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Abstract

Artificial neural networks (ANNs) have been widely used for the analysis
of remotely sensed imagery. In particular, convolutional neural networks
(CNNs) are gaining more and more attention in this field. CNNs have proved
to be very effective in areas such as image recognition and classification, espe-
cially for the classification of large sets composed by two-dimensional images.
However, their application to multispectral and hyperspectral images faces
some challenges, especially related to the processing of the high-dimensional
information contained in multidimensional data cubes. This results in a sig-
nificant increase in computation time. In this paper, we present a new CNN
architecture for the classification of hyperspectral images. The proposed
CNN is a 3-D network that uses both spectral and spatial information. It also
implements a border mirroring strategy to effectively process border areas in
the image, and has been efficiently implemented using graphics processing
units (GPUs). Our experimental results indicate that the proposed network
performs accurately and efficiently, achieving a reduction of the computation
time and increasing the accuracy in the classification of hyperspectral images
when compared to other traditional ANN techniques.

Keywords: Hyperspectral imaging, deep learning, convolutional neural
networks (CNNs), classification, graphics processing units (GPUs).

1. INTRODUCTION

Remote sensing image acquisition and processing has become very impor-
tant in recent times in Earth observation problems, exhibiting many practical
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applications such as monitoring and management of the environment, agricul-
ture or security and defense/intelligence issues. Of particular importance is
the computationally efficient processing of images formed by multiple spectral
bands, called multispectral and hyperspectral images. These kinds of images
collect information corresponding to large observation areas on the surface
of the Earth, using dozens/hundreds of contiguous spectral bands [Chang
(2003)], thus creating a three-dimensional data cube with size significantly
larger than traditional remotely sensed images. As a result, multispectral
and hyperspectral images require particular computational improvements,
especially for their storage and advanced processing.

Several methods have been developed for fast processing and classification
of multispectral and hyperspectral images [Cheng et al. (2017); Yuan et al.
(2015)], from those that only use spatial or spectral information to those that
combine both kinds of data. This includes unsupervised techniques such as
clustering [Haut et al. (2017a); Tarabalka et al. (2009); Paoletti et al. (2017)].
However, supervised classifiers are often preferred, due to their capacity to
provide high classification accuracies, although these methods may be af-
fected by the limited availability of training samples as they generally need
a large number of samples in order to obtain those good results. In particu-
lar, supervised methods face challenges in the classification of hyperspectral
images due to the unbalance between the high dimensionality of the data
and the limited number of training samples available in practice (Hughes
phenomenon) [Khodadadzadeh et al. (2014)]. In this sense, support vector
machines (SVMs) [Scholkopf and Smola (2001)] and multinomial logistic re-
gression (MLR) [Böhning (1992)] have been proved to be very useful for the
supervised classification of hyperspectral images due to their ability to deal
with large input spaces [Melgani and Bruzzone (2004); Fauvel et al. (2008);
Plaza et al. (2009); Camps-Valls and Bruzzone (2005); Wu et al. (2015); Haut
et al. (2017b)]. Also, some sampling query strategies have been proposed to
address the limited availability of training samples, such as semi-supervised
and active learning methods [Li et al. (2010, 2011); Rajan et al. (2008)].

At this point, we can highlight several spatial-spectral classification meth-
ods that combine the strengths of semi-supervised methods and active learn-
ing techniques, for example those based on morphological component analysis
(MCA) [Starck et al. (2005)], a method that decomposes images into texture
and cartoon (piecewise smooth) parts. In [Zhou and Prasad (2017)], au-
thors presented a new framework that combines active and semi-supervised
learning with MCA for hyperspectral image classification. Also, in [Xu et al.
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(2016b)] authors presented a new classification framework for the fusion of hy-
perspectral and light detection and ranging (LiDAR) data, combining MCA
for textural feature extraction and MLR for classification purposes. The
multiple MCA (MMCA) [Xu et al. (2016a)] is an extension of the MCA that
uses both spatial and spectral features. Its goal is to separate an image into
two components: a smoothness component and a texture component.

On the other hand, due to their success in the field of pattern recog-
nition [Bishop (1995); Atkinson and Tatnall (1997)] and the availability of
multiple training techniques (including machine learning, deep learning and
active learning techniques, as well as supervised, unsupervised and semi-
supervised approaches) to deal with linearly non-separable data [Benedik-
tsson and Swain (1990)], artificial neural networks (ANNs) have attracted
the attention of a large number of researchers in the area of hyperspectral
image classification and analysis [Benediktsson et al. (1993); Yang (1999)]
as compared to probabilistic methods. In particular, we highlight the use of
convolutional neural networks (CNNs) [LeCun et al. (1998a)] as a powerful
deep learning model for image classification, which can effectively combine
the spatial and spectral information.

Deep learning and CNNs: a review

For years, building a machine learning system required a great deal of
effort in designing a feature extractor that would transform raw data (i.e.
pixel values from an image) into a feature vector from which the learning
subsystem could detect/classify patterns [LeCun et al. (2015)]. Deep learn-
ing (or deep structured learning) emerged in 2006 with deep belief networks
(DBNs)1 [Hinton et al. (2006); Hinton and Salakhutdinov (2006)] as a part of
a machine learning system that exploits many layers of non-linear information
processing for supervised or unsupervised feature extraction and transforma-
tion, and also for pattern analysis and classification [Bengio (2009)].

After DBNs, two new unsupervised deep models were developed: 1) a
method for learning sparse, overcomplete features that uses a linear encoder-
decoder preceded by a sparsifying non-linearity that turns a code vector into

1A DBN is composed by a stack of restricted Boltzmann machines [Smolensky (1986);
Larochelle and Bengio (2008)] (RBMs). The DBN core is a greedy learning algorithm that
optimizes the network weights layer by layer. Its complexity grows linearly with the size
and depth of the network.
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a quasi-binary sparse code vector [Ranzato et al. (2006)] and 2) a variant of
autoencoder with greedy layer-wise training [Bengio et al. (2007)].

With the advancement of technology (both hardware and software) and
the development of new optimization algorithms2 [LeCun et al. (1998b)] new
milestones were achieved in deep learning, giving as result three types of deep
methods:

• Unsupervised deep networks (generative learning): these methods work
without labeled classes, looking for patterns between pixels through
capturing high-order correlation of data (e.g. autoencoder-based meth-
ods3 [Licciardi and Del Frate (2011); Chen et al. (2014)], RBMs [Mid-
hun et al. (2014)], DBNs [Li et al. (2014b)], and deep Boltzmann ma-
chines or DBMs [Salakhutdinov and Hinton (2009); Wu et al. (2016)]).

• Supervised deep networks (discriminative deep networks): these models
work with labeled information and their goal is to categorize the input
data in these labels. They represent the most common form of machine
learning, deep or not [LeCun et al. (2015)], and these kinds of models
are usually more efficient to train and test, more flexible to construct,
and more suitable for end-to-end learning of complex systems [Deng
and Yu (2014)]. We can distinguish between linear supervised deep
method4 (e.g. deep neural networks or DNNs5 with linear activation
functions) and non-linear supervised methods (e.g. deep stacking net-
works or DSNs [He et al. (2016)], recurrent neural networks or RNNs6

2For example, new variants of gradient descent optimizer were developed, including
batch and mini-batch gradient descent, the stochastic gradient descent (SGD) or the in-
cluded momentum in SGD [Qian (1999)]. New optimizers also appear as Adagrad opti-
mizer [Duchi et al. (2011)] and its extension Adadelta [Zeiler (2012)] or the Adam optimizer
[Kingma and Ba (2014)]

3An autoencoder [Cho (2014); Karhunen et al. (2015)] is a neural network (or mapping
method) where the desired output is equal to the input data vector. We can distin-
guish between linear autoencoders, with only one hidden layer that works like a principal
component analysis (PCA) if its weights between the encoder and decoder are tied, and
non-linear or deep autoencoders, which have more modeling power by employing multiple
nonlinear intermediate layers symmetrically in the encoder and decoder [Cho (2014)].

4Linear classifiers have an important limitation: these methods can only carve their
input space into very simple regions (half-spaces) separated by a hyperplane [Chien (1974)].

5A DNN is a multi-layer perceptron (MLP) with many hidden and fully connected
layers.

6RNNs can also be used as generative learning models if the output is not a label
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and Convolutional neural networks or CNNs [LeCun et al. (2015)])7.

• Hybrid deep networks (semisupervised methods): these methods make
use of both generative and discriminative model components, i.e., they
work with and without labeled data (e.g. generative adversarial net-
works or GANs [Goodfellow et al. (2014)]). Semi-supervised learning
is very useful in hyperspectral image classification in order to deal with
the limited training samples problem [Ma et al. (2016)].

Focusing on CNNs, these supervised non-linear models are a special type
of deep learning model that is inspired by neuroscience [Ghamisi et al. (2017)]
and are designed to process data that come in the form of multiple arrays.
The literature on CNN applied to remote sensing classification shows different
points of view in the way these models are used. Basically there are three
ways to apply CNNs:

1. Extracting only spectral information: spectral-based classification ap-
proaches are conceptually simple and easy to be implemented, but they
neglect the spatial components [Li et al. (2014a)]. Normally, these
methods assume that each pixel is pure and typically labeled as a sin-
gle land use and land cover type [Fisher (1997)]. For spectral feature
classification with CNNs, the spectral feature of the original image data
is directly deployed as the input vector [Zhang et al. (2016a)], so we ob-
tain a 1-D CNN architecture that receives N × 1 input vectors, where
N is the number of spectral bands [Ghamisi et al. (2017); Hu et al.
(2015b); Chen et al. (2016)].

2. Extracting only spatial information: these models consider the neigh-
boring pixels of a certain pixel in the original remote sensing image
in order to extract the spatial feature representation [Zhang et al.
(2016a)]. As a result, 2-D CNN architectures are adopted, where the
input data is a patch of P ×P neighboring pixels [Vetrivel et al. (2017);

sequence associated with the input data sequence. Long short-term memory networks
(LSTMs) are a kind of RNN [Hochreiter and Schmidhuber (1997)].

