 8·79
Approach Stabilised 96·05 97·81 98·86 100·00
Unstabilised 3·95 2·19 1·14 100·00
Trevf· < 1 43·88 44·38 44·68 100·00
1-4 3·69 3·76 3·80
4-7 7·97 7·50 7·22 100·00
7-10 14·70 14·66 14·64
10-13 17·28 17·29 17·30
>13 12·48 12·40 12·36
Abrake No 21·15 38·75 51·22
Low 11·54 27·50 26·83 100·00
Medium 67·31 33·75 21·95 100·00
DiffIV <-3 6·28 6·40 6·46
-3-1 27·63 27·83 27·95 100·00
1-5 32·35 32·33 32·32
5-9 27·55 27·44 27·38
>9 6·20 6·01 5·89 100·00
Height <10 19·87 33·14 20·02 92·36
10-30 21·75 33·43 39·17 7·64
30-50 25·43 32·18 20·02 0·00 100·00
50-70 21·66 1·24 10·01 0·00
>70 11·30 0·01 10·77 0·00
Rwy80 <2500 14·00 10·97 11·51 100·00
2500-3000 15·01 11·56 10·91
3000-3500 27·46 13·51 21·60
3500-4000 21·28 32·38 26·61 100·00
4000-4500 13·40 18·18 17·71
>4500 8·87 13·40 11·65

the landing was performed on Runway B, followed by Runway C (12·98%) and with the
lowest probability being for Runway A (7·5%).

All the information provided in the scenarios in Table 8 is coherent with the statement
that Runway B is the safest, followed by Runway C, and, finally, with Runway A being the
least safe. This also agrees with the results obtained in Section 3.1.

Five additional relevant scenarios not compliant with some of the most common FSF
recommendations are presented in Table 9. Scenario 6 analyses the probability of an
unstabilised approach. Runway A has the greatest percentage of unstabilised approaches
(60·48%), whereas Runway B has almost double the percentage of Runway C (25·79% vs
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Table 9. Scenarios to evaluate runway excursion risk that are non-compliant with FSF recommendations.

6 7 8 9 10

Runway A 60·48 50·00 38·54 40·08 57·10
B 25·79 33·33 30·19 29·88 0·00
C 13·73 16·67 31·27 30·04 42·90
Tailwind <1 40·28 47·17 46·68 52·25
1-3 19·85 13·75 14·18 13·58
3-7 0·00 28·93 26·90 23·56
7-10 29·92 8·09 9·62 8·61
>10 9·95 100·00 2·05 2·61 2·00
Crosswind <4 0·00 26·32 29·71 27·62 27·67
4-6 28·42 31·14 33·20 32·87 33·89
6-8 0·00 20·02 19·29 17·93 19·13
8-10 15·27 10·52 9·24 9·67 10·63
>10 56·31 11·99 8·56 11·91 8·69
Approach Stabilised 88·74 99·99 92·97 96·98
Unstabilised 100·00 11·26 0·01 7·03 3·02
Trevf <1 16·67 41·81 43·01 44·14
1-4 0·00 3·41 100·00 3·58 3·73
4-7 33·33 9·90 8·78 7·72
7-10 16·67 14·85 14·76 14·68
10-13 16·67 17·24 17·26 17·29
>13 16·67 12·80 12·61 12·44
Abrake No 29·82 32·03 35·87 35·44 34·05
Low 17·75 19·41 21·14 20·90 18·10
Medium 52·43 48·56 42·99 43·66 47·85
DiffIV <-3 0·00 5·80 6·54 6·34
-3-1 16·67 26·79 28·08 27·73
1-5 33·33 32·42 32·31 32·34
5-9 33·33 27·99 27·31 27·49
>9 16·67 7·00 5·77 100·00 6·10
Height <10 56·03 27·64 23·07 25·38
10-30 34·82 29·54 30·52 30·83
30-50 0·00 24·44 26·47 24·61
50-70 0·00 11·52 12·24 11·38
>70 9·15 6·87 7·70 7·80 100·00
Rwy80 <2500 14·98 12·73 14·79 15·05 12·52
2500-3000 15·67 13·35 16·15 15·89 17·60
3000-3500 19·82 21·52 22·34 19·81 19·29
3500-4000 20·36 25·51 16·68 18·73 19·38
4000-4500 16·52 15·84 15·24 15·48 19·60
>4500 12·65 11·05 14·79 15·05 11·62

