
FEBS Open Bio 4 (2014) 923–927
journal homepage: www.elsevier .com/locate / febsopenbio
Targeted disruption of the heat shock protein 20–phosphodiesterase
4D (PDE4D) interaction protects against pathological cardiac
remodelling in a mouse model of hypertrophy
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Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload medi-
ated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D)
complex results in attenuation of action potential prolongation and protection against adverse car-
diac remodelling. The later was evidenced by improved contractility, decreased heart weight to body
weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disrup-
tion of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac
remodelling.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction either using genetic engineering [5] or phospho-HSP20 analogues
The small heat shock protein, HSP20 is transiently up-regulated
during stress/injury to the heart and underpins a plethora of car-
dio-protective properties including protection against apoptosis,
inflammatory signalling, b-agonist-induced remodelling, and regu-
lation of Ca2+ cycling [2]. HSP20 confers its protective properties via
a number of diverse signalling systems including, prevention of cas-
pase activity, enhancement of Akt/PKB signaling, inhibition of NF-
jB signalling, reduction in cardiac myocyte apoptosis and necrosis,
stabilisation of the cytoskeleton and increased cardiac myocyte
shortening rates due to faster calcium transients [3]. Crucially, phos-
phorylation of HSP20 at Ser16 by PKA is critical for its protective
actions [4], as illustrated by a variety of overexpression studies
[6]. Cellular PKA activity is tightly regulated both spatially and
temporally by the compartmentalisation of cAMP [7,8]. In cardiac
myocytes, cAMP is a pivotal second messenger influencing inotropic
and chronotropic activities, as well as hypertrophy and apoptosis
[9]. Targeted intracellular hydrolysis by cAMP-specific phosphodi-
esterases (PDEs) enables the creation of subcellular compartments
with high levels of cAMP relative to the surrounding environment
[10]. Recent research has shown that HSP20 sequesters the PDE4D
sub-family, with targeted disruption of this complex resulting in
hyper-phosphorylation of HSP20 and protection of neonatal cardio-
myocytes from b-adrenergic-induced hypertrophy [11]. Disruption
of the HSP20–PDE4 complex was achieved following mapping of the
protein–protein interface by peptide array, which allowed selection
of a peptide (called peptide 906) of PDE4 sequence that was capable
of interfering with HSP20 binding [11]. Phosphorylation of HSP20 by
PKA is also facilitated by virtue of association to the PKA anchor
protein, AKAP Lbc [12]. Here, using in vitro and in vivo techniques,
we show that peptide 906-mediated disruption of the HSP20–
PDE4D complex normalises ISO-induced elongation of action poten-
tial duration and reduces the development of the hypertrophic
response in aortic-banded mice by attenuating cardiac remodelling,
improving left ventricular function and decreasing cardiac fibrosis.
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Fig. 1. HSP20-PDE4D peptide disruptor modulates APD in hiPSC-CMs. hiPSC-CMs (Cellular Dynamics International, Madison, Wisconsin) were pre-treated for 2 h with vehicle
(PBS), bs906 (10 lM) or control peptide (10 lM), followed by 24 h co-incubation with ISO (10 lM). Cells were loaded with 3 lM di-4-ANEPPS and electrical activity of
spontaneously beating cardiomyocytes was registered using CellOPTIQ platform (Clyde Biosciences Ltd.). (A) Example AP traces (grey trace baseline, black trace 24 h 10 lM
ISO/Vehicle). (B) (i) Average values of APD at 50% (APD50) and (ii) 90% of repolarisation (APD90) from baseline (white columns) or after treatment (black columns). Data
represents mean ± S.E.M, measured from 15 areas per treatment from n = 3 separate cultures, ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, one-way ANOVA post hoc Tukey’s test.
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2. Methods

