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ABSTRACT 15 

This study firstly proposed the use of 3D MRI images to analyse loins in a non-16 

destructive way. For that, interpolation and reconstruction techniques are 17 

applied on 2D MRI images of loins and the computational texture algorithms 18 

were adapted to analyse the obtained 3D images. The influence of the i) MRI 19 

acquisition sequences (Spin Echo (SE), Gradient Echo (GE), Turbo 3D (T3D)), ii) 20 

3D texture features algorithms (GLCM, NGLDM, GLRLM, GLCM + NGLDM + 21 

GLRLM), and iii) regression techniques (Multiple Linear Regression (MLR), Isotonic 22 

Regression (IR)) was also evaluated. Combinations of SE or GE with any texture 23 

algorithm and any regression technique gave accurate results, with correlation 24 

coefficients higher than 0.75 and mean absolute error lower than 2. However, 25 

considering not only the accuracy of the methodology but also the 26 

computational cost, the use of GE, GLCM and IR could be proposed to 27 

determine physico-chemical parameters of loins non-destructively. 28 

KEYWORDS 29 

3D texture features; prediction; physico-chemical characteristics; loin. 30 

  31 



3 
 

INTRODUCTION 32 

The evaluation of quality of meat products has been the subject for a 33 

great quantity studies for decades. In most cases, physico-chemical 34 

characteristics, such as colur, content of moisture, lipid, protein or salt content 35 

in fresh and dry-cured meat products, have been evaluated by means of 36 

destructive techniques, which also involve the use of organic solvents and take 37 

long time (Alasvand et al., 2012). 38 

 Magnetic Resonance Imaging (MRI) and computer vision techniques 39 

have emerged as ones of the alternative methodologies to the physico-40 

chemical analysis, due to its non-destructive, non-invasive, non-intrusive, non-41 

ionizing and innocuous nature. Several works aimed to determine quality 42 

characteristics of meat products by MRI have been published, most of them 43 

centred on loin and hams. The image acquisition has been carried out by using 44 

high field scanners (1.5 T) in most studies, e.g. in Iberian dry-cured loins of 45 

different sensory qualities (Cernadas et al., 2005), in fresh and dry-cured hams 46 

from Iberian pigs fattened different diets (Pérez-Palacios et al., 2010a; 2014), 47 

detecting the muscle and fat in pig carcasses (Monziols et al., 2006), 48 

throughout the processing of Iberian ham (Antequera et al., 2007; Caballero et 49 

al., 2016a; 2016b; Caro et al., 2001), S. Daniele hams (Manzoco et al., 2013).  50 

However, low field scanners (0.18-0.2 T) have also been used for MRI acquisition 51 

in some meat products: during the maturing process of Parma hams (Fantazzini 52 

et al., 2009) in dry-cured stuffed boned shoulders from Iberian pigs (Antequera 53 

et al., 2015), in fresh and dry-cured Iberian ham and loins (Ávila et al., 2015a; 54 

2015b; Caballero et al., 2016a; 2016b; 2017a; Pérez-Palacios et al., 2014; 2015; 55 

2017). Some of these studies carried out with low-field scanners have also 56 
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indicated the importance of the acquisition sequence of MRI (Caballero et al., 57 

2016a; 2016b, 2017a; Pérez-Palacios et al., 2017).  58 

Once the MRI images are acquired, the following step consists on the 59 

MRI analysis, in order to obtain numerical data that can be further processed. 60 

For that, there are many algorithms of computer vision:  for image 61 

segmentation, for texture feature extraction, for patterns recognition, etc. 62 

(Venkatramana and Jayachandra, 2010). Focusing on texture features 63 

extraction, classical 2D algorithms have been usually applied for analyzing MRI 64 

from meat products (Caballero et al., 2016a; 2016b; Cernadas et al., 2005; 65 

Kitanowski et al., 2012; Pérez-Palacios et al., 2011). 66 

Results obtained in these studies using 2D-algorithms are reasonably 67 

good, however, the study of volumetric 3D structures could be a step forward, 68 

offering new possibilities (Melado-Herreros et al., 2013). Real world is not flat 69 

images but is three-dimensional. Therefore, there is loss of information when 70 

working with 2D images, while working with 3D images means trying to get all 71 

information within the images. Studies focused on 3D images are getting 72 

interest, finding some examples in the field of medicine, mostly for tumour 73 

detection and classification (Arunadevi and Nachimuthu, 2013; Madabhushi et 74 

al., 2003). Nevertheless, few examples on 3D images have been found. 3D 75 

reconstructions models of meat were reached by (Ávila et al., 2007; Goñi et al., 76 

2008), in order to generate a geometry database saving efforts and decreasing 77 

error associated to experimental measurements. More recently, a new 3D 78 

algorithm has been proposed to study the distribution of textures in 3D images 79 

of loin from different orientations (Ávila et al., 2015a). The application of this 3D 80 

algorithm has allowed determining some sensory attributes of loin non-81 
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destructively (Ávila et al., 2015b). Other authors have also calculated the 82 

weight of broiler chickens using 3D computer vision (Krogh et al., 2016). 83 

Following with the procedure for determining quality parameters of meat 84 

by means of MRI, last step consists of analyzing the numerical data given by the 85 

algorithm of computer vision. At this respect, currently, there is a growing 86 

interest in data mining. It is related to large data, being within a larger process 87 

known as Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996). Its 88 

principal task is extracting hidden information from a large data set, by 89 

automatic or semi-automatic analysis, allowing interesting and previously 90 

unknown patterns (Hastie et al., 2001). These patterns are seen as summary of 91 

the input data, and can be groups of data records (cluster analysis), unusual 92 

records (anomaly detection) and dependencies among data (association 93 

rules). The goodness of data mining can be mainly ascribed to the rapidly 94 

decreasing cost of large storage device and the increasing ease in data 95 

collection over networks (Mitchell, 1999). The application of MRI-computer 96 

vision techniques based on 2D algorithm and data mining have allowed 97 

analyzing some physico-chemical and sensory parameters of loin and ham 98 

(Caballero et al., 2016a; 2016b; 2017a; Pérez-Palacios et al., 2014; 2017). 99 

However, there are no studies applying data mining on 3D algorithm for MRI 100 

analysis. 101 

This works aims to i) interpolate new images in the gaps between the 102 

multi-slices ones to obtain 3D volumes, ii) adapt computational texture 103 

algorithms to analyze the obtained 3D reconstructed MRI, and iii) determine 104 

physico-chemical characteristics of meat products non-destructively, based on 105 

this new 3D approach by means of data mining. 106 
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MATERIAL AND METHODS 107 