7CNNs can also work in unsupervised and semi-supervised mode [Dosovitskiy et al.
(2014); Romero et al. (2016); Liu et al. (2017)]. On the other hand, recent efforts have re-
sulted in deconvolutional neural networks (DCNN) [Zeiler et al. (2010)]. In [Lu et al.
(2017)] authors combined the spatial pyramid model (SPM) with a shallow weighted
DCNN to learn a set of feature maps and filters by minimizing the reconstruction er-
ror between the input image and the convolution result.
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Chen et al. (2016); Hu et al. (2015a)]. In this sense, several methods
have been implemented in order to extract high-level spatial features, as
multi-scale image information [Liu et al. (2016); Zhao and Du (2016a);
Zhang et al. (2016b); Yu et al. (2017)]. For hyperspectral image analy-
sis normally it is necessary a pre-processing of the spectral information,
with reduction of the number of bands for example (using, e.g., PCAs
or autoencoders).

3. Extracting spectral-spatial information: the use of spatial features with
spectral information in combined fashion can significantly improve the
classification accuracy. When we talk about extracting spectral-spatial
information with CNNs, two types of models can be highlighted:

• Those models that mix various techniques in addition to CNNs to
extract spectral-spatial information separately and then combine
them, for example using a 1-D CNN and 2-D CNN [Zhang et al.
(2017); Yang et al. (2016)] or combining different spectral fea-
ture extractors with spatial CNNs [Zhao and Du (2016b)]. These
methods do not take full advantage of the joint spatial/spectral
correlation information.

• 3-D CNN architectures [Chen et al. (2016); Li et al. (2017)] that
compute each pixel in association with a P × P spatial neighbor-
hood and B spectral bands (P × P × B). These models apply
3-D kernels in order to learn the local signal changes in both the
spatial and the spectral domain of the hyperspectral data cubes,
exploiting important discriminative information for classification
and taking full advantage of the structural characteristics of the
3-D remote sensing data in general and hyperspectral images in
particular [Li et al. (2017)].

In this work, we propose an improved 3-D deep CNN model composed by
5 layers which uses all the spatial-spectral information of the hyperspectral
image. We also include a specific strategy for management of the borders
of the image and further develop an efficient implementation in graphics
processing units (GPUs) to significantly speed up the computational perfor-
mance. Deep Learning techniques, and in particular CNNs, involve a huge
amount of matrix and vector operations. Most of these operations can be
easily and massively parallelized using GPUs, due to their inherent design
with hundreds/thousands of cores that can compute one or several matrix
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Figure 1: CNN architecture. Each block or
layer of a CNN transforms the input volume
to an output volume of neuron activations.
Neurons in layer l are connected to a small
region of layer l − 1.

Figure 2: MLP architecture. All nodes in
one layer are fully connected with the nodes
of the previous layer.

operations in parallel which, compared to a CPU with a few cores, results in
a important decrease in computation time.

As a result, the main contributions of our work can be highlighted as
follows: 1) the development of a new CNN architecture that considers the
spatial and spectral information contained in hyperspectral images in simul-
taneous fashion, and 2) the development of an efficient implementation of the
newly proposed architecture on GPUs that allows for efficient exploitation of
the proposed methodology in real applications.

The remainder of the paper is organized as follows. Section 2 provides
some general aspects about CNNs. Section 3 describes the proposed CNN.
Section 4 validates the proposed approach by comparing it with classic ANNs
such as the MLP and other CNN implementations in the literature, in order
to illustrate the advantages of the proposed implementation in terms of both
computational efficiency and classification accuracy. Section 5 concludes the
paper with some remarks and hints at plausible future research lines.

2. CNNs

CNNs are composed by a set of blocks that can be applied both across
space and across time (images, audio and video signals). Each block trans-
forms the input volume to an output volume of neuron activations which
will serve as input to the next block. In contrast to conventional ANNs,
the blocks of neurons in CNNs operate like kernels which are connected and

7



applied over one patch of the input volume (see Figure 1), that is, the neu-
rons of a block are not fully-connected to all neurons of the previous layer
as in the standard MLP (see Figure 2). These blocks actually compose fea-
ture extraction stages, which specifically consist of three layers [Zhang et al.
(2016a)] that are the key parts of almost all CNN models:

1. Convolution layer: a 3-D layer where each neuron computes the dot
product between its weights and a small region of the input volume, i.e.
a rectangular section of the previous layer, to which it is connected. Its
goal is to identify certain features from the previous layer and mapping
their appearance to a feature map [LeCun et al. (2015)]. We can see
this layer as set of k filters of size l×l×q (filter bank) where the neurons
share the same weights and bias and connect the input volume to the
output volume [Zhang et al. (2016a)]. Each filter detects a particular
feature at every location on the input. The resulting output volume of
the layer l is a feature map of size dl×dl×kl that stores the information
where the feature occurs in the original input volume and is calculated

as zli = Bl +
∑kl−1

j=1 W
l
i,j ∗ zl−1j , where i ∈ [1, kl], Bl is the bias matrix

of layer l and W l
i,j is the weight matrix or filter (also known as kernel

or feature detector) 8 that connects the jth feature map in layer l − 1
(zl−1j ) with the ith feature map in layer l.

2. Nonlinearity layer: this layer embeds a nonlinear function (as the recti-
fied linear unit or ReLU [Jarrett et al. (2009); Nair and Hinton (2010);
Glorot et al. (2011)] that is applied to each feature map’s component
in order to learn nonlinear representations: al = f(zl).

3. Pooling layer: this layer is used to make the features invariant from the
location and to summarize the output of multiple neurons in convolu-
tion layers through a pooling function. In our case, this layer executes a
max operation within a small spatial region R over the resulting feature
map after the nonlinearity layer: pl = maxi∈R a

l
i.

Sparse connectivity and shared weights make CNNs ideal for processing
and classifying images, reducing the number of parameters to be learned

8The concept of weight matrix can be understood as a feature detector or filter which
can beused to search for an specific spatial characteristic of the input data. The weight
matrix will assign a greater weight to the pixels that collect this characteristic penalizing
the pixels that do not exhibit this spatial behaviour.
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by the network and ensuring some degree of shift, scale, and distortion in-
variance.

3. Proposed CNN

The structure of our new CNN is shown in Figure 3. As we can see,
our CNN consists of an input layer, three convolution layers with ReLU as
nonlinear activation function, two maxpool layers, and four fully-connected
layers. The last one is the output layer which obtains the desired label for
the input data. In the following, we first provide details about our prepro-
cessing strategy for hyperspectral data, particularly to account for spatial
information, prior to feeding this information to the CNN. Then, we provide
a detailed explanation about the considered architecture.

Figure 3: Proposed CNN architecture.

3.1. Data preprocessing

Normally, CNNs receive a complete normalized image prior to classifica-
tion. However, in hyperspectral images the classes are typically mixed within
the image, so we feed the pixel (vectors) one by one to the network. This
allows exploiting the rich spectral information contained in the hyperspec-
tral data, but we need an additional mechanism in order to include also the
spatial information.

To achieve this and take advantage of both the spatial and the spectral
information simultaneously, we have implemented a 3-D approach in which
we feed the network with a neighborhood window centered around each pixel
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vector. In this way, the input layer accepts volumes of size d× d× n, where
d is the width and height of the input volume and n is the total number
of bands of the original hyperspectral image. This requires a pre-processing
stage to divide the hyperspectral image into patches of size d × d × n. The
desired label to be reached by the network will be the one that owns the
central pixel of the patch [d/2 + 1, d/2 + 1, n].

Figure 4: Graphical illustration of our border mirroring strategy (with d = 9, d = 19 and
d = 29) using the well-known AVIRIS Indian Pines hyperspectral image (and its associated
ground-truth) as an example

However, this preprocessing strategy faces a problem: for the pixels be-
longing to the borders of the image a d×d surrounding neighborhood cannot
be defined. As we increase d, we cannot properly account for the border
information around some pixels. Some approaches simply disregard those
border pixels for which they do not have spatial neighbours. This supposes
a significant loss of samples that, together with the scarcity of the samples,
can make the network result in overfitting. In order to avoid this problem,
we have implemented a simple algorithm to replicate borders that allows us
to feed the net with all the border pixels and to use them as any other pixel
in the image. In this way, we can classify the complete hyperspectral image
by replicating the pixels near the border, i.e. mirroring the d/2 pixels of
border outwards, in order to create the corresponding patches or windows
of the original border pixels, as illustrated graphically in Figure 4 using the
well-known AVIRIS Indian Pines hyperspectral image (described in detail in
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section 4)

3.2. CNN architecture details

Once the edges are replicated and the hyperspectral image is split into
3-D patches, these are grouped in batches of size b and sent to the CNN.
Then, the d× d×n patches are sent as input volume to the first convolution
layer (c1), composed by kc1 filters of lc1 × lc1 × qc1, where qc1 = n, the stride
is fixed to 1, and there is no padding.

After applying the ReLU function, the kc1 feature maps generated by c1
are sent to the first MaxPool layer (mp1), with a lmp1× lmp1 kernel, stride of
2, and padding. The resulting output volume pmp1 = dmp1×dmp1×kc1 is sent
to the second convolution layer (c2) with kc2 filters of size lc2×lc2×qc2, where
qc2 = kc1, with the same stride as in the first convolution and no padding
either.

Again, after applying the ReLU function, the kc2 feature maps generated
by c2 are sent to the second MaxPool layer (mp2), with a lmp2× lmp2 kernel,
stride of 2 and padding. The resulting output volume pmp2 = dmp2×dmp2×kc2
is sent to the last convolution layer (c3), that has kc3 filters of size lc3×lc3×qc3.
This layer has the purpose of further refining the feature maps by processing
each element one by one, so kc3 = qc3 = kc2 and lc3 = 1. There is no
third maxpool layer, so the output volume is reshaped in order to send it to
fully-connected layers.

Four fully-connected layers were implemented (fc1, fc2, fc3 and fc4)
with lfc1, lfc2, lfc3 and lfc4 nodes, respectively. The first three fully-connected
layers compute their output as yfc = f(wfcyfc−1 + bfc), where wfc are their
weight matrices, bfc are their bias vectors, yfc−1 is the output of the previous
layer (in the first case, yfc−1 = pC3, i.e. the output of C3 layer) and the acti-
vation function f(·) is ReLU. Finally, the last resulting matrix yfc3 is sent to
fc4, which computes the outputs of the network with a softmax function as
yfc4 = wfc4yfc3 + bfc4, where yfc4 contains the desired labels for the original
d× d× n input data.