2.1. Action potential measurements in human induced pluripotent
stem cell-derived cardiomyocytes

Human induced pluripotent stem cell-derived cardiac myocytes
(hiPSC-CMs; obtained from Cellular Dynamics Inc.) were maintained
in culture for 10 days. Cells were incubated for 2 h in the presence of
vehicle (PBS), HSP20–PDE4D disruptor peptide (bs906; 10 lM) or
scrambled control peptide (10 lM) followed by 24 h in the presence
or absence of isoproterenol (ISO, 10 lM). Peptide bs906 and
scrambled control peptide correspond to the sequence of ‘‘peptide
906’’ and ‘‘peptide control’’ respectively, previously used in cellular
studies [11]. Of note, both bs906 and scrambled control peptide
contained N-terminal stearoyl making them cell permeable. To
obtain the action potential recordings the cells were washed in
serum free medium and exposed transiently to 3 lM di-4-ANEPPS
and left for 60–90min before electrical recordings were made. The
multi-well plate was placed on a stage incubator of an inverted
microscope and the spontaneous electrical activity was recorded
from the di-4-ANEPPS fluorescence signal (using CellOPTIQ
platform) from areas of hiPSC-CMs in individual wells visualised
using a 40� (NA0.6) objective. Fluorescence signals were digitised
at 10 KHz and the digital records subsequently analysed off-line.
Each point corresponds to the mean ± S.E.M of 15 values obtained
by measuring different fields per well in 3 plates. Statistical analysis
was carried out using one-way ANOVA tests followed by post hoc
Tukey’s tests using Origin 7.5. Significance was set at p 6 0.05.
s L
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Fig. 2. Disruption of HSP20–PDE4D complex reverses MTAB induced cardiac dysfunction. Histograms of % fractional shortening (A) and post-mortem heart weight to body
weight ratios (B) Mice undergoing sham or MTAB surgery were treated with either 10 mg/kg bs906 or control twice (i) or once weekly (ii) for 4 weeks. Data represent
mean ± S.E.M., n = 3–8, ⁄p < 0.05 ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns = p > 0.05, one-way ANOVA post hoc Tukey’s test.
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2.2. MTAB surgery and transthoracic echocardiography

Healthy adult male C57BL/6J mice (Harlan, UK) weighing
between 25 and 30 g were used for these experiments. Procedures
conformed to the UK Animals (Scientific Procedures) Act 1986 and
were approved by institutional ethical review committees. MTAB
and sham surgical protocols were performed as previously
described [13]. Immediately following surgery, animals were
injected subcutaneously with either HSP20–PDE4D disruptor pep-
tide [11] (bs906) or a scrambled control peptide (10 mg/kg) twice
weekly and were left for 4 weeks to allow cardiac remodeling to
occur. Echocardiographic assessment of left ventricular function
was performed 4 weeks after MTAB or sham surgery, as described
previously [13]. LV end systolic dimension (LVESD) and LV end
diastolic dimension (LVEDD) were assessed from M-mode traces
and % fractional shortening calculated. Fractional shortening (FS)
is expressed as [(LVEDD � LVESD)/LVEDD] � 100. An average of
three measurements of each variable was used.

2.3. Post-mortem measurements

After 4 weeks, animals were euthanised with an intravenous
injection of pentobarbital sodium (Euthatal, 200 mg/kg). Terminal
anaesthesia was confirmed by testing loss of the pedal reflex. The
heart, liver and lungs were rapidly excised and washed thoroughly
in ice-cold Ca2+-free Krebs solution (120 mM NaCl, 5.4 mM KCl,
0.52 mM NaH2PO4, 20 mM HEPES, 11.1 mM glucose, 3.5 mM
MgCl2, 20 mM Taurine, 10 mM Creatine; pH 7.4). Tissue was either
homogenised or processed as described in the following sections.

2.4. Picro-sirius red staining

LV tissue was processed, embedded in paraffin and sectioned.
Slides were stained for 1 h in picrosirius red solution containing
0.1% (w/v) direct red 80 dye in a saturated aqueous solution of
1.3% picric acid as previously described [14]. Five random sections
per heart (5 lm sections with a distance of 200 lm between sec-
tions), and 5 areas of interest per section were photographed at
10� magnification using non-polarised light with a Leica DM LB2
microscope and a Leica DFC 320 camera (Leica Microsystems,
Germany). Quantification of picrosirius red staining used Image-
ProPlus software (version 5.0; MediaCybernetics), with stained
area expressed as a percentage of the total area of interest. Values
were averaged to give one representative value per heart.