Material 108 

Ten Iberian pork loins were used in this work (five fresh loins and five dry 109 

cured loins). Loins were acquired from Montesano (Jerez de los Caballeros, 110 

Spain). Average weight for fresh and dry-cured loin was around 3.5 kg and 1.4 111 

kg, respectively.  112 

Dry-cured Iberian loins were processed according to a traditional dry-113 

curing method: loins were seasoned with a pickling sauce made of (per kg of 114 

raw loin): 22g salt, 5g sweet paprika, 3g hot-sweet paprika, 3g garlic and 6g of 115 

a commercial mixture (sodium chloride, sucrose, sodium ascorbate, sodium 116 

citrate, sodium nitrite and potassium nitrate), and subsequently kept for 3 days 117 

at 3º C to allow seasoning mixture uptake. Thereafter, loins were stuffed into 118 

collagen casings and held for 90 days at 6º C with a relative humidity around 119 

85%. 120 

GENERAL PROCEDURE 121 

Figure 1 shows the general procedure design followed in this work. 122 

Iberian loins were MRI scanned, testing three multi-slice acquisition sequences. 123 

Firstly, an interpolation method was applied for three-dimensional 124 

reconstruction. The 3D images obtained were analyzed by means of three 125 

computational texture analysis algorithms. Then, the loins were physico-126 

chemically analyzed, data obtained by means of physico-chemical analysis 127 

and MRI 3D texture analyses were grouped in a numerical database. Finally, 128 

prediction techniques of data mining were applied on that database, in order 129 

to obtain prediction equations for the physico-chemical parameters as a 130 

function of 3D computational texture features. 131 
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PHYSICO-CHEMICAL ANALYSIS 132 

Fresh and dry-cured loins were analysed measuring the moisture (AOAC, 133 

2000; reference 935.29), lipid content (Pérez-Palacios et al., 2008), water activity 134 

and instrumental colur. For the water activity, the system LabMaster-aw 135 

(NOVASINA AG, Lachen, Switzerland) was used after calibration. Instrumental 136 

colur was measured using a Minolta CR-300 colurimeter (Minolta Camera 137 

Corp., Meter Division. Ramsey, NJ) with illuminant D65, a 0º standard observer 138 

and a 2.5 cm port/viewing area. The following colur coordinates were 139 

determined: lightness (L), redness-greenness (a*) and yellowness-blueness (b*). 140 

The colurimeter was standardized before use with a white tile having the 141 

following values: L=93.5, a*=1.0 and b*=0.8. Salt content (AOAC, 2000; 142 

reference 971.19) was also determined in dry-cured loins. 143 

IMAGE ACQUISITION 144 

MRI images were generated at the ‘‘Animal Source Foodstuffs 145 

Innovation Services” (SiPA) of University of Extremadura (Caceres, Spain). A low 146 

field MRI scanner (ESAOTE VET-MR E-SCAN XQ 0.18 T) with a hand/wrist coil was 147 

used. Three different sequences of T1 were tested: spin echo (SE), gradient 148 

echo (GE) and turbo 3D (T3D). T1-weighted sequences have been used due to 149 

these MRI images are adequate for the application of computational texture 150 

algorithms. Eight different configurations of the parameters were used for SE, 151 

eight configurations for GE and eleven for T3D. Table 1 show in detail the 152 

selected values for each of the parameters. 153 

In GE, the MR signal is refocused by inverting the gradient instead of 154 

using a 180° radiofrequency pulse. GE sequences are characterized by a strong 155 

signal-to-noise ratio.  156 
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In SE, a 90° radiofrequency excitation pulse is followed by a 180° 157 

radiofrequency refocusing pulse to reduce the effect of field inhomogeneity.  158 

The T3D sequence is a GE sequence in which a special second encoding 159 

in the direction of the selection gradient enables 3D reconstruction. The signal-160 

to-noise ratio is also high in this type of sequence.  161 

The MRI acquisition was done at 23 ºC. All the images were in DICOM 162 

format, with a 256 x 256 resolution, and 256 grey levels.  163 

INTERPOLATION AND 3D RECONSTRUCTION 164 

A 3D image is reconstructed using all MRI slices obtained of each loin 165 

with each configuration of each acquisition sequences. This is done by linear 166 

interpolation methods, using VTK (Visualization Toolkit). It is a set of free code 167 

libraries for the visualization and processing of images, such as the creation of 168 

graphic objects in 2D and 3D (http://www.vtk.org/). 169 

 Once the 3D images have been obtained, they will be analyzed by 170 

using several texture algorithms. 171 

 Figure 2 shows images from different MR sequences with their 172 

corresponding interpolation and 3D reconstruction. 173 

TEXTURE ANALYSIS 174 

Firstly, on each image, a central area with 20 x 20 pixels was selected, 175 

which is called Region of Interest (ROI). The ROI is the area inscribed in the same 176 

spatial situation in all MRI. ROIs of each loin were reconstructed in three 177 

dimensions. In total, 270 three-dimensional images were used (270 loins 178 

reconstructed in three dimensions), given that the number of configurations for 179 
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each sequence (8, 8 and 11 for SE, GE and T3D, respectively) and the number 180 

of loins (10). 181 

Then, three classical algorithms for texture analysis were adapted to work 182 

with three-dimensional images and be applied on 3D images of loins, as 183 

described below. While classical algorithms use four orientations to obtain the 184 

texture features (figure 3a), 3D algorithms use the thirteen orientations (figure 185 