In Algorithm 1 we can see a scheme of the operation of the proposed
method. As we can notice, the method uses cross-entropy in order to deter-
mine the loss of the CNN model. It is defined as Hy′(y) =

∑
i y
′
ilog(yi), where

y is our predicted probability distribution and y′ is the true distribution, so
the cross-entropy is a measure of how inefficiently predictions are calculated
for describing the truth.
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Algorithm 1 Proposed CNN method

1: procedure CNN method(Y → original hyperspectral image)
2: max epochs→ Set number of epochs value
3: max iters→ Set number of iterations value
4: d→ Set patch size value
5: n = Y.bands
6: Ynorm = band mean normalize(Y )
7: Y ′ = border mirroring(Ynorm, d)→ mirroring of d border pixels
8: P = patches creation(Y ′, d, n)→ splitting Y ′ into patches of d×d×n
9: Ta, Tb = training test sets(P )→ training Ta and testing Tb sets

10: G = batches creation(Ta, b)→ grouping patches in batches of size b
11: for e < max epochs do
12: for it < max iters do
13: G′ = get next batch(G)
14: labels G′ predicted = forward pass(G′)
15: error = cross entropy(labels G′, labels G′ predicted)
16: W,B = optimizer(error)
17: end for
18: end for
19: end procedure

As an interesting point we note that, for the initialization of all weights
and bias of the network, we have used the so-called Xavier initializer [Glorot
and Bengio (2010)], that allows the network to achieve greater stability, and
the Adagrad optimizer [Duchi et al. (2011)], as a simple method for learning
rate adaptation. All the network characteristics (weights and bias initializa-
tion, optimizer, learning rate, steps, kernels size, use of padding and size of
strides) are configurable through a JavaScript Object Notation (JSON)9 file,
as well as parameters d and b, which makes the implementation of the net-
work flexible and easy to modify. Such implementation has been performed
in Python10. In this way, the CNN takes advantage of the information of the
central pixel neighbors as well as all the available spectral information, being
able to adapt its structure easily and quickly.

As we anticipated in subsection 3.1, this kind of networks may suffer from

9http://www.json.org/
10https://www.python.org/
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an overfitting problem because of the complexity of the model derived from
the large number of parameters that must be learned, and a lack of training
samples (that is quite common in remote sensing applications). This problem
may result in poor predictive performance in the testing phase, despite a high
accuracy can be obtained in the training phase. To avoid such overfitting
problems, we have allowed an optional and configurable dropout mechanism
in the first and second convolution layers. The dropout method sets the
output of some randomly selected hidden neurons to zero, so that the dropped
neurons do not contribute in the forward pass and they are not used in the
back-propagation stage [Hinton et al. (2012)].

To conclude this section, it is important to note that the proposed CNN
has been implemented using the TensorFlow open source library for machine
intelligence11 including its GPU functionalities, that allow for fast perfor-
mance even when dealing with very large hyperspectral image volumes. In
the following section, we evaluate the proposed CNN from the viewpoint of
both computational performance and classification accuracy.

4. Experiments and results

4.1. Experimental Configuration

In order to evaluate the performance of our newly presented CNN ar-
chitecture, we use a hardware environment composed by a 6th Generation
Intel R© CoreTMi7-6700K processor with 8M of Cache and up to 4.20GHz (4
cores/8 way multitask processing), 40GB of DDR4 RAM with a serial speed
of 2400MHz, a GPU NVIDIA GeForce GTX 1080 with 8GB GDDR5X of
video memory and 10Gbps of memory frequency, a Toshiba DT01ACA HDD
with 7200RPM and 2TB of capacity, and an ASUS Z170 pro-gaming moth-
erboard.

4.2. Hyperspectral Image Data

In our experiments, we have used two well-known hyperspectral image
data sets. The first one is the Indian Pines image, gathered in 1992 by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [Green
et al. (1998)] over a set of agricultural fields with regular geometry and with
a multiple crops and irregular patches of forest in Northwestern Indiana.

11https://www.tensorflow.org
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Color Land cover type Samples
Background 10776

Alfalfa 46

Corn-notill 1428

Corn-min 830

Corn 237

Grass/Pasture 483

Grass/Trees 730

Grass/Pasture-mowed 28

Hay-windrowed 478

Oats 20

Soybeans-notill 972

Soybeans-min 2455

Soybeans-clean 693

Wheat 205

Woods 1265

Bldg-Grass-Tree-Drives 386

Stone-steel towers 93

Total samples 21025

Figure 5: Original ground-truth image of the AVIRIS Indian Pines scene and number of
samples per class.

The AVIRIS Indian Pines scene has 145x145 pixels with 224 spectral bands
in the range from 400 to 2500nm, with 10nm of spectral resolution, 20m
moderate spatial resolution, and 16 bits radiometric resolution. After an
initial analysis, 4 zero bands and another 20 bands with lower signal-to-
noise ratio (SNR) have been removed because of atmospheric absorption
phenomena in those bands, retaining only 200 spectral channels. Moreover,
about half of the pixels in the hyperspectral image (10249 of 21025, i.e.
48.74%) contain ground-truth information, which comes in the form of a
single label assignment for each pixel with a total of 16 ground-truth classes
(see Figure 5).

The second data set used in experiments was collected by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor [Kunkel et al. (1988)]
during a flight campaign over the city of Pavia, in northern Italy. The dataset
covers an urban environment, with various solid structures (asphalt, gravel,
metal sheets, bitumen, bricks), natural objects (trees, meadows, soil), and
shadows (9 classes in total). Other objects whose compositions differ from
the labeled ones are considered as clutter. The scene was collected over an
university area. It contains 103 spectral bands with 610 × 340 pixels in the
spectral range from 0.43 to 0.86µm, and spatial resolution of 1.3m/pixel.
About 20.62% of the pixels in the hyperspectral image (42776 of 207400)
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Color Land cover type Samples
Background 164624

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare Soil 5029

Bitumen 1330

Self-Blocking Bricks 3682

Shadows 947

Total samples 207400

Figure 6: Original ground-truth image of the ROSIS University of Pavia scene and number
of samples per class.

contain ground-truth information (see Figure 6).

4.2.1. Data preprocessing: division of training and testing sets

When our method divides the hyperspectral images into training and test-
ing sets, it follows a method of preprocessing with class balancing that must
be conveniently explained at this point. In addition to their huge dimen-
sionality and the existing correlation between the spectral features collected
[Melgani and Bruzzone (2004)], hyperspectral images present another com-
plication: the class imbalance problem [He and Garcia (2009)]. This problem
appears in a dataset when some of the classes are heavily under-represented
(in terms of their labeled samples) as compared to other classes [Garćıa et al.
(2011)], leading to poor classification performance in many real-world appli-
cations, especially for the minority classes. In order to deal with this problem,
and taking into account that we could not identify a common pattern about
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sample selection strategies in the literature, we have tried to keep a strati-
fied sampling strategy in our experiments. As a result, we tried to balance
the number of samples selected in accordance with the number of available
samples per class.

Indian Pines

clase pixels 200 samples per class 100 samples per class 50 samples per class Chen et al. (2016)
Alfalfa 46 33 33 33 30

Corn-notill 1428 200 100 50 150
Corn-min 830 200 100 50 150

Corn 237 181 100 50 100
Grass/pasture 483 200 100 50 150

Grass/trees 730 200 100 50 150
Grass/pasture-mowed 28 20 20 20 20

Hay-windrowed 478 200 100 50 150
Oats 20 14 14 14 15

Soybeans-notill 972 200 100 50 150
Soybeans-min 2455 200 100 50 150

Soybeans-clean 593 200 100 50 150
Wheat 205 143 100 50 150
Woods 1265 200 100 50 150

Bldg-grass-tree-drives 386 200 100 50 50
Stone-steel towers 93 75 75 50 50

Total 10249 2466 1342 717 1765

Table 1: Indian Pines: number of samples in the training set used by the proposed method
and by the method in [Chen et al. (2016)].

The first step is to divide randomly the original dataset in two subsets: the
first one (training set) with 75%12 of the samples and the second one (testing
set) with the remaining 25%. If we keep that 75% of samples for the training
set, we will once again experience the class imbalance problem. For instance,
in the Indian Pines image the Alfalfa class has only 46 samples as opposed
to Corn-notill, which has 1428. 75% of each is 34, 5 ≈ 36 for Alfalfa and
1071 for Corn-notill, a completely unbalanced result. The solution adopted
in this case is to simply reduce the number samples until a balanced result
is achieved. After we get 75% sampling of each class, we set a maximum
number of samples per class (as a threshold), for example 50, 100 or 200
samples per class. For those classes with many samples, we simply cut the
samples until reaching the threshold. However, for those classes that have
very few samples and do not reach the threshold, only those available pixels
are taken. In Table 1 we can observe the real number of samples that we

12For each class we make sure that about 75% of each class is taken, until we have a
number of samples close to 75% of the complete dataset, so we make sure that all classes
are represented in the subset.
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are using in each experiment when we refer to ”50 samples per class”, ”100
samples per class” or ”200 samples per class”. Except for those classes that
do not reach the proposed threshold (and that use 75% complete), the rest
of classes work with 15-25% of their samples. In Table 2 we can see that
the same solution is adopted for the University of Pavia data. In both cases,
the proposed method uses less samples than [Chen et al. (2016)] with the
exception of Indian Pines with 200 samples per class.

Pavia University

class pixels 200 samples per class 100 samples per class 50 samples per class Chen et al. (2016)
Asphalt 6631 200 100 50 548

Meadows 18649 200 100 50 540
Gravel 2099 200 100 50 392
Trees 3064 200 100 50 542

Painted metal sheets 1345 200 100 50 256
Bare soil 5029 200 100 50 532
Bitumen 1330 200 100 50 375

Self-blocking bricks 3682 200 100 50 514
Shadows 947 200 100 50 231

Total 42776 1800 900 450 3930

Table 2: University of Pavia: number of samples in the training set used by the proposed
method and by the method in [Chen et al. (2016)].

4.3. Hyperparameter tuning

The first step to carry out the experiments has been to adjust the con-
figuration parameters of the convolutional network to get the best possi-
ble classification accuracy in the considered hyperspectral datasets, through
cross-validation.

For the Indian Pines dataset, the CNN configuration parameters have
been adjusted according to Table 3. As we can see in the convolution layers,
the noise of some of the Indian Pines image bands is mitigated by a first
expansion of depth, and the overfitting problem is solved by adding dropout
in the first and second convolution layers and in the first fully connected
layer13. The third convolution layer refines the c2’s feature maps with the
objective of obtaining a better classification.