2.5. Statistics

Results were expressed as the mean ± S.E.M. of n observations,
where n refers to the number of animals or samples. Statistical
comparisons were performed using the student’s unpaired t test
and one-way ANOVA, unless otherwise stated. p < 0.05 was
considered statistically significant.

3. Results

3.1. Attenuation of isoprenaline-induced action potential elongation
by bs906

The hypertrophied heart displays remodelling of its metabolic,
biological, and electrophysiological properties, all of which are risk
factors for ventricular arrhythmias and cardiac failure [15].
Recently, HSP20 has been shown to regulate Ca2+ cycling and
SR Ca2+ load [16], with transgenic mice overexpressing HSP20
displaying enhanced basal cardiac function and protection against
b-adrenergic-induced LV dysfunction [2,17]. Tight regulation of SR
Ca2+ transients is critical for normal/synchronised cardiac cycles
and action potential duration (APDs). While rodent neonatal and
adult cardiomyocytes are appropriate for mechanistic studies of
HSP20–PDE4 disruption, the use of a human-derived cell line may
be more appropriate to evaluate the clinical relevance of drug effects
[18]. To this end, we pre-treated human induced pluripotent stem
cell-derived cardiac myocytes (hiPSC-CMs) in a similar manner to
s L
icense



Fig. 3. Cardiac fibrosis is modulated with disruption of HSP20–PDE4D complex. Picrosirius red staining of sham and MTAB hearts following treatment with 10 mg/kg bs906
or control peptide twice weekly (A). Histogram values (B) represent stained area expressed as a percentage of the total area of interest. Data represents mean ± S.E.M., n P 6,
⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns = p > 0.05, one-way ANOVA post hoc Tukey’s test.
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that used previously for mouse neonatal cardiac myocytes [11], that
is for 2 h with either vehicle (PBS), bs906 (10 lM) or scrambled con-
trol peptide (10 lM), followed by 24 h in the presence or absence of
ISO (10 lM) to determine if disruption of the HSP20–PDE4D interac-
tion could reverse hypertrophy and associated electrical remodel-
ling (Fig. 1). ISO-induced increases in APD at 50% and 90%
repolarisation (i.e. a hypertrophic phenotype) were reversed when
cells were pre-treated with bs906, but not with scrambled peptide
(50%: 463.9 ± 22.4 ms cf. 542.8 ± 27.0 ms, 90%: 581.3 ± 20.9 ms cf.
665.2 ± 19.6 ms, ISO + bs906 and ISO + scrambled peptide, respec-
tively, p < 0.05; Fig. 1A and B respectively,). Importantly, there was
no effect on APD 50 or 90 when cells were pre-treated with bs906
or scrambled peptide in the absence of ISO (50%: 446.1 ± 23.5 ms
cf. 441.2 ± 59.5 ms, 90%: 531.8 ± 22.2 ms cf. 543.5 ± 62.9 ms, bs906
and scrambled peptide, respectively, p > 0.05), suggesting that
bs906 acts only to normalise hypertrophic induced changes in elec-
trical signalling in hiPSC-CMs, possibly via prolonged inhibition of
protein phosphatase 1 (PP1) by HSP20[16].

3.2. Preserved cardiac function in bs906-treated hypertrophic mice

Another key feature of the hypertrophied and remodelling heart
is impaired LV function. To investigate whether HSP20–PDE4D
complex disruption could protect against LV dysfunction and
remodelling, we used a minimally invasive transverse aortic
banding (MTAB) model of pressure overload hypertrophy. Follow-
ing MTAB, mice were injected with either 10 mg/kg bs906 or
scrambled peptide over a 4-week period, followed by echocardiog-
raphy to determine the extent of LV remodelling. As shown in
Fig. 2A(i)), twice weekly injections of bs906, but not control, pre-
vented MTAB-induced decreases in left ventricular (LV) contractil-
ity (%fractional shortening: 47.1 ± 1.7% cf. 29.6 ± 2.0%, p < 0.0001,
MTAB + bs906 and MTAB + control, respectively, and 47.1 ± 1.7%
cf. 46.1 ± 1.1%, p > 0.05, MTAB + bs906 and sham + bs906, respec-
tively). Interestingly, a one-weekly dose of bs906 proved sufficient
in preventing LV dysfunction in MTAB mice (Fig. 2A(ii)), 38.5 ± 2.5%
cf. 29.2 ± 2.2%, p < 0.5, MTAB + bs906 and MTAB + control, respec-
tively, and 38.5 ± 2.5% cf. 40.4 ± 1.3%, p > 0.05 MTAB + bs906 and
sham + bs906, respectively).