3b) available in their structural space. The darkest pixel of each grid can be 186 

considered the referent. When working on two-dimensional images only four 187 

directions are considered (horizontal, vertical and two diagonal orientations), 188 

however, when working in three-dimensional space some more orientations 189 

can be considered. 190 

The grey level co-occurrence matrix, GLCM (Haralick et al., 1973), is based 191 

on the estimation of the second-order joint conditional probability density 192 

functions, P(m, n, d, a). Each P(m, n, d, a) is the probability of moving from grey 193 

level m to grey level n, provided that the spacing between pixels is d and the 194 

orientation is given by a. If an image has Ng grey levels, then the GLCM can be 195 

written as the addition of Ng x Ng matrices, one for each for the orientations. 196 

The number of matrices will depend on the orientations that are taken into 197 

account. Each matrix is calculated by counting the number of times each pair 198 

of grey levels (m, n) occurs at the separation d and in the direction a. We 199 

assume d= 1. In the case of 2D images the orientations on which the matrix is 200 

calculated are 4: 0º-180º, 45º-225º, 90º-270º and 135º-315º, as it can be seen in 201 

figure 3a. In our proposal, for the 3D images, the matrices are calculated 202 

according to 13 orientations: 0º-180º, 90º-270º, 135º-315º, 45º-225º in the XY 203 

plane, 0º-180º, 135º-315º, 45º- 135º - 315º, 45º - 225º in the XZ plane and 135º, 204 
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315º, 45º, 225º in the XYZ plane, as can be seen in figure 3b. For the 13 205 

orientations, the coocurrence matrix of grey levels has been computed in one 206 

direction, in order to avoid repeating the cooccurrence computations in the 207 

opposite directions (the other 13 orientations). Following it is added to each 208 

cooccurrence matrix its transposed matrix, having the 26 orientations. 209 

In this way, the images are being analyzed in all possible directions so that 210 

all information is considered. Subsequently, these thirteen matrices are added 211 

to obtain a final GLCM with some degree of rotation invariance. 212 

Finally, a vector of 10 features is obtained. It is common to use derived 213 

features defined by Haralick et al. (1973): ENE (Energy), ENT (Entropy), COR 214 

(Correlation), HC (Haralick’s correlation), IDM (Inverse difference moment), INE 215 

(Inertia), CS (Cluster shade), CP (Cluster prominence), CON (Contrast) and DIS 216 

(Dissimilarity). 217 

Neighborhood grey level dependence matrix (NGLDM) provides rotation 218 

invariant features, by considering the relationship between an element and all 219 

its neighbor elements at one time instead of one direction at a time. This 220 

eliminates the angular dependency, while at the same time reduces the 221 

calculation required to process an image. It is based on the assumption that a 222 

grey level spatial dependence matrix of an image can adequately specify this 223 

texture information (Siew et al., 1988). In our 3D proposal, the neighborhood is a 224 

cube, not only a plane rectangular area. So, the relationships between the 225 

central voxel and its neighbors are analyzed, in the same thirteen angular 226 

directions indicated before. One more time one matrix for a 3D image is 227 

obtained.  228 
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The usual numerical measures on this matrix are: SNE (Small number 229 

emphasis), LNE (Large number emphasis), NNU (Number non-uniformity), SM 230 

(Second moment), ENT (Entropy). 231 

 Grey level run length matrix (GLRLM) (Galloway et al., 1975), which is a 232 

method based on measuring runs of grey levels in the image. A run is a set of 233 

consecutive pixels in the image having the same grey-level value. This method 234 

involves the counting runs length (the number of consecutive pixels with the 235 

same grey level in a particular orientation). In our proposal, for the 3D images, 236 

the orientations are 13: 0º-180º, 90º-270º, 135º-315º, 45º-225º in the XY plane, 0º-237 

180º, 135º-315º, 45º- 135º - 315º, 45º - 225º in the XZ plane and 135º, 315º, 45º, 238 

225º in the XYZ plane. 239 

A large number of straight pixels with the same grey level represent a 240 

coarse texture, a small number of these pixels represent a fine texture. So, the 241 

lengths of these texture primitives in different spatial directions can serve as 242 

texture description. From this method, the features being applied are: SRE (Short 243 

run emphasis), LRE (Long run emphasis), GLNU (Grey level non-uniformity), RLNU 244 

(Run length non-uniformity), RPC (Run percentage), LGRE (Low grey-level run 245 

emphasis), HGRE (High grey-level run emphasis), SRLGE (Short run low grey-level 246 

emphasis), SRHGE (Short run high grey-level emphasis), LRLGE (Long run low 247 

grey-level emphasis), LRHGE (Long run high grey-level emphasis) (Siew et al., 248 

1988; Sonka et al., 1999). 249 

Each method (GLCM, NGLDM, GLRLM) was applied individually and 250 

altogether (GLCM + NGLDM + GLRLM), obtaining feature vectors with 10, 5, 11, 251 

and 26 computational texture features, respectively. 252 

PREDICTIVE TECHNIQUES  253 
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The free software WEKA (Waikato Environment for Knowledge Analysis) 254 