For the University of Pavia dataset, the CNN configuration parameters
have been adjusted according to Table 3. Also, we improved the quality of

13After the first experiment, we realized that these values were insufficient and the
network was fine-tuned again. A 10% dropout was added to the third convolution layer
and a 30% dropout was added to the first fully-connected layer to avoid overfitting.
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the spectral information by extending the depth of the feature maps in the
first convolution. In this case, the overfitting problem is worse than in the
Indian Pines scene (mainly due to the greater number of parameters to be
learned), so we increased the value of the dropout in the first and second
convolution layers. Again, the third convolution layer refines the c2’s feature
maps, with the objective of obtaining a better classification.

CNN proposed topologies

Hyperspectral datasets
convolution layers Fully Connected Layers

Kernel size ReLU Pooling Dropout No neurons Function Dropout
kc × lc × lc × qc lmp × lmp lfc

Indian Pines

600× 5× 5× 200 Yes 2× 2 Yes (10%) 1024 ReLU Yes(10%)
200× 3× 3× 600 Yes 2× 2 Yes (10%) 1024 ReLU No
200× 1× 1× 200 Yes No No 512 ReLU No

16 Softmax No

Pavia University

380× 7× 7× 103 Yes 2× 2 Yes(20%) 2048 ReLU No
350× 5× 5× 380 Yes 2× 2 Yes(20%) 2048 ReLU No
350× 1× 1× 350 Yes No No 1024 ReLU No

9 Softmax No

Common parameters
Bach size b Steps (iterations) Epochs Learning rate Optimizer

100 1500 20 0.01 AdagradOptimizer

Table 3: Configuration of the CNN architecture for the Indian Pines and University of
Pavia datasets. The kernel size (like the number and type of layers, strides and padding)
is one of the design choices of the proposed CNN architecture. Large kernels allow our
CNN to learn more complex features, although with larger kernels the computational time
of the training/testing phase is also greater.

4.4. Performance evaluation

To test the proposed CNN for hyperspectral image classification with the
configurations described in section 4.3, several experiments have been con-
ducted, first with the Indian Pines hyperspectral dataset and, second, with
the University of Pavia hyperspectral dataset. At this point, we emphasize
that data pre-processing plays a very important role in this kind of deep
learning algorithms. In practice, many classification methods work better
after a data normalization procedure. In this case hyperspectral datasets
have been scaled between in the range [−0.5, 0.5] and a band-mean normal-
ized procedure has been performed. This means that each of the spectral
channels in the image have been normalized by subtracting the mean.

Testing parameter d: We tested different sizes of parameter d, using a
fixed number of 100 samples per class. For the Indian Pines data, we have
considered three patch sizes: d = 9, d = 19 and d = 29. In Figure 7 we
illustrate the effect of using different patch sizes over a random pixel in the
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Figure 7: Illustration of the effect of using different patch sizes for the Indian Pines scene.
The upper row shows the size of the neighborhood around the central pixel when we use
d = 9, d = 19 and d = 29, as we can see on the axes from left to right (color map of
band 140). In the lower row we can see the spectral signature of the pixels that form each
neighborhood, respectively.

Indian Pines dataset. As we add pixels to the neighborhood, the spatial
information around the considered pixel is more clear, especially when it
comes to edge pixels. However, a patch too large can detract from the target
pixel. As for the spectral signature, adding more neighbors to the target
pixel also makes the signature as a whole more defined.

For the Pavia University data, we have tested other patch sizes: d = 15,
d = 21 and d = 27. The difference is motivated by our pre-assessment of the
size of relevant features in the image. We also provide in Figure 8 an illus-
trative example of how the size of patches impacts the overall performance
in the University of Pavia data set. In this case, the scene presents many
object borders in the leftmost part. By adding more spatial information we
can better identify the pixels belonging to such edges. However, given the
reduced number of classes, if we add too many spectral signatures we can
make the patches slightly homogeneous.

For each d, we divided the original hyperspectral image into pieces (mir-
roring the borders of the image, if necessary) and grouping the patches into
training samples and test samples. To split the patches, we followed the
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Figure 8: Illustration of the effect of using different patch sizes for the University of Pavia
scene. The upper row shows the size of the neighborhood around the central pixel when
we use d = 15, d = 21 and d = 27, as we can see on the axes from left to right (color map
of band 10). In the lower row we can see the spectral signature of the pixels that form
each neighborhood, respectively.

steps described in section 4.2.1. Each execution of this experiment has been
repeated 5 times.

Dataset Patch size
Time per step Total time Accuracy
Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

Indian Pines
d = 9 0.02 0.01 29.22 1.05 78.46 4.45
d = 19 0.08 0.02 116.30 3.22 91.34 1.59
d = 29 0.16 0.03 248.29 7.91 95.53 0.48

University of Pavia
d = 15 0.02 0.01 34.78 1.13 94.02 0.62
d = 21 0.05 0.02 74.66 2.22 95.08 1.41
d = 27 0.09 0.02 131.66 2.88 94.13 0.66

Table 4: Execution times (in seconds) and accuracies measured with patches of size d = 9,
d = 19 and d = 29 for the Indian Pines dataset and d = 15, d = 21 and d = 27 for the
University of Pavia dataset. The CNN configuration is the one indicated in Table 3, with
1500 iterations, 100 samples per class and 5 executions.

Table 4 reports the obtained results. We can observe that, for the Indian
Pines image, d = 29 achieves the best result, reaching an overall accuracy
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of 95.53% with a smaller error in fewer iterations (with only 400 iterations,
d = 29 has already reached a minimum error, while for d = 19 it needs about
1000 iterations to reach the same error and d = 9 is not able to reduce its
error in 1500 iterations, see Figure 9). However, the time required for each
step when d = 29 is adopted is greater than with d = 19 or d = 9: each step
of d = 29 is 0.08 seconds slower than the steps of d = 19 and 0.14 seconds
slower than the steps of d = 9 (see Figure 10). In terms of the accuracy/time
ratio, the best option is d = 19, although the best accuracy is achieved by
using d = 29 (but its execution time is larger).

Figure 9: Indian Pines: Evolution of the validation loss in terms of steps (iterations) with
d = 9, d = 19 and d = 29. The shadow shows the standard deviation of the loss for the
five executions of each patch (zoom in error interval [0, 1]). This experiment has been
executed using 1500 iterations.

On the other hand, the results obtained for the University of Pavia dataset
are also shown in Table 4. In this case, the patch with size d = 21 achieves
the best accuracy results: 95.08% in 74.66 seconds, reaching 1.06 percentage
more than d = 15 and 0.95 percentage more than d = 27. As for the number
of iterations, in Figure 11 we can see that d = 27 needs less iterations to
reach an acceptable error (between 700-800 iterations) while d = 21 needs
around 1000-1100 iterations, which is very similar to d = 15 that also needs
around 1000-1100 iterations to reach a low error. On the other hand, the
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Figure 10: Indian Pines: Evolution of the validation loss in terms of time (seconds) with
d = 9, d = 19 and d = 29. The shadow shows the standard deviation of the loss for the
five executions of each patch (zoom in error interval [0, 1]). This experiment has been
executed using 1500 iterations.

time per iteration for each patch size is different, being the fastest d = 15
(2.15 times faster than d = 21 and 3.79 times faster than d = 27) and the
slowest d = 27 (around 1.76 times slower than d = 21), see Figure 12. With
this information at hand, we can conclude that the best patch size is d = 21,
as it reaches the best result in a fairly reasonable time.

Testing the number of samples per class: At this point, we tested
the accuracy achieved for different patch sizes (d = 9, d = 19 and d = 29
for Indian Pines and d = 15, d = 21 and d = 27 for Pavia) with different
amounts of training data, in particular with 50, 100 and 200 samples per
class.

The results obtained for the Indian Pines dataset are shown in Table 5
(with standard deviation). In this case, for each experiment the parameters
of the CNN have been fine tuned, in order to achieve the best possible accu-
racy. As we can observe in Figures 9 and 10, the configuration of the CNN
in Table 3 for Indian Pines presents a marked overfitting problem (that the
standard deviation also seems to indicate). As a result, the dropout per-
centages have been modified for the Indian Pines experiment, specifically we
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Figure 11: Pavia University: Evolution of the validation loss in terms of steps (iterations)
with d = 15, d = 21 and d = 27. The shadow shows the standard deviation of the loss for
the five executions of each patch (zoom in error interval [0, 1]). This experiment has been
executed using 1500 iterations.

Neural networks CNN d = 9 CNN d = 19 CNN d = 29
Samples per class 50 100 200 50 100 200 50 100 200

Alfalfa 98.70 (1.06) 99.13 (1.06) 99.13 (1.06) 99.57 (0.87) 100.00 (0.00) 99.57 (0.87) 99.13 (1.74) 99.57 (0.87) 99.13 (1.06)
Corn-notill 70.76 (3.42) 76.93 (2.50) 80.48 (9.37) 76.74 (3.89) 85.84 (1.92) 94.47 (2.46) 82.10 (3.94) 91.32 (0.46) 98.17 (0.67)
Corn-min 78.92 (5.37) 90.55 (1.97) 96.65 (1.20) 82.77 (2.61) 93.23 (2.09) 98.22 (0.87) 86.41 (4.29) 94.84 (0.47) 98.92 (0.68)

Corn 96.54 (1.89) 99.75 (0.21) 99.66 (0.17) 99.41 (0.83) 99.66 (0.32) 100.00 (0.00) 97.81 (2.92) 100.00 (0.00) 100.00 (0.00)
Grass/Pasture 89.86 (4.56) 97.81 (0.81) 99.46 (0.52) 95.20 (1.54) 98.18 (0.73) 99.75 (0.20) 96.15 (3.75) 98.34 (1.23) 99.71 (0.21)
Grass/Trees 97.40 (0.94) 98.11 (0.88) 99.53 (0.32) 92.96 (2.64) 97.92 (1.31) 98.90 (0.43) 96.47 (2.43) 98.66 (0.94) 99.40 (0.52)

Grass/pasture-mowed 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Hay-windrowed 99.29 (0.34) 99.62 (0.08) 99.67 (0.21) 99.12 (1.06) 99.08 (0.45) 99.62 (0.47) 99.62 (0.50) 99.96 (0.08) 100.00 (0.00)

Oats 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Soybeans-notill 80.39 (3.52) 87.86 (1.95) 92.43 (2.03) 88.35 (4.26) 94.81 (1.94) 98.00 (0.78) 88.66 (1.62) 95.21 (1.26) 98.62 (1.39)
Soybeans-min 65.82 (5.83) 79.45 (1.74) 76.42 (4.61) 69.52 (3.63) 85.85 (1.35) 94.32 (2.02) 79.40 (1.33) 90.52 (1.16) 96.15 (0.57)
Soybean-clean 80.84 (4.29) 90.96 (3.58) 97.74 (0.86) 84.65 (3.19) 96.90 (1.61) 99.09 (0.45) 88.67 (1.80) 97.17 (1.64) 99.33 (0.18)