3.3. Attenuation of MTAB-induced cardiac remodelling

Aberrant chronic and prolonged b-adrenergic stimulation is a
key feature of the diseased and remodelling heart. Cardiac
hypertrophy is a physiological response to pressure/volume over-
load that results in an increase in cardiac myocyte size. We have
previously shown that bs906 (but not scrambled control) could
attenuate cardiac myocyte hypertrophy in culture [11]; however,
ns L
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our current work has now validated this approach in an animal
model (Fig. 2B). Pressure-overload mediated cardiac remodelling
was attenuated with twice-weekly doses of bs906 (Fig 2B(i);
5.2 ± 0.3 cf. 4.6 ± 0.07, n P 6, p < 0.001, MTAB + scrambled and
sham + scrambled, respectively and 4.8 ± 0.1 cf. 4.7 ± 0.09, n = 8,
p > 0.05, MTAB + bs906 and sham + bs906, respectively). In fact,
one weekly dose of bs906 was adequate in reducing MTAB induced
remodelling (Fig. 2B(ii); 4.9 ± 0.2 cf. 6.0 ± 0.6, n P 3, p < 0.05,
MTAB + bs906 and MTAB + scrambled, respectively, and 4.9 ± 0.2
cf. 4.8 ± 0.1, n P 3, p > 0.05, MTAB + bs906 and sham + bs906,
respectively).

3.4. Reduced MTAB-induced interstitial fibrosis by bs906

Cardiac fibrosis is another important feature of the remodelling
heart that contributes to the pathogenesis of diastolic dysfunction
[13]. Cardiac fibrosis is the result of aberrant fibroblast prolifera-
tion, remodelling of the extracellular matrix and increased collagen
synthesis and deposition [19]. Analysis of picrosirius red stained LV
sections showed increased collagen deposition in MTAB hearts
treated with scrambled peptide twice weekly (Fig. 3A and
B; % stained area, 5.5 ± 0.9% cf. 1.7 ± 0.4%, n P 6, p < 0.001,
MTAB + scrambled and sham + scrambled, respectively), in corre-
spondence with previously published data [13]. By contrast, MTAB
mice treated twice weekly with bs906 showed a significant reduc-
tion in fibrosis (Fig. 3A and B; 2.4 ± 0.2% cf. 5.5 ± 0.9%, n P 6,
p < 0.001, MTAB + bs906 and MTAB + scrambled, respectively, and
2.4 ± 0.2% cf. 1.5 ± 0.2%, n P 7, p > 0.5, MTAB + bs906 and
sham + bs906, respectively). This observation is gratifyingly similar
to studies by other labs that have shown that excessive collagen
deposition can be reversed following treatment with a phospho-
peptide-analogue of HSP20 [20] or cardiac overexpression of
HSP20 [17].

4. Discussion

In summary, we have shown that targeted disruption of the
HSP20–PDE4D interaction attenuates myocardial remodelling fol-
lowing cardiac insult in a minimally invasive transverse aortic
banding model of pressure overload hypertrophy. This strategy
[10], previously validated in cellular systems [11], has advantages
over simple cell permeable phospho-peptide mimics of HSP20
[6,21] as these contain a labile phosphate group which can easily
be targeted by phosphatases and are difficult to mass produce.
High-throughput screening of small molecule libraries could also
be applied to unlock the cardio-protective potential of HSP20. This
approach has been used to discover a small molecule modulator of
HSP20 that promotes relaxation of human airway smooth muscle
cells and intact tissue ex vivo [1]. Our novel approach in targeting
the interaction of HSP20 with an inhibitory protein (PDE4D) may
represent a new therapeutic strategy for the treatment of a myriad
of cardiovascular disorders, including cardiac hypertrophy.
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