(http://www.cs.waikato.ac.nz/ml/weka/) was used for carrying out the 255 

predictive techniques of data mining. 256 

Two correlation techniques have been applied for the prediction 257 

experiments, multiple linear regression (MLR) and isotonic regression (IR). MLR is 258 

the most common technique of linear regression analysis. It is used to explain 259 

the relationship between one dependent variable from independent variables. 260 

This technique gives a linear regression equation, which can be used to predict 261 

future values (Hastie et al., 2001). The M5 method of attribute selection and a 262 

ridge value of 1 x 10-4 were applied. It is based on stepping through the 263 

attributes, being the one with the smallest standardized coefficient removed 264 

until no improvement is observed in the estimation of the error. 265 

When the values of the database are highly correlated, the use of non-266 

linear regression is recommended. In these cases, the IR is considered as a 267 

good option. It provides a set of values from the information stored on a 268 

database. It is based on estimating ordered values for a dependent variable 269 

(i.e. moisture) as a function of one of the input parameters. Only the input 270 

parameters providing better adjustment results will be selected. Finally, an 271 

interpolation function is established (polynomial trend line) to compare the 272 

provided set data with original values in the database, obtaining the prediction 273 

equation (Barlow et al., 1972; Borge, 1985). 274 

The correlation coefficient (R) was used for evaluating the goodness of fit 275 

of the prediction according to the rules given by Colton (Colton, 1974), who 276 

considered that a correlation coefficient from 0 to 0.25 indicates little to no 277 

relationship; from 0.25 to 0.50 indicates a weak relationship; from 0.50 to 0.75 278 
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indicates a moderate to good relationship; and from 0.75 to 1 indicates a very 279 

good to excellent relationship. 280 

Additionally, the mean absolute error (MAE) (Hyndman and Koehler, 281 

2006a) was used to validate the prediction results too. The MAE measures the 282 

difference between real values and predicted ones. Values of MAE less than 2 283 

are appropriate (Hyndman, 2006b). It is calculated by the following equation: 284 

  285 

STATISTICAL ANALYSIS 286 

One-way analysis of variance (ANOVA) of the General Linear Model 287 

(GLM) was used i) to evaluate the effect of the MRI sequence acquisition on 288 

the values of the computational texture features and ii) to validate the 289 

prediction results by comparing real and predicted values of the physico-290 

chemical characteristics. Analyses were done by using the SPSS package 291 

(v.20.0) (IBM Co., New York, New York, U.S.A.). 292 

RESULTS AND DISCUSSION 293 

RESULTS ON PHYSICO-CHEMICAL ANALYSIS OF LOINS 294 

In fresh loins, percentage of moisture and lipid were 65.55 ± 1.82 and 295 

12.78 ± 1.36%, respectively, and the water activity was 0.98 ± 0.00. The colur 296 

coordinates, L, a*, and b* were, respectively, 55.32 ± 3.12, 12.92 ± 0.69, and 5.58 297 

± 0.72. In comparison to fresh loins, in dry-cured loins lower values of moisture 298 

and water activity were found (32.22 ± 2.96% and 0.86 ± 0.00, respectively). This 299 

is due to the dry-curing process. And, consequently, the lipid content increased 300 

(21.61 ± 6.84%) in dry-cured loins. Similar findings have been previously reported 301 

(Estevez et al., 2004; Muriel et al., 2004; Ramírez and Cava, 2007; Utrilla et al., 302 

2010). Analyzing the colur coordinates in dry-cured loins: L decreased (40.61 ± 303 
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4.44), as consequence of the desiccation process; a* and b* increased (15.31 ± 304 

1.60 and 8.04 ± 1.48, respectively), which could be also ascribed to the water 305 

losses that lead to a higher pigment concentration, and therefore to the redder 306 

and more vivid colur (Perez-Palacios et al., 2011). 307 

EFFECT OF SEQUENCE ACQUISITION ON 3D MRI  308 

Figure 2 shows 2D MR images of loins acquired by different sequence 309 

acquisition, SE, GE and T3D and the respective 3D reconstructions obtained 310 

from these images. Some visual differences can be appreciated depending on 311 

the sequence acquisition. In 2D images, intramuscular fat is represented by the 312 

white colur and the lean is illustrated by the grey colur. In general, SE offered 313 

images that are sharper and better defined than those obtained by GE and 314 

T3D acquisition sequences. This effect of the sequence acquisition of MRI has 315 

been previously reported in (Caballero et al. 2017a; Pérez-Palacios et al. 2017).  316 

Once the 3D images of loins were reconstructed, they were analyzed by 317 

three computational texture algorithm previously adapted to 3D images. Table 318 

2 shows the average values of all 3D computational texture features from MRI 319 

of loins acquired with different sequences. This finding is so remarkable, since it 320 

shows the goodness of the interpolation and 3D reconstruction procedures and 321 

of the modified texture analysis algorithms, and let it evaluate the influence of 322 

the acquisition sequence on the values of the 3D texture features. As can be 323 

observed in table 2, SE obtained the highest values for Energy, Correlation, IDM, 324 

LNE, SM, LRE, GLRE, LRLGE and LRHGE, while the highest levels of HC, Contrast, 325 

ENT, SER, HGRE and SRHGE were found in GE, and, in T3D, Entropy, Inertia, CS, 326 

CP, Dissimilarity, SNE, NNU, GLNU, RLNU, RPC and SRLGE showed the highest 327 

values. The computational texture features have been related to some 328 
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properties of the images (Ávila et al., 2015a; Mohanty et al., 2011; Murali et al., 329 

2011). Energy and NNU measure the uniformity of the images, Entropy and SM, 330 

the complexity, IDM and ENT, the homogeneity, SNN the fineness, and LNE the 331 

roughness. Correlation, HC and Inertia are associated to the grey level of the 332 

pixels. The symmetry of the images and of the grey levels are related to CS and 333 