Wheat 99.61 (0.78) 99.80 (0.39) 99.71 (0.24) 99.90 (0.20) 99.90 (0.20) 100.00 (0.00) 99.32 (0.39) 100.00 (0.00) 99.90 (0.20)
Woods 91.21 (1.17) 94.80 (1.43) 97.71 (0.74) 88.35 (3.57) 95.54 (1.43) 98.85 (0.94) 96.74 (1.22) 98.12 (0.54) 98.96 (0.46)

Bldg-Grass-Tree-Drives 91.14 (2.07) 98.50 (0.81) 99.27 (0.60) 96.94 (3.11) 98.81 (1.42) 99.90 (0.13) 99.07 (0.26) 99.69 (0.25) 100.00 (0.00)
Stone-steel towers 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.57 (0.86) 100.00 (0.00) 100.00 (0.00) 99.78 (0.43) 98.92 (0.96) 100.00 (0.00)

Overall Accuracy 80.85 (1.58) 88.46 (0.32) 90.11 (0.67) 83.73 (1.30) 92.54 (0.16) 97.23 (0.30) 88.78 (0.78) 95.05 (0.28) 98.37 (0.17)
Average Accuracy 90.03 (0.98) 94.58 (0.22) 96.12 (0.28) 92.07 (0.66) 96.61 (0.24) 98.79 (0.10) 94.33 (0.35) 97.64 (0.13) 99.27 (0.11)

Kappa 78.44 (1.74) 86.92 (0.36) 88.81 (0.76) 81.68 (1.44) 91.54 (0.18) 96.85 (0.34) 87.31 (0.88) 94.38 (0.31) 98.15 (0.19)
Run time 47.97 (0.01) 48.50 (0.01) 48.21 (0.01) 193.40 (0.01) 192.85 (0.01) 197.65 (0.01) 421.07 (0.02) 404.15 (0.02) 405.46 (0.02)

Table 5: Classification accuracies obtained by our CNN (with patch sizes of d = 9, d = 19
and d = 29) for the Indian Pines hyperspectral dataset. We used 2500 iterations and
repeated the experiment 5 times.

add a 10% dropout in the third convolution layer and raise the dropout from
10% to 30% on the first fully-connected layer. Also, for this experiment we
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Figure 12: Pavia University: Evolution of the validation loss in terms of time (seconds)
with d = 15, d = 21 and d = 27. The shadow shows the standard deviation of the loss for
the five executions of each patch (zoom in error interval [0, 1]). This experiment has been
executed using 1500 iterations.

have increased the number of iterations from 1500 to 2500. Thanks to the
overfitting reduction, the network is able to converge much faster, drastically
reducing the initial execution times (i.e., being 1.32 times faster with d = 9,
1.57 times faster with d = 19 and 1.66 times faster with d = 29 with 100
samples per class). In addition, stability has been improved by reducing the
standard deviation of each run to 0.01. In Table 5 we can observe that the
results with d = 9, d = 19 and d = 29 increase (in terms of accuracy) as
more training samples per class are included, reaching the maximum values
with 200 samples per class. Again, d = 29 reaches the best accuracy results
with 200 samples per class, although the results obtained with a patch size
of d = 19 are quite similar to those found using d = 29, just one or two
percentage points below.

In Figures 13, 14 and 15 we report the classification maps obtained in
each experiment, without the mirroring of the borders. First, in Figure 13
we can see the classified image without background (the first three images)
and with background (the last three), obtained with a patch size of d = 9
and 50, 100 and 200 samples per class. When the background is removed,

24



Figure 13: Classification results for Indian Pines image with d = 9 and 50 (left), 100
(center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the
background.

Neural networks CNN d = 15 CNN d = 21 CNN d = 27
Samples per class 50 100 200 50 100 200 50 100 200

Asphalt 79.86 (4.46) 90.58 (0.74) 92.81 (0.72) 86.41 (0.47) 91.30 (1.81) 95.31 (0.97) 82.66 (1.18) 92.07 (1.05) 96.31 (0.19)
Meadows 88.97 (1.65) 94.20 (1.94) 97.20 (0.95) 89.44 (4.85) 93.39 (1.52) 98.16 (0.12) 90.39 (3.03) 93.56 (1.76) 97.54 (0.39)

Gravel 83.52 (1.92) 92.28 (2.12) 96.97 (0.90) 85.31 (4.51) 92.01 (3.55) 97.92 (0.59) 88.74 (0.90) 93.66 (1.16) 96.84 (0.29)
Trees 96.31 (1.02) 97.45 (1.34) 98.62 (0.43) 94.36 (0.49) 96.87 (0.74) 98.74 (0.18) 90.88 (1.35) 94.51 (2.12) 97.58 (0.41)

Painted metal sheets 99.83 (0.09) 99.93 (0.11) 100.00 (0.00) 99.38 (0.13) 99.88 (0.09) 100.00 (0.00) 99.31 (0.21) 99.53 (0.37) 99.65 (0.15)
Bare Soil 90.72 (1.47) 95.18 (0.93) 98.57 (0.74) 93.54 (2.45) 98.50 (1.20) 99.57 (0.31) 88.73 (2.00) 97.67 (0.88) 99.33 (0.25)
Bitumen 91.88 (1.61) 92.38 (1.22) 97.27 (0.96) 91.00 (0.57) 96.19 (1.50) 99.75 (0.09) 92.73 (1.25) 95.16 (1.29) 98.90 (1.14)

Self-Blocking Bricks 82.91 (5.26) 92.07 (1.49) 96.17 (1.70) 89.77 (2.62) 94.41 (0.93) 98.20 (0.21) 91.74 (1.49) 94.88 (1.43) 98.89 (0.47)
Shadows 99.65 (0.22) 99.54 (0.51) 99.86 (0.13) 99.65 (0.10) 99.75 (0.13) 99.82 (0.18) 97.40 (1.87) 98.91 (0.88) 99.58 (0.09)

Overall Accuracy 88.17 (0.31) 93.95 (0.74) 96.83 (0.19) 90.22 (1.78) 94.37 (1.10) 98.06 (0.13) 89.58 (1.95) 94.35 (1.05) 97.80 (0.22)
Average Accuracy 90.40 (0.38) 94.85 (0.41) 97.50 (0.14) 92.10 (0.63) 95.81 (0.82) 98.61 (0.09) 91.40 (1.26) 95.55 (0.68) 98.29 (0.25)

Kappa 84.63 (0.36) 92.07 (0.94) 95.83 (0.24) 87.28 (2.21) 92.63 (1.42) 97.44 (0.18) 86.37 (2.50) 92.61 (1.35) 97.09 (0.29)
Run time 43.02 (0.01) 42.78 (0.01) 42.83 (0.01) 74.30 (0.01) 74.17 (0.01) 74.09 (0.01) 132.77 (0.02) 132.48 (0.02) 132.68 (0.02)

Table 6: Obtained classification accuracies (with patch sizes of d = 15, d = 21 and d = 27)
for the University of Pavia hyperspectral dataset. We used 1500 iterations and repeated
the experiment 5 times.

we can see how the pixels of each class are mixed, in particular near the
edges. Also, with background the results are poorly defined, although these
are improved by adding more training samples in each class.

Secondly, in Figure 14 we can see the classified images (with and without
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Figure 14: Classification results for Indian Pines image with d = 19 and 50 (left), 100
(center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the
background.

background) obtained with a patch size of d = 19 and 50, 100 and 200
samples per class. With better results than with d = 9, the borders between
the classes are better defined in this case, also in the classification with
background. The best result is achieved with 200 samples per class.

Finally, in Figure 15 we can observe the obtained classified images with
a patch size of d = 29. First we report the classification images without
background and below them, we show the corresponding ones with back-
ground. With only ground-truth pixels, the first three images show better
defined classes than the previously displayed ones with d = 9 and d = 19,
being the classification map obtained with 200 samples per class the most
similar to the original ground-truth image. Even in the classification with
background, classes appear better defined since the borders between them
are more regular.

On the other hand, the results for the University of Pavia dataset are
shown in Table 6. For each patch size, we can observe that the accuracy
improves as the number of samples per class increases, reaching the best ac-
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Figure 15: Classification results for Indian Pines image with d = 29 and 50 (left), 100
(center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the
background.

curacy results with 200 samples per class. If we look for the most suitable
patch size, we can say that d = 21 with 200 samples per class can be consid-
ered the best, with similar and balanced accuracy data. This is because, after
adding more neighbors to the pixel, the data become more homogeneous.

In Figures 16, 17 and 18 we report the classification maps obtained for
the University of Pavia dataset obtained in each experiment. The first one,
Figure 16 shows the Pavia classification results with a patch size of d = 15.
Here, the accuracy becomes better when the number of samples per class is
increased, although there are many mixed pixels in the three cases, especially
when the background is added to the classification. We can observe a poor
result on top of the meadows class, and the ones adjacent to the light green
bare soil at the lowest part of the image.

Figure 16 shows the Pavia classification results with a patch size of d = 21,
which results in better results than d = 15. Pixels appear better defined, also
with background. As expected, the best classification map is obtained with
the maximum number of samples per class, i.e. 200, where we can see how the
worst ranked pixels in the experiment with d = 15 are now better classified,
e.g. the pixels at the top of the meadows class and the bare soil pixels.
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Figure 16: Classification results for the University of Pavia data set with d = 15 and
50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the
classification result without the background, and the lower row displays the classification
result with the background.

Finally, in Figure 18 the classification results with patch size d = 27 are
shown. As in the previous cases, the result improves as more pixels are added
to the training set (with 200 samples per class resulting in the best accuracy
results). Although the pixels at the top of the image are better classified,
the CNN finds it more difficult to classify the pixels of the meadow class in
the center of the image, and the final result is slightly worse than the one
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Figure 17: Classification results for the University of Pavia data set with d = 21 and
50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the
classification result without the background, and the lower row displays the classification
result with the background.

obtained with patch size of d = 21

4.5. Comparison with other algorithms

In this section we show comparisons of our proposed method with other
existing methods, including a standard MLP and the 1-D, 2-D and 3-D CNNs
in [Chen et al. (2016)]. This represents an exhaustive and complete valida-
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Figure 18: Classification results for the University of Pavia data set with d = 27 and
50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the
classification result without the background, and the lower row displays the classification
result with the background.

tion of our method with state-of-the-art CNNs in the hyperspectral imaging
literature. Tables 7 and 8 respectively show the configurations (for both
scenes) of the MLP and CNNs used in experiments for comparison purposes.