13·79%). When the approach is unstabilised, 56·31% of the landings are performed with
a crosswind greater than 10 knots (much greater than in the rest of the scenarios). Also,
the speed difference is greater than 9 knots for 16·67% of the landings, a larger value than
for the other scenarios. Autobrake systems are mainly used at a medium level (52·43%).
Finally, 14·98% of the landings with an unstabilised approach had a remaining runway
length at 80 knots of less than 2,500 feet, showing the risk of unstabilised approaches for a
runway overrun.
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In Scenario 7, tailwind speed was considered to be greater than 10 knots. This situation
occurs above all on Runway A (50%), followed by Runway B (33·33%). Although cross-
wind risk probabilities are not greatly affected by tailwinds greater than 10 knots, they do
seem to be related to the stabilisation of the approach (11·26% of the approaches are unsta-
bilised in this case). This scenario also shows the need to use autobraking at a medium level
(for which the percentage is relatively high, 48·56%). A remaining length at 80 knots of less
than 2,500 feet seems to be not especially affected by high tailwind speeds in comparison
with the other scenarios.

Scenario 8 considers a case in which maximum reverse thrust is used briefly (between 1
and 4 seconds). This almost always occurs for stabilised approaches (99·9%). The proba-
bility of initiating landing with a height above 50 feet is 19·94%, the greatest value in these
scenarios. Finally, the probability of having less than 2,500 feet remaining length on the
runways at 80 knots is 14·79%, one of the greatest probabilities of the scenarios analysed.

A large difference between recommended and actual speeds can lead to considerable risk
during landing. Scenario 9 considers the consequences associated with a speed difference
larger than 9 knots. Again, this risky situation most probably occurs at Runway A (40·08%),
followed by Runways B and C with 29·88% and 30·04%, respectively. Speed differences
greater than 9 knots occur with a probability of 7·03% in unstabilised approaches. The
worst consequence is that the probability of landing with a remaining runway length of less
than 2,500 feet at 80 knots is 15·05%.

Scenario 10 is related to heights greater than 70 feet at threshold. This kind of situation
appears to be almost improbable for the landings on Runway B, whereas the probabilities
for Runways A and C are 57·1% and 42·9%, respectively. In this case, a landing that is
initiated at a greater than normal height seems to be not associated with other negative
factors. Moreover, the probability of a remaining runway length at 80 knots that is less than
2,500 feet is the lowest (12·52%) of the risk scenarios in Table 9.

In summary, on one hand, an unstabilised approach and a large speed difference consti-
tute two major factors for unsafe landings. When an approach is unstabilised, it is typically
accompanied by some non-recommended conditions, for example, high crosswind and tail-
wind speeds, or a large speed difference. Both unstabilised approaches and high-speed
differences occur with greater frequency at Runway A. On the other hand, for the prob-
ability of having a remaining runway length of less than 2,500 feet at 80 knots, the least
dangerous factors are tailwind speed and height. Having all these aspects under control can
lead to a safer context, reducing runway excursion incident rates.

Finally, evidence propagation in the BN has allowed us to define risk scenarios that
provide information about hypothetical situations that could arise in real landings. The
method is extensible to other aviation datasets. Indeed, in general, the more data, the better
the information that would be obtained.

4. CONCLUSIONS. This paper explores the risk for runway overrun excursions under
several scenarios. Data from three real runways were collected and analysed with a BN
model, as an illustration of a risk evaluation that could be performed for all runways. The
BN method using evidence propagation facilitated the analysis of the most common runway
excursion risk scenarios.

This research revealed the relations among features measured when landing. Three run-
ways were classified in accordance with their potential risks, and early risk disclosure was

https://doi.org/10.1017/S0373463319000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000109


NO. 5 RISK ANALYSIS OF RUNWAY EXCURSIONS 1137

provided. The generic recommendations established by safety organisations can be revis-
ited for each runway using the results of this type of analysis. For example, Runway A is
less safe than the others, and recommendations for landing should be stricter. This kind of
analysis can be performed for more runways in different airports, providing a classifica-
tion according to their runway overrun risk. This tool could be used in aviation operations
for runway classification that allows pilots to have a runway excursion probability when
landing.

The proposed approach can provide insights into why runway excursions occur and
potentially lead to reductions in accident rates. The runway risk ranking could be useful
for authorities to mitigate the number of excursions, improving the weaknesses observed at
each runway. With the BN graph, the scenarios given and the sensitivity analysis, the rela-
tions and influence between the main features is exposed. These results could be extended
if more airports open their databases. This study remains open in case further data can be
obtained in the future. New features such as touchdown point, landing procedure, weather
situation or runway contamination would be especially important. The results obtained
cover different kinds of risk, offering a comprehensive safety framework that would be
applicable to all runways.
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