CP, respectively. Contrast and Dissimilarity yield measurement of the contrast 334 

and the differences among the grey levels of the image. SER, LRE and RPC are 335 

associated to the quantity and size of the runs. GLNU and RLNU depend on the 336 

equitable distribution of the runs, and LGRE and GLRE on the high and low grey 337 

levels distribution. SRLGE y SRHGE are associated to long runs and LRHGE and 338 

LRLGE to big runs.   339 

These semantic approximation between computational texture features 340 

and properties of the images could be considered to explain some differences 341 

due to the sequence acquisition. Images from SE seems to be rougher and less 342 

fine than those from T3D, since LNE, which measures the roughness of the 343 

images, showed the highest values in SE, and SNE, which is related to the 344 

fineness of the images, obtained the highest values in T3D. In T3D images, the 345 

runs should not be distributed equitably, due to the highest values for GLNU and 346 

RLNU when this sequence acquisition is applied. And big runs should be found 347 

in SE images, because of this sequence acquisition obtained the highest values 348 

of LRHGE and LRLGE. 349 

PREDICTION OF PHYSICO-CHEMICAL CHARACTERISTICS OF LOIN AS A FUNCTION 350 

OF 3D TEXTURES FEATURES 351 

The physico-chemical parameters related to the loin quality were 352 

predicted from the 3D texture features by using: a) three sets of 3D images 353 
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acquired with different sequences (SE, GE and T3D), b) different texture 354 

algorithms (GLCM, NGLDM, GLRLM, GLCM+NGLDM+GLRLM) and c) different 355 

predictive techniques (MLR, IR). Therefore, the discussion focuses on 356 

determining the best combination of sequence of image acquisition, algorithm 357 

of 3D texture features and prediction technique. 358 

Thus, for each physico-chemical parameter, twenty-four prediction 359 

equations were obtained (3 acquisition sequence x 4 computational texture 360 

algorithms x 2 predictive techniques). Tables 3 and 4 show the values of the 361 

correlation coefficients and MAE for the predictive analysis carried out by MLR 362 

and IR, respectively. 363 

When using MLR, combination of SE and GE acquisition sequence with 364 

any computational algorithm (GLCM, NGLDM, GLRLM, GLCM+NGLDM+GLRLM) 365 

gave correlation values higher than 0.75 (very good to excellent correlation) 366 

and MAE values lower than 2 for most physico-chemical parameters. In the 367 

case of T3D, in general, correlation coefficient between 0.5 and 0.75 368 

(moderate to very good correlation) and MAE lower than 2 were obtained in 369 

combination to any computational algorithm. Thus, initially, all studied 370 

combination of sequence acquisition, especially of SE and GE, with 3D 371 

algorithms could be appropriated.  372 

Regarding to IR (Table 4), a similar trend than observed when using MLR 373 

was found. Generally, the combination of SE or GE with any algorithm of 3D MRI 374 

analysis (GLCM, NGLDM, GLRLM, GLCM+NGLDM+GLRLM) offered very good to 375 

excellent correlation coefficients (R > 0.75) and MAE values lower than 2. In the 376 

case of T3D in combination with any computational algorithm, moderate to 377 

very good correlation coefficient (R= 0.5-0.75) and MAE lower than 2 were 378 
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obtained for most physico-chemical parameters. In this case, again, any 379 

combination of sequence acquisition, especially SE or GE, with any 3D 380 

algorithm could be initially applied. 381 

3D approaches showed a higher accuracy, especially when using T3D 382 

acquisition sequence in comparison to prediction results on physico-chemical 383 

parameters of loins based on 2D texture features (Pérez-Palacios et al., 2017). 384 

This could be ascribed to the distance between slices that is lower in T3D than in 385 

SE and GE. Consequently, T3D obtains more information from MRI than the 386 

other sequences. Thus, when using classical texture features to analyse 2D MRI 387 

from T3D sequence acquisition, some information may be lost, however, in 388 

reconstructed 3D images all information is considered in a useful way. 389 

Moreover, other authors have also found better results using 3D than 2D images 390 

(Miklos et al., 2015). 391 

Correlation coefficients and MAE values obtained by MLR and IR have 392 

also been compared. In general, no marked differences have been found in 393 

most physico-chemical parameters. 394 

Thus, considering the prediction accuracy the following combinations of 395 

sequence acquisition - 3D texture algorithm – prediction technique of data 396 

mining could be used for prediction physico-chemical parameters of loins as a 397 

function of 3D texture features: SE - GLCM+NGLDM+GLRLM – MLR; SE - GLCM – 398 

IR; SE - NGLDM – IR; SE - GLRLM – IR; SE - GLCM+NGLDM+GLRLM – IR; GE - GLCM 399 

– IR; GE - NGLDM – IR; GE - GLRLM – IR; GE - GLCM+NGLDM+GLRLM – IR. 400 

Taking a step forward regarding the best combination for prediction 401 

physico-chemical parameters of loins, apart from the accuracy in the 402 

determination, the sake of simplicity and the computational efficiency are also 403 
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notable aspects that should be take into account. In regards to the MRI 404 

sequence acquisition, both SE and GE could be used. However, exploring on 405 

the results with more detail, it is noted that SE achieved slightly higher 406 

correlation coefficients and lower MAE than GE, when applying MLR. This can 407 

be ascribed to the better performance in terms of the signal-to-noise ratio of SE 408 

than GE and T3D, which are characterized by a strong signal-to-noise ratio and 409 

fast acquisition. However, in IR, SE and GE are so similar. In this case, the 410 

computational time (total time to acquire all MRI of one loin for each 411 

configuration of each acquisition sequence) should be considered, which is 412 

lower in GE (38 min) than in SE and T3D (50 and 58 min, respectively). As for the 413 