Comparison with MLP: For the MLP, the chosen topology is a single
layer feedforward network (SLFN) with three layers: an input layer which
receives a pixel in all its bands, a hidden layer whose number of nodes is
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MLP Topologies

Hyperspectral datasets
Layers

Type No neurons Activation Function

Indian Pines
Input 200 (no bands) -

Hidden 144 (optimal no) ReLU
Output 16 (no classes) Softmax

University of Pavia
Input 103 (no bands) -

Hidden 75 (optimal no) ReLU
Output 9 (no classes) Softmax

Common parameters
Batch size Iterations Learning rate Optimizer

100 5000 0.045 AdamOptimizer

Table 7: Configuration of the MLP used in experiments for comparative purposes.

1-D CNN Topologies [Chen et al. (2016)]
Hyperspectral datasets Conv. Layers ReLU Pooling

Indian Pines
1× 5 Yes 1× 2
1× 5 Yes 1× 2
1× 4 Yes 1× 2
1× 5 Yes 1× 2
1× 4 Yes 1× 2

University of Pavia
1× 8 Yes 1× 2
1× 7 Yes 1× 2
1× 8 Yes 1× 2

2-D CNN Topologies [Chen et al. (2016)]
Hyperspectral datasets Conv. Layers ReLU Pooling Dropout

Indian Pines
32× 4× 4 Yes 2× 2 No
64× 5× 5 Yes 2× 2 50%
128× 4× 4 Yes No 50%

University of Pavia
32× 4× 4 Yes 2× 2 No
64× 5× 5 Yes 2× 2 50%
128× 4× 4 Yes No 50%

3-D CNN Topologies [Chen et al. (2016)]
Hyperspectral datasets Conv. Layers ReLU Pooling Dropout

Indian Pines
128× 4× 4× 32 Yes 2× 2 No
192× 5× 5× 32 Yes 2× 2 50%
256× 4× 4× 32 Yes No 50%

University of Pavia
32× 4× 4× 32 Yes 2× 2 No
64× 5× 5× 32 Yes 2× 2 50%
128× 4× 4× 32 Yes No 50%

Table 8: Configuration of the CNNs used in experiments for comparative purposes. These
are the 1-D, 2-D and 3-D CNNs configurations described in [Chen et al. (2016)]
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calculated by (n bands+ n classes) · 2
3
, with a ReLU as activation function,

and an output layer with the number of nodes equals as the number of classes
and a softmax function. So, the final MLP topology for the Indian Pines
hyperspectral data set is 200− 144− 16 and for the University of Pavia data
set is 103− 75− 9, both with Adam optimizer [Kingma and Ba (2014)] and
0.0045 of learning rate. The proposed topologies have been tested with three
different numbers of samples per class: 50, 100 and 200, repeating each one
five times. Results are shown in Table 9, where we show the average time
and accuracy of each execution with 5000 iterations and repeated five times.
As we can see, as we add training data the accuracy increases, however the
execution time remains fairly stable.

Datasets Samples
Time per step Total time Accuracy

average Std. deviation average Std. deviation average Std. deviation

Indian Pines
50 0.0036 0.0002 0.1791 0.0148 74.60 1.60
100 0.0035 0.0001 0.1757 0.0149 79.29 1.35
200 0.0036 0.0002 0.1800 0.0148 82.56 1.23

University of Pavia
50 0.0033 0.0001 0.1672 0.0147 82.79 1.92
100 0.0031 0.0001 0.1550 0.0149 87.16 0.93
200 0.0031 0.0001 0.1530 0.0149 87.76 1.75

Table 9: Execution times and accuracies obtained by the MLP (with configuration: 200−
144−16) for the Indian Pines scene and by the MLP (with configuration: 103−75−9) for
the University of Pavia scene, using 50, 100 and 200 samples per class. This experiment
has been executed using 5000 iterations.

In Table 10 we can observe in detail the results obtained for each class
of the Indian Pines dataset. After 5000 iterations, we can see that the best
overall accuracy result (84.60%) is obtained with the maximum number of
samples per class, i.e. 200, without an overwhelming time difference. How-
ever, even with 5000 iterations, the MLP is still not able to reach 90% overall
accuracy (although it reaches a 91.66% of average accuracy). If we pay atten-
tion to Figure 19, we can see how the MLP needs fewer iterations to reach
a low error as the number of samples per class increases in training, with
a very little difference in execution times: each iteration of MLP with 200
samples per class is only 1.01 times slower than with 50 samples and 1.02
times slower than with 100 samples per class, as we can see in Figure 20.
Note how the optimizer in the first second quickly evolves from a very high
initial error to a more reasonable value, given the cost function under which
it is iterating.
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Neural network MLP
Samples per class 50 100 200

Alfalfa 98.26 (2.54) 98.70 (1.06) 97.39 (0.87)
Corn-notill 63.40 (4.60) 71.11 (3.74) 78.36 (4.46)
Corn-min 66.00 (3.58) 82.53 (2.47) 86.17 (3.31)

Corn 86.16 (2.77) 91.31 (2.08) 92.41 (2.28)
Grass/Pasture 90.52 (2.67) 91.88 (2.30) 96.31 (1.27)
Grass/Trees 93.45 (1.35) 95.64 (1.45) 97.73 (0.94)

Grass/pasture-mowed 97.14 (2.67) 97.86 (2.86) 97.86 (2.86)
Hay-windrowed 96.32 (1.47) 97.45 (0.80) 98.62 (0.54)

Oats 99.00 (2.00) 98.00 (4.00) 100.00 (0.00)
Soybeans-notill 75.12 (4.54) 83.87 (2.11) 87.00 (2.33)
Soybeans-min 62.81 (2.86) 62.42 (5.28) 68.99 (3.70)
Soybean-clean 79.39 (1.54) 84.69 (1.13) 87.86 (1.84)

Wheat 98.54 (0.31) 99.22 (0.59) 99.41 (0.37)
Woods 83.65 (4.78) 91.07 (1.55) 94.15 (2.29)

Bldg-Grass-Tree-Drives 74.46 (1.94) 82.75 (2.30) 85.03 (4.89)
Stone-steel towers 98.49 (1.10) 99.35 (0.53) 99.35 (0.53)

Overall Accuracy 75.24 (1.51) 80.34 (1.10) 84.60 (0.71)
Average Accuracy 85.17 (1.21) 89.24 (0.41) 91.66 (0.29)

Kappa 72.18 (1.51) 77.93 (1.10) 82.65 (0.71)
Runtime (sec.) 0.1791 0.1757 0.1800

Table 10: Classification accuracies (and standard deviation) obtained by MLP with 50,
100 and 200 samples per class for the Indian Pines hyperspectral dataset. This experiment
has been executed using 5000 iterations.

Now we can compare the MLP classifier with our proposed CNN for the
Indian Pines scene. We have considered two experiments: in the first one, we
compared the MLP with 100 samples per class with the proposed CNN with
also 100 samples per class and patch sizes of d = 9, d = 19 and d = 29. Each
classifier has been executed five times with 1500 iterations. In Figure 21 we
can observe the evolution of the error in terms of the number of iterations of
the MLP and the CNN. We can conclude that our CNN needs significantly
less iterations to reach a low error when it uses patches of size d = 29 and
d = 19 (specifically, the CNN reaches an error below 0.1 with only 300
iterations when d = 29 and around 700-800 iterations when d = 19) while
the MLP barely drops from 0.2 in 1500 iterations. However, in Figure 22
(in which we show the error evolution in terms of time in seconds) we can
observe that one iteration of the CNN (with any patch size) is always slower
than one iteration of the MLP.

The second comparison between the MLP and our CNN is reported in
Table 12. In this case we used 200 samples per class for the MLP and CNN,
and patches of size d = 9, d = 19 and d = 29. Table 12 shows that the MLP
is the fastest classification method (all its executions take around 0.17-0.18
seconds), reaching its better average and overall accuracy values (91.66% and
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Figure 19: Evolution of the validation error in terms of steps (iterations) with 50, 100 and
200 samples per class for the MLP with the Indian Pines scene. The shadow shows the
standard deviation of the loss for the five executions of each patch (zoom in error interval
[0, 1]). This experiment has been executed using 5000 iterations.

84.60%, respectively) with 200 samples per class. However, these results are
several points lower than the accuracies reached by the proposed CNN with
patches of size d = 19 and d = 29. Specifically, the MLP reaches an overall
accuracy around 14 points lower than the CNN, and an average accuracy
around 8 points lower than the one achieved by the CNN for d = 29. With
d = 19, the MLP reaches an overall accuracy around 11 lower than that
achieved by the CNN and an average accuracy around 7 points lower than
that achieved by the CNN. Only if we compare the MLP with the CNN
and d = 9 the MLP reaches better overall and average accuracies: around 3
points better than the overall accuracy achieved by the CNN and around 1.5
points better than the average accuracy achieved by the CNN.

The resulting classification maps obtained by the MLP are shown in Fig-
ure 23, where the classification results without background (top row) and
with background (lower row) are reported. In both cases, unlike the CNN,
the MLP results are not well defined, with many pixels of different classes
appearing mixed in the final classification. An increase in the number of
samples per class slightly improves the classification results, without reach-
ing the quality of the classification maps provided by the CNN in Figures 13,
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Figure 20: Evolution of the validation error in terms of time (seconds) with 50, 100 and
200 samples per class for the MLP with the Indian Pines scene. The shadow shows the
standard deviation of the loss for the five executions of each patch (zoom in error interval
[0, 1]). This experiment has been executed using 5000 iterations.

14 and 15.