3D texture algorithm, in the case of MLR, GLCM+NGLDM+GLRLM offered slightly 414 

better prediction results than GLCM, NGLCM and GLRLM. When using IR, GLCM 415 

could be selected as the best option. In terms of computational time, GLCM 416 

and GLRLM are more appropriate (O(n²)) than NGLDM and 417 

GLCM+NGLDM+GLRLM (O(n³)) (Caballero et al., 2017b). In relation to the 418 

predictive technique of data mining, which were comparable in terms of 419 

prediction results, MRI leads to two-order polynomial equations, with a number 420 

of independent variables (computational texture features), and IR leads to 421 

sixth-order equations with only one independent variable. Thus, MLR is simpler 422 

and requires less algorithm complexity, but the prediction equation of IR needs 423 

less computational data. The lineally dependence between data should also 424 

be considered. In fact, the application of IR is recommended when the values 425 

of the database are highly correlated (Perez-Palacios et al., 2014). Considering 426 

all these premises, it could be indicate the combination of GE with GLCM and 427 

IR for predicting physico-chemical parameters of loins as a function on 3D 428 

texture features from MRI with high accuracy and low computational 429 
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complexity. A different option is indicated when using 2D texture features. In this 430 

case, the combination of SE acquisition sequence, GLCM method, and MLR 431 

seems to the best option (Pérez-Palacios et al., 2017). 432 

MRI techniques allow for the detection of Hydrogen and other features 433 

like fat fluidity and water retention, which easily explains the accurate results for 434 

prediction moisture, water activity and lipid. In the case of colur coordinates 435 

and salt, some discussion is worth mention. Colur coordinates are mainly related 436 

to characteristics of fresh meat and changes during processing (water loss, 437 

myoglobin oxidation) (Perez-Palacios et al., 2011), and salt influences on the 438 

activity of muscle enzymes, water activity and protein solublization, and 439 

consequently on the texture and flavour of the final product (Toldrá et al., 440 

1997). These chemical reactions could modify the relation of Hydrogen with 441 

other molecules, leading to a different response of Hydrogen in MRI and image 442 

texture parameters. In the same way. In addition, previous authors have shown 443 

that 1H MRI (Fantazzini et al., 2005, 2009; Caballero et al., 2017) is a suitable tool 444 

to investigate salt in inner layers of hams, finding that computational texture 445 

features are able to differentiate muscle with different salt content.  446 

As example, Table 5 shows prediction equations for physico-chemical 447 

parameters of loins by applying IR on computational texture features of GLCM 448 

method from MRI acquired with GE sequence. As can be seen, moisture and 449 

water activity depend on IDM, lipid and L colur coordinate on HC, salt on CS 450 

and a* and b* colur coordinates on Energy. These associations between the 451 

physico-chemical parameters and the computational texture features could 452 

be ascribed to the properties of the images that are defined by the 453 

computational texture features. Thus, moisture and water activity would be 454 
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associated to the homogeneity of the image, lipid and L, a* and b* colur 455 

coordinates to the grey level of the pixels and salt to the symmetry of the 456 

images. This can be an important contribution for the ‘‘semantic gap” existing 457 

between the computational features and some biological terms, which has 458 

been previously claimed (Jian et al., 2009; Reyes et al., 2008; Pérez-Palacios et 459 

al., 2010b) 460 

To validate the proposed prediction equations, real and predicted 461 

values of physico-chemical parameters were statistically compared (Table 6). 462 

As can be seen, no significant differences (p>0.05) were found for all physico-463 

chemical parameters of both fresh and dry-cured loins. This finding reinforced 464 

the accuracy of this method. It is also worth noting the fact that the same 465 

prediction equations can be applied for predicting in fresh and dry-cured loins, 466 

which is more comfortable than having to use different equations for fresh and 467 

dry-cured products, as proposed previously in 2D images (Caballero et al., 468 

2017a; Pérez-Palacios et al., 2017).  469 

CONCLUSIONS 470 

Interpolation and 3D reconstruction procedures as well as the 471 

adaptation of classical computational texture analysis algorithms to analyze 3D 472 

images described in this work allow i) analyzing MRI of fresh and dry-cured loins 473 

appropriately, and ii) carrying out predictive analysis of the physico-chemical 474 

parameters of loins.   475 

The sequence acquisition of MRI of loins significantly influences the visual 476 

appearance of the 3D reconstructed MRI of loins, as well as the values of the 477 

3D computational texture features. 478 
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It is possible to achieve prediction equations for the physico-chemical 479 

parameters of loins as a function of 3D computational texture features of MRI. 480 

The accuracy of the prediction equations are principally influenced by 481 

the sequence acquisition of MRI, whereas the 3D algorithm and the predictive 482 

technique are not notable effects. However, these three factors have an effect 483 

on the computational cost of the prediction results. 484 

Thus, in terms of accuracy, different combinations of sequence 485 

acquisition (SE or GE), 3D algorithm (GLCM, GLRLM, NGLDM, 486 

GLCM+NGLDM+GLRLM) and predictive technique (MLR, IR) can be used to 487 

determine physico-chemical parameters of fresh and dry-cured loins non-488 

destructively. However, if the computational cost is also considered, the 489 

combination of GE – GLCM – IR seems to be the best option. 490 
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Figure Captions 

Figure 1. Experimental design 

Figure 2. Interpolation and 3D reconstruction of MRI from different acquisition 

sequences 

Figure 3. Adaptation of computational texture algorithms from 2D (a) to 3D 

images (b) 
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Figure 1. General procedure.
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Figure 2: Interpolation and 3D reconstruction of MRI images from different 

acquisition sequences. 
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Figure 3: Adaptation of computational texture algorithms from 2D (a) to 3D 

images (b).  
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Table 1. Parameters for each configuration of the different acquisition 

sequences: SE (spin echo), GE (gradient echo) and T3D (turbo 3D). 

 

Sequence Conf. 
TE 

(ms) 

TR 

(ms) 

 

NA FA NIm 
Thick  

(ms) 

 

FOV 

(mm) 

 

FOH 

SE 

1 26 630 3 n/a 29 4 150x150 None 

2 18 900 3 n/a 29 4 150x150 None 

3 34 630 3 n/a 29 4 150x150 None 

4 26 630 3 n/a 29 4 150x150 None 

5 26 630 1 n/a 29 4 150x150 None 

6 26 630 5 n/a 29 4 150x150 None 

7 26 630 3 n/a 29 4 150x150 High 

8 26 630 3 n/a 29 4 150x150 Low 

GE 

1 14 1450 7 75 29 4 160x160 None 

2 14 1450 9 75 29 4 160x160 None 

3 14 1800 7 75 29 4 160x160 None 

4 14 800 7 75 29 4 160x160 None 

5 14 2500 7 10 29 4 160x160 None 

6 14 1450 7 90 29 4 160x160 None 

7 14 1450 7 75 29 4 160x160 High 

8 14 1450 7 75 29 4 160x160 Low 

T3D 

 

1 16 38 2 65 122 1.1 180x180x140 None 

2 8 38 2 65 122 1.1 180x180x140 None 

3 24 51 2 65 122 1.1 180x180x140 None 

4 8 25 2 65 122 1.1 180x180x140 None 

5 16 120 2 65 122 1.1 180x180x140 None 

6 16 38 2 10 122 1.1 180x180x140 None 

7 16 38 4 10 122 1.1 180x180x140 None 

8 16 38 2 65 122 1.1 180x180x140 Low 

9 16 38 2 90 122 1.1 180x180x140 None 

10 16 38 2 65 122 1.1 180x180x140 High 

11 16 38 2 65 122 1.1 
180x180x1v. 

40 
Low 

 
Conf. = Configurations; TE = Echo Time; TR = Repetition Time; NA = Number of 

Acquisitions; FA = Flip Angle; NIm = Number of Images; Thick = Thickness; FOV = Field Of 

View; FOH = Filter Of Hamming; n/a = not applicable. 
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Table 2. Normalized values of the 3D computational texture features (from three 

adapted algorithms) of the MRI of loins acquired with spin echo, gradient echo 

and Turbo 3D sequences. 

 

 FEATURES SPIN ECHO 
GRADIENT 

ECHO 
TURBO 3D p 

GLCM 

Energy 0.2866 0.0924 0.0352 < 0.001 

Entropy 0.4374 0.6093 0.7264 < 0.001 

Correlation 0.2409 0.0441 0.0214 < 0.001 

HC 0.6118 0.6540 0.5546 0.010 

IDM 0.4270 0.2502 0.1965 < 0.001 

Inertia 0.1159 0.1988 0.3248 < 0.001 

CS 0.3365 0.3849 0.4558 < 0.001 

CP 0.0665 0.1849 0.3115 < 0.001 

Contrast 0.5734 0.5949 0.5045 0.026 

Dissimilarity 0.2436 0.3567 0.4638 < 0.001 

NGLDM 

SNE 0.5096 0.4581 0.7892 < 0.001 

LNE 0.2688 0.0839 0.0777 < 0.001 

NNU 0.5068 0.2874 0.7197 < 0.001 

SM 0.4162 0.2090 0.2452 < 0.001 

ENT 0.4100 0.6775 0.5610 < 0.001 

GLRLM 

 

LRE 0.6559 0.3938 0.6294 < 0.001 

SER 0.2099 0.4841 0.2093 < 0.001 

GLNU 0.6394 0.2820 0.8796 < 0.001 

RLNU 0.4621 0.4484 0.7924 < 0.001 

RPC 0.7660 0.5817 0.9311 < 0.001 

GLRE 0.4254 0.1782 0.2462 < 0.001 

HGRE 0.4334 0.5533 0.3747 < 0.001 

SRLGE 0.0532 0.0644 0.1138 0.005 

SRHGE 0.4254 0.5672 0.3891 < 0.001 

LRLGE 0.3597 0.1386 0.1726 < 0.001 

LRHGE 0.4434 0.4165 0.2667 < 0.001 
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Table 3. Correlation coefficient (R) and mean absolute error (MAE) of the 

prediction equations for physico-chemical parameters of loin obtained by 

multiple linear regression (MLR), as function of 3D computational texture 

features algorithms from different sequences of MRI acquisition (spin echo: SE, 

gradient echo: GE, turbo 3D: T3D).  

 

   

GLCM/MAE NGLDM/MAE GLRLM/MAE 

GLCM   

NGLDM/MAE 

GLRLM 

Moisture 

SE 0.931 / 4.090 0.978 / 2.898 0.948 / 3.808 0.978 / 2.601 

GE 0.965 / 3.234 0.882 / 5.254 0.975 / 2.704 0.976 / 2.198 

T3D 0.796 / 7.247 0.632 / 9.325 0.734 / 7.685 0.739 / 8.208 

Water 

activity 

SE 0.956 / 0.013 0.975 / 0.011 0.945 / 0.014 0.959 / 0.010 

GE 0.971 / 0.010 0.853 / 0.020 0.972 / 0.010 0.974 / 0.007 

T3D 0.795 / 0.026 0.635 / 0.033 0.742 / 0.029 0.724 / 0.031 

Lipid 

SE 0.639 / 4.265 0.718 / 3.711 0.823 / 3.061 0.908 / 2.182 

GE 0.765 / 3.235 0.627 / 4.112 0.603 / 3.974 0.852 / 2.521 

T3D 0.649 / 3.633 0.542 / 3.891 0.505 / 3.838 0.603 / 3.766 

Salt 

SE 0.946 / 0.288 0.968 / 0.249 0.945 / 0.308 0.987 / 0.165 

GE 0.962 / 0.271 0.850 / 0.458 0.970 / 0.226 0.972 / 0.173 

T3D 0.784 / 0.589 0.635 / 0.738 0.718 / 0.706 0.683 / 0.717 

Color 

 L* 

SE 0.906 / 2.847 0.709 / 4.373 0.919 / 2.630 0.924 / 2.381 

GE 0.835 / 3.358 0.692 / 4.093 0.874 / 3.245 0.855 / 3.354 

T3D 0.629 / 5.042 0.602 / 4.638 0.574 / 5.326 0.642 / 4.899 

a* 

SE 0.820 / 0.941 0.835 / 0.774 0.854 / 0.784 0.924 / 0.572 

GE 0.842 / 0.857 0.673 / 1.233 0.712 / 1.105 0.779 / 0.994 

T3D 0.734 / 0.991 0.444 / 1.305 0.562 / 1.218 0.665 / 1.081 

b* 

SE 0.733 / 0.832 0.744 / 0.850 0.771 / 0.804 0.686 / 0.941 

GE 0.823 / 0.787 0.680 / 0.908 0.726 / 0.835 0.810 / 0.820 

T3D 0.653 / 0.959 0.380 / 1.109 0.517 / 1.008 0.575 / 0.995 
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Table 4. Correlation coefficient (R) and mean absolute error (MAE) of the 