Neural network MLP
Samples per class 50 100 200

Asphalt 81.29 (1.15) 83.34 (1.18) 84.92 (0.87)
Meadows 82.83 (4.46) 85.44 (2.06) 89.56 (3.75)

Gravel 84.71 (1.79) 85.98 (4.89) 94.68 (1.41)
Trees 91.64 (2.03) 94.77 (0.50) 96.48 (1.54)

Painted metal sheets 99.18 (0.16) 99.38 (0.36) 99.43 (0.30)
Bare Soil 84.87 (3.31) 88.94 (2.89) 90.75 (2.85)
Bitumen 89.35 (3.10) 92.63 (0.18) 93.76 (0.90)

Self-Blocking Bricks 79.57 (2.35) 79.50 (6.26) 63.94 (3.50)
Shadows 99.79 (0.09) 99.54 (0.36) 99.96 (0.05)

Overall Accuracy 84.37 (2.30) 86.68 (0.67) 88.20 (1.50)
Average Accuracy 88.14 (1.05) 89.95 (0.38) 90.39 (0.30)

Kappa 79.87 (2.30) 82.79 (0.67) 84.67 (1.50)
Runtime (sec.) 0.1672 0.1550 0.1530

Table 11: Classification accuracies obtained by MLP with 50, 100 and 200 samples per
class for the University of Pavia dataset.

Also, Table 9 summarizes the experiments conducted using the MLP
classifier with the University of Pavia dataset for 50, 100 and 200 samples
per class (all repeated five times, with 5000 iterations per execution). We can
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Figure 21: Evolution of the validation error for the MLP and CNN (with d = 9, d = 19
and d = 29) in terms of steps for the Indian Pines image. The shadow shows the standard
deviation of the loss for each network repeated five times. Zoom in (0, 1). This experiment
has been executed using 1500 iterations.

observe that the best accuracy result (87.76%) is obtained with the maximum
number of samples per class, which is 200, as it was already the case with
the Indian Pines image. The execution times for 50, 100 and 200 samples
per class are very similar too. However, with 5000 iterations the MLP is also
unable to reach 90% accuracy. In Figure 24 we can see how the error descends
as the MLP iterates, needing less iterations as the number of samples in the
training increases, with a very little difference in execution times as we can
see in Figure 25. Also, in Table 11 we can observe the accuracy results
for each class obtained after executing five times the MLP with the Pavia
dataset.

Now, we can compare the results obtained by the MLP over the Uni-
versity of Pavia data set with the results obtained by the considered CNN
architectures. In order to do so, we have performed two experiments: in the
first one we execute the MLP with 100 samples per class and we choose a
patch size of d = 15, d = 21 and d = 27 for the CNN, and further execute
it with 100 samples per class too. Each experiment has been run using 1500
iterations. In Figure 26 we can see that the MLP needs more iterations than
the CNN to reduce its associated error, without reaching in any case the er-
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Figure 22: Evolution of the validation error for the MLP and CNN (with d = 9, d = 19
and d = 29) in terms of time (seconds) for the Indian Pines image. The shadow shows the
standard deviation of the loss for each network repeated five times. Zoom in (0, 1). This
experiment has been executed using 1500 iterations.

ror achieved by the CNN, although its iterations are faster than those of the
CNN, as we can observe in Figure 27, where it is shown that the execution
tine of the MLP takes less than one second.

The second experiment reports a comparison between the MLP and the
proposed CNN with 200 samples per class for both classifiers, and patch sizes
of d = 15, d = 21 and d = 27 for the CNN. Table 13 shows that the MLP is
the fastest classification method, even faster than the MLP with Indian Pines
(all its executions take around 0.15-0.16 seconds), reaching its best average ad
overall values (91% and 89% respectively) with 200 samples per class. But,
again, the CNN reaches better accuracy values, with an average accuracy of
98% and overall accuracy of 97%, i.e. around 8-9% points better than MLP
due to the inability of the latter architecture to improve its outcome.

In Figure 28 we can observe the MLP classification maps for the Uni-
versity of Pavia. The top images show the classification with ground-truth
pixels, whose result improves as more samples are added in the training.
However the classification maps are very mixed as compared to those ob-
tained by the CNN in Figures 16, 17 and 18. On the other hand, the bottom
images show the classification with the whole background. In this case, the
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Figure 23: Indian Pines classification results achieved by the MLP with 50 (left), 100
(center) and 200 (right) samples per class with 1500 iterations. The upper row displays the
classification result without the background, and the lower row displays the classification
result with the background.

areas of the image are relatively well distinguished (even better when more
samples per class are added), although the number of mixed pixels is greater
than in the CNN experiments with d = 27, d = 21 and d = 15.

Comparison with other convolutional networks: Now we compare
our proposed CNN with other deep architectures, in particular with the 1-D,
2-D and 3-D CNNs described in [Chen et al. (2016)]. In this work the authors
studied the application of supervised CNNs in hyperspectral imaging feature
extraction. Three deep feature extraction architectures based on the CNN
were proposed to extract the spectral, spatial, and spectral-spatial features
of hyperspectral imaging, respectively. To address the overfitting problem
caused by the limited number of training samples, the authors implemented
some regularization strategies, including L2 regularization and dropout in
the training process. Also, they proposed a virtual sample enhanced method
to create training samples. The main differences between our method and
the one described in [Chen et al. (2016)] can be summarized in the following
points:
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Figure 24: Error evolution for the MLP in terms of steps (iterations) with 50, 100 and 200
samples per class for the University of Pavia data set. The shadow shows the standard
deviation of the loss for the five executions of each patch (zoom in error interval [0, 1]).

Figure 25: Error evolution for the MLP in terms of time (seconds) with 50, 100 and 200
samples per class for the University of Pavia data set. The shadow shows the standard
deviation of the loss for the five executions of each patch (zoom in error interval [0, 1]).
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Figure 26: Error evolution for the MLP and CNN (with d = 15, d = 21 and d = 27)
in terms of steps for the University of Pavia data set. The shadow shows the standard
deviation of the loss for each network repeated five times. Zoom in (0, 1)

Figure 27: Error evolution for the MLP and CNN (with d = 15, d = 21 and d = 27)
in terms of time (seconds) for the University of Pavia data set. The shadow shows the
standard deviation of the loss for each network repeated five times. Zoom in (0, 1)

40



Figure 28: Classification results achieved by the MLP for the University of Pavia data set
with 50, 100 and 200 samples per class with 1500 iterations. The upper row displays the
classification result without the background, and the lower row displays the classification
result with the background.

• Regarding the configuration of the 1-D CNN, we provide a detailed
description in Table 8. For the Indian Pines dataset, the learning rate
of the 1-D CNN is fixed to 0.005 with 700 training epochs, while for
University of Pavia dataset, the learning rate is fixed to 0.001 with 600
epochs. The datasets are divided into training and testing sets. For
the Indian Pines dataset, 1765 labeled pixels are chosen to create the

41



training set, while for the University of Pavia dataset, the authors use
3930. This spectral-CNN receives a normalized pixel vector (1× 200 if
it is an Indian Pines pixel and 1 × 103 if it is an University of Pavia
pixel) in the range [−1, 1]. The data suffers a L2 regularization along
the CNN and, at the end of the CNN procedure, the input pixel vector
is converted into a feature vector that is fed to Logistic Regression (LR)
for classification. The authors selected a mini-batch update strategy,
and the cost function is calculated on a mini-batch of inputs as co =
− 1

m

∑m
i=1[xi log(zi) + (1 − xi) log(1 − zi)], using mini-batch stochastic

gradient descent as optimizer of the 1-D CNN.

• Regarding the configuration of the 2-D CNN, we provide a detailed de-
scription in Table 8. This spatial-CNN receives, through a preprocessin
with PCA, patches of size 27 × 27 normalized in the range [−0.5, 0.5]
and grouped in batches of 100. The output of the CNN is a feature
vector of 1× 128 that is sent to LR for classification. As in the previ-
ous 1-D CNN, the input image is represented by some feature vectors,
which capture the spatial information contained in the neighborhood
region of the input pixel. Then, the learned features are fed to the LR
for classification.

• Finally, the configuration of the 3-D CNN is shown in Table 8. This
spatial-spectral CNN receives patches of size 27×27×nbands normalized
in range [−0.5, 0.5] and grouped in batches of 100. In this case, nbands is
fixed to 32. The learning rate is fixed to 0.003 and the training epochs
is set to 400. After convolutional and pooling layers, the input data is
transformed and fed to LR for classification.

In Table 12 we can see a detailed comparison between the different tested
neural networks using Indian Pines dataset. The first column reports the
results obtained by the MLP (trained with 200 samples per class). The
second column provides a comparison between the CNNs in Chen et al. (2016)
and our CNN (using the same number of samples per class as the methods in
Chen et al. (2016)), with patch sizes of d = 9, d = 19 and d = 29. Finally, in
the third column we also report the results obtained by our proposed CNN
(trained with 200 samples per class) for comparison.

If we focus on analyzing the results provided by the different implemen-
tations of Chen et al. (2016) in the second column, we can see that the one
with spatial information (2-D CNN) achieves better results than the one with
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Accuracy table
Neural networks MLP CNNs in [Chen et al. (2016) versus the proposed CNN Proposed CNN

SLFN Samples 1-D 2-D 3-D d = 9 d = 19 d = 29 Samples d = 9 d = 19 d = 29 Samples

Alfalfa 97.39 33 89.58 99.65 100.00 100.00 100.00 100.00 30 99.13 99.57 99.13 33
Corn-notill 78.36 200 85.68 90.64 96.34 90.57 94.06 97.17 150 80.48 94.47 98.17 200
Corn-min 86.17 200 87.36 99.11 99.49 97.69 96.43 98.17 150 96.65 98.22 98.92 200

Corn 92.41 181 93.33 100.0 100.00 99.92 100.00 100.00 100 99.66 100.00 100.00 181
Grass/Pasture 96.31 200 96.88 98.48 99.91 98.10 98.72 98.76 150 99.46 99.75 99.71 200
Grass/Trees 97.73 200 98.99 97.95 99.75 99.34 99.67 100.00 150 99.53 98.90 99.40 200

Grass/pasture-mowed 97.86 20 91.67 100.00 100.00 100.00 100.00 100.00 20 100.00 100.00 100.00 20
Hay-windrowed 98.62 200 99.49 100.00 100.00 99.58 99.92 100.00 150 99.67 99.62 100.00 200

Oats 100.00 14 100.00 100.00 100.00 100.00 100.00 100.00 15 100.00 100.00 100.00 14
Soybeans-notill 87.00 200 90.35 95.33 98.72 94.28 97.63 99.14 150 92.43 98.00 98.62 200
Soybeans-min 68.99 200 77.90 78.21 95.52 87.75 92.93 94.59 150 76.42 94.32 96.15 200
Soybean-clean 87.86 200 95.82 99.39 99.47 94.81 97.17 99.06 150 97.74 99.09 99.33 200