prediction equations for physico-chemical parameters of loin obtained by 

isotonic regression (IR), as function of 3D computational textures feature 

algorithms from different sequences of MRI acquisition (spin echo: SE, gradient 

echo: GE, turbo 3D: T3D).  

 

   

GLCM/MAE NGLDM/MAE GLRLM/MAE 

GLCM   

NGLDM /MAE  

GLRLM 

Moisture 

SE 0.993 / 1.444 0.993 /   1.543 0.904 / 3.333 0.993 / 1.503 

GE 0.989 / 2.009 0.891 /   3.204 0.906 / 3.712 0.989 / 2.009 

T3D 0.881 / 4.179 0.623 / 10.145 0.782 / 6.756 0.881 / 4.179 

Water 

activity 

SE 0.994 / 0.004 0.994 /   0.005 0.954 / 0.008 0.994 / 0.004 

GE 0.995 / 0.004 0.874 /   0.013 0.916 / 0.008 0.995 / 0.004 

T3D 0.872 / 0.015 0.522 /   0.041 0.791 / 0.011 0.872 / 0.015 

Lipid 

SE 0.751 / 3.003 0.730 /   3.095 0.654 / 3.567 0.727 / 3.136 

GE 0.880 / 2.301 0.910 /   2.105 0.554 / 4.160 0.702 / 3.298 

T3D 0.675 / 3.317 0.564 /   3.745 0.551 / 3.739 0.675 / 3.317 

Salt 

SE 0.998 / 0.051 0.997 /   0.061 0.954 / 0.138 0.998 / 0.051 

GE 0.998 / 0.043 0.860 /   0.270 0.921 / 0.204 0.998 / 0.043 

T3D 0.869 / 0.285 0.561 /   0.847 0.791 / 0.496 0.869 / 0.285 

Color 

 

L

* 

SE 0.915 / 2.207 0.880 /   3.004 0.942 / 1.908 0.915 / 2.210 

GE 0.842 / 3.250 0.695 /   3.925 0.828 / 3.104 0.842 / 3.250 

T3D 0.745 / 3.925 0.340 /   5.975 0.660 / 4.925 0.745 / 3.925 

a

* 

SE 0.862 / 0.627 0.802 /   0.743 0.739 / 0.907 0.798 / 0.724 

GE 0.936 / 0.448 0.933 /   0.470 0.629 / 1.205 0.933 / 0.471 

T3D 0.724 / 0.938 0.652 /   1.061 0.614 / 1.109 0.724 / 0.938 

b

* 

SE 0.749 / 0.825 0.723 /   0.848 0.684 / 0.945 0.749 / 0.749 

GE 0.782 / 0.831 0.823 /   0.753 0.643 / 1.044 0.782 / 0.831 

T3D 0.705 / 0.862 0.464 /   1.048 0.587 / 0.978 0.705 / 0.862 
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Table 5. Prediction equations for physico-chemical parameters of loins 

obtained by applying isotonic regression on 3D computational texture features 

from GLCM of MRI images acquired by gradient echo sequences. 

 

Moisture = 
1E-08 * IDM6 - 4E-06 * IDM 5 + 0,0006 * IDM 4 - 0,045 * IDM 3 + 

1,7593 * IDM 2 - 35,188 * IDM + 282,21 

Water activity  = -120,49 * IDM 2 + 227,2 * IDM - 106,15 

Lipid = 
0,0009 * HC4 - 0,1103 * HC3 + 5,0511 * HC2 - 98,099 * HC + 

662,09 

Salt = 
1,5734 * CS6 + 214,18 * CS5 - 3627,4 * CS4 + 21959 * CS3 – 58395 

* CS2 + 57959 * CS - 0,0425 

Color 

L* = 
-9E-07 * HC6 + 0,0002 * HC5 - 0,0286 * HC4 + 1,7359 * HC3 - 

58,586 * HC2 + 1043,7 * HC - 7666,7 

a* = 
-0,0204 * Energy5 + 1,4142 * Energy4 - 39,227 * Energy3 + 543,34 

* Energy2 - 3759,1 * Energy + 10396 

b* = 
0,1136 * Energy6 - 4,7197 * Energy5 + 81,058 * Energy4 - 736,67 * 

Energy3 + 3736,2 * Energy2 – 10026 * Energy + 11125 
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Table 6. Validation of the prediction equations by statistical comparison 

between real and predicted values for the physico-chemical parameters of 

fresh and dry-cured loins.  

 Fresh loin Dry-cured loin 

 Real Predicted p Real Predicted p 

Moisture (%) 65.53 64.55 0.239 32.26 33.08 0.238 

Water activity (%) 0.98 0.98 0.082 0.86 0.86 0.173 

Lipid (%) 12.77 13.31 0.213 21.61 21.16 0.713 

Salt (%) - -  2.67 2.60 0.121 

L 55.33 54.81 0.321 40.61 41.05 0.64 

a* 12.30 12.43 0.354 15.31 15.20 0.716 

b* 5.58 5.66 0.558 8.05 7.98 0.77 
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