Wheat 99.41 143 98.59 100.00 100.00 100.00 100.00 100.00 150 99.71 100.00 99.90 143
Woods 94.15 200 98.55 97.71 99.55 98.09 97.88 99.76 150 97.71 98.85 98.96 200

Bldg-Grass-Tree-Drives 85.03 200 87.41 99.31 99.54 89.79 95.80 98.39 50 99.27 99.90 100.00 200
Stone-steel towers 99.35 75 98.06 99.22 99.34 100.00 99.57 98.92 50 100.00 100.00 100.00 75

Overall Accuracy (OA) 84.60 87.81 89.99 97.56 93.94 96.29 97.87 90.11 97.23 98.37
Average Accuracy (AA) 91.66 93.12 97.19 99.23 96.87 98.11 99.00 96.12 98.79 99.27

Kappa 82.65 85.30 87.95 97.02 93.12 95.78 97.57 88.81 96.85 98.15

Runtime (sec.) 0.1800 457.8 357.0 1675.2 74.47 189.51 158.42 48.21 197.65 405.46
Total samples 2466 1765 2466

Table 12: Classification accuracies obtained by different neural networks tested using the
Indian Pines dataset: 1) first column: results obtained by the MLP (trained with 200
samples per class); 2) second column: comparison between the results obtained by the
1-D CNN, 2-D CNN and 3-D CNN in [Chen et al. (2016)] and the results obtained by
our CNN (trained with the same number of samples per class as the CNNs in [Chen et al.
(2016)]), using different values of parameter d); 3) third column: results obtained by our
CNN (trained with 200 samples per class, using different values of parameter d).

spectral information (1-D CNN). Also, we can see that the inclusion of the
two sources of information (3-D CNN) leads to an overall improvement of
the accuracy. In the same column we can observe that, when using our CNN
(with the same number of samples per class as the methods in Chen et al.
(2016)), the increase in the value of parameter d leads to an improvement
in the obtained classification result. Also, our method is faster than all the
methods reported in Chen et al. (2016) and comparable in terms of overall ac-
curacy to the best methods reported in that work. Specifically, our proposed
CNN implemented with d = 29 is 2.89 times faster than the 1-D CNN, with
an overall accuracy that is 10.06 percentage points better; 2.25 times faster
than the 2-D CNN, with an overall accuracy 7.88 percentage points better;
and 10.57 times faster than the 3-D CNN, with very similar overall accuracy.
Finally, a comparison between the results in the first and third columns of
Table 12 indicate that our proposed CNN can achieve better results in terms
of overall accuracy than the MLP, but the MLP is faster.

Also in Figure 29 we provide a graphical comparison of the overall accu-
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Figure 29: Comparison of the overall accuracy achieved by CNN classifiers with the Indian
Pines scene. The horizontal black lines show the overall accuracy results reached by the 1-
D, 2-D and 3-D CNNs in Chen et al. (2016), and the horizontal blue lines show the overall
accuracy results obtained by our proposed CNN, implemented with different values of d
and trained with the same number of samples than the CNNs in Chen et al. (2016). The
red line (marked as CNN-b in the figure) corresponds to our CNN, implemented with
d = 29 but trained with 50, 100 and 200 samples per class. Above each black and blue
line, we report the number of used samples and the overall accuracy reached (in square
brackets). For the red line, we only report the overall accuracy reached (the number of
used samples for this line is defined by the x-axis). On the other hand, the y-axis shows
the overall accuracies obtained in the experiments.

racy results obtained by the proposed CNN the CNNs implemented by Chen
et al. (2016). The horizontal blue lines in Figure 29 show the overall accuracy
results obtained by our proposed CNN with different values of d and trained
using the same number of samples than the CNNs in Chen et al. (2016). The
red line corresponds to our CNN, implemented with d = 29 but trained with
50, 100 and 200 samples per class. As we can see, the proposed CNN can
reach better overall accuracies than the compared 1-D and 2-D CNNs. For
the 3-D CNN, the results can be comparable in terms of overall accuracy.
However, since our architecture is optimized and executed on a GPU, we can
get better results from the viewpoint of processing time.

In Table 13 we report a comparison between the different tested neural
networks using Pavia University data set. The first column reports the results
obtained by the MLP (trained with 200 samples per class). The second
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Accuracy table
Neural networks MLP CNNs in [Chen et al. (2016) versus the proposed CNN Proposed CNN

SLFN Samples 1-D 2-D 3-D d = 15 d = 21 d = 23 Samples d = 15 d = 21 d = 27 Samples

Asphalt 84.92 200 92.06 97.11 99.36 97.53 98.80 98.59 548 92.81 95.31 96.31 200
Meadows 89.56 200 92.80 87.66 99.36 98.98 99.46 99.60 540 97.20 98.16 97.54 200

Gravel 94.68 200 83.67 99.69 99.69 98.96 99.59 99.45 392 96.97 97.92 96.84 200
Trees 96.48 200 93.85 98.49 99.63 99.75 99.68 99.57 542 98.62 98.74 97.58 200

Painted metal sheets 99.43 200 98.91 100.00 99.95 99.93 99.78 99.61 256 100.00 100.00 99.65 200
Bare Soil 90.75 200 94.17 98.00 99.96 99.42 99.93 99.84 532 98.57 99.57 99.33 200
Bitumen 93.76 200 92.68 99.89 100.00 98.71 99.88 100.00 375 97.27 99.75 98.90 200

Self-Blocking Bricks 63.94 200 89.09 99.70 99.65 98.58 99.53 99.67 514 96.17 98.20 98.89 200
Shadows 99.96 200 97.84 97.11 99.38 99.87 99.79 99.83 231 99.86 99.82 99.58 200

Overall Accuracy (OA) 88.20 92.28 94.04 99.54 98.87 99.47 99.48 96.83 98.06 97.80
Average Accuracy (AA) 90.39 92.55 97.52 99.66 99.08 99.60 99.57 97.50 98.61 98.29

Kappa 84.67 90.37 92.43 99.41 98.51 99.30 99.32 95.83 97.44 97.09

Runtime (sec. 0.15 994.80 607.19 2769.00 43.16 94.57 107.56 42.83 74.09 132.68
Total samples 1800 3930 1800

Table 13: Classification accuracies obtained by different neural networks tested using the
University of Pavia dataset: 1) first column: results obtained by the MLP (trained with
200 samples per class); 2) second column: comparison between the results obtained by
the 1-D CNN, 2-D CNN and 3-D CNN in [Chen et al. (2016)] and the results obtained by
our CNN (trained with the same number of samples per class as the CNNs in [Chen et al.
(2016)]), using different values of parameter d); 3) third column: results obtained by our
CNN (trained with 200 samples per class, using different values of parameter d).

column provides a comparison between the CNNs in Chen et al. (2016) and
our CNN (using the same number of samples per class as the methods in
Chen et al. (2016)), with patch sizes of d = 15, d = 21 and d = 23 (in this
case, due to the number of samples per class used by Chen et al. (2016) there
is not enough memory to run the CNN with d = 27). Finally, in the third
column we also report the results obtained by our proposed CNN (trained
with 200 samples per class and with patch sizes of d = 15, d = 21 and d = 23)
for comparison.

Again, we can see in the second column that our method is faster than
all the methods reported in Chen et al. (2016) and comparable in terms of
overall accuracy to the best methods reported in that work. Specifically,
our proposed CNN implemented with d = 23 is is 9.25 times faster than
the 1-D CNN with an overall accuracy that is 7.20 percentage points better;
5.65 times faster than the 2-D CNN with an overall accuracy that is 5.44
percentage points better; and 25.74 times faster than the 3-D CNN, with
very similar overall accuracy. A comparison between the results in the first
and third columns of Table 13 again reveals that our proposed CNN can
achieve better results in terms of overall accuracy than the MLP, but the
MLP is faster.

In Figure 30 we can graphically compare the overall accuracies obtained
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Figure 30: Comparison of the overall accuracy achieved by CNN classifiers with the Uni-
versity of Pavia scene. The horizontal black lines show the overall accuracy results reached
by the 1-D, 2-D and 3-D CNNs in Chen et al. (2016), and the horizontal blue lines show the
overall accuracy results obtained by our proposed CNN, implemented with different values
of d and trained with the same number of samples than the CNNs in Chen et al. (2016).
The red line (marked as CNN-b in the figure) corresponds to our CNN, implemented with
d = 29 but trained with 50, 100 and 200 samples per class. Above each black and blue
line, we report the number of used samples and the overall accuracy reached (in square
brackets). For the red line, we only report the overall accuracy reached (the number of
used samples for this line is defined by the x-axis). On the other hand, the y-axis shows
the overall accuracies obtained in the experiments.

by our proposed CNN with those obtained by the 1-D, 2-D and 3-D CNNs
reported in Chen et al. (2016). Again, the horizontal blue lines in Figure
30 show the overall accuracy results obtained by our proposed CNN, im-
plemented with different values of d and trained using the same number of
samples than the methods in Chen et al. (2016). The red line corresponds to
our CNN implemented with d = 27 but trained with 50, 100 and 200 sam-
ples per class. As we can see, the proposed CNN can reach overall accuracies
that are better than those achieved by the 1-D and 2-D CNNs, and compa-
rable to those achieved by the 3-D CNN in Chen et al. (2016). However, the
runtime of our implementation is considerably smaller, thanks to our GPU
implementation of the network.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a new deep 3-D CNN architecture for
spatial-spectral classification of hyperspectral data. The joint consideration
of spectral information together with spatial information provides better clas-
sification results than those reached by traditional neural networks that only
include spectral information. With a proper topology selection and a good
election of parameters, we can obtain high classification accuracies in accept-
able processing times, enforced by the fact that our CNN has been imple-
mented efficiently using GPUs. Our detailed comparison with other 1-D, 2-D
and 3-D CNNs in Chen et al. (2016) (that also include spatial and spectral
information simultaneously) reveals a good compromise between the classi-
fication results obtained by our newly proposed CNN architecture and the
time needed to obtain these results in the considered computing environ-
ments, which is important for practical exploitation of the proposed method-
ology in real applications. Our experiments specifically suggest that, with a
proper and simple adaptation, the use of GPUs allows us to realize the full
potential of deep learning techniques for remotely sensed hyperspectral im-
age classification by naturally and efficiently combining the spatial and the
spectral information contained in these images. This has also been verified
with a classic MLP model used for comparative purposes in this work. As
future work, we will conduct additional experiments with other hyperspec-
tral scenes and also test other high performance computing architectures for
efficient implementation.
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