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1 INTRODUCTION

According to Rothenberg (Rothenberg et al. 1989), “Modeling, in the broadest sense, is the cost-
effective use of something in place of something else for some cognitive purpose. It allows us to
use something that is simpler, safer or cheaper than reality instead of reality for some purpose.
This allows us to deal with the world in a simplified manner, avoiding the complexity, danger and
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irreversibility of reality.” The current reality of scientific programming is indeed complex. Modern
high-performance computing (HPC) platforms present fast networks linking deep memory hier-
archies culminated by multi- and many-core GPPs and accelerators, with the goal of reaching the
highest possible performance. This survey is about Communication Performance Models for HPC.
Today’s HPC is mostly done in clusters. The 51st TOP500 list (Top500 2018), published in June
2018, sets that 437 out of 500 entries are clusters. The HPC industry relies on software tools for the
intriguing task of determining the performance gain or loss of using a given component, either
hardware or software, but using formal prediction techniques is the way to make such analysis
easier and probably scalable. Performance prediction remains a significant unmet challenge in the
area of HPC.

Communication performance modeling now faces the challenge of the increasing complexity
of the computing nodes of current networks. It is with good reason that the so named node-level

performance engineering is now a well-established branch of computer engineering. The cluster
node has become multi-core. Processes running in the same node usually communicate through a
buffer in shared memory, but direct transmissions are also possible using operating system mod-
ules, operating system bypass or Remote Memory Access (RMA) through high-performance net-
works such as Infiniband. Of course, performance models have to deal with these and other issues,
some of which are hard to represent. In fact, the lack of accuracy shown by classical models in
modern HPC platforms has caused performance models to be partially left behind in favor of ex-
tensive experimental tests aiming to optimize the final application. This work method, however, is
quite expensive in computational time; it is system dependent and does not ensure generalizable
results (Hunold and Carpen-Amarie 2016). Consequently, new efforts keep emerging. The more
recent model lognP (Cameron et al. 2007) suggests a new concept, the transfer, a data movement
between either local or remote memory entities. Sending a message is now perceived as a sequence
of transfers. The cost of a transfer is not directly related to hardware but rather to the middleware,
that is, the software that provides data movement services to the applications. The recent τ–Lop
(Rico-Gallego et al. 2016; Rico-Gallego and Díaz-Martín 2015; Rico-Gallego et al. 2017) addresses
some weaknesses of lognP, including contention for the channel collectives and heterogeneous
platforms.

A communication performance model represents analytically the cost of a cluster communica-
tion based on a limited set of platform-specific parameters and many models have appeared over
time. The Hockney model (Hockney 1994) is a good starting point to get a feel for what commu-
nication performance modeling means. It is a linear model, where sending of a message has a
costT (m) = α +m β . Here,m accounts for the size of the message, α for the network latency, and
β is the reciprocal of the network bandwidth. The point here is that an adequate election of these
parameters is essential to achieve a meaningful representation of the communication. The formal
parameters of a model take different values in each platform; the survey discusses the empirical
procedure to measure them. It is important to emphasize that this issue is critical: any change
or perturbation in the measurement methodology leads to a model with a different behavior in
practice and, hence, with a different prediction accuracy.

As could be expected, communication performance models play a role in the message-passing
interface (MPI). Despite the appearance of alternative programming models to tackle the scalability
problems posed by current clusters, the MPI (MPI Forum 2012) is, and probably will continue to be,
the de facto communication interface used by HPC applications (Dongarra et al. 2011). Collective
operations are a determining factor in the global performance and scalability of HPC software.
Their underlying algorithms are designed to minimize communications, optimize the channels, or,
less frequently, fit a particular network technology. The point here is that tuning the underlying
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Table 1. Communication Performance Models in Chronological Order

algorithms of MPI collectives is a must to quickly know their performance without painful and
expensive experimental testing. In fact, currently, a key branch of interest of performance models
is their ability to model collectives.

For the sake of seeing a model in action, assessing it, and making simple but significant compar-
isons with other models, we discuss the analytic representations of point-to-point and collective
operations of the most relevant performance models. Only a small number of references can be
consulted as partial or limited surveys in the field. Maggs et al. (1995) is about ancient PRAM (JáJá
1992) and BSP (Valiant 1990) computational models, and includes some network models such as
HMM (Aggarwal et al. 1987) and LogP (Culler et al. 1993). The more recent article on the subject
(Pješivac-Grbović et al. 2007) provides an exhaustive modeling of multiple algorithms used in MPI
collective implementations using a set of models. In contrast, our survey attempts a comprehen-
sive overview of the main works in which the models have been used to evaluate and improve
the performance of a broad range of algorithms and applications. At all events, to manage the
vast amount of available literature about the subject, the models discussed, considered as the most
representative, are enumerated in Table 1. It provides the following:
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Fig. 1. A communication performance models can be characterized by the following three factors: 1) Origi-
nality, 2) Platform independence, and 3) Parameterization. These factors are orthogonal to each other.

• Name of the model, often an acronym composed of the initial letters of the name of its
parameters.

• Reference of the paper where the model is introduced and described.
• Type of the model. Figure 1 is an attempt to classify and categorize a model in a tri-axial plot.

A model can be either foundational (F) or derived (D), either hardware (Hw) or software
(Sw), and either generic (G) or specific (S). We consider a model as foundational when it
introduces a paradigm shift and promotes derivative models. The increasing communication
costs attributed to middleware have been ignored by hardware-parameterized models, a
source of inaccuracy that led to the software-parameterized models. Generic models can be
adapted to different platforms. Specific models cover particular platforms.

• Target platform, which span mono-processor homogeneous, hierarchical, and heteroge-
neous clusters. By hierarchical, we mean clusters of regular multi-core processors, with
at least two different communication channels: shared memory and network. Heteroge-

neous means clusters with different types of processors, accelerators, and communication
channels.

• Contribution of the model. Shows the main contribution to the field. To date, the tendency
has been that models add new features to previously existing models. These add-ons include
the capability of representing synchronization, segmentation of messages, channel con-
tention, specific network technology, topology, non-point-to-point-based collectives, and
more.

Overall, the goal of this survey is to provide researchers with a guide to the literature, showing
the scope, behavior, benefits, limitations and perspectives of communication performance models.
Section 2 presents the principles of the discipline, discussing the foundational models and their
original intended applicability. Section 3 explains how the models reported so far have addressed
the challenges posed by modern platforms. Section 4 discusses the issues involved in the design
of the parameters of a model as well as the procedure to estimate their value in each particular
platform. Section 5 presents the main factors influencing the performance of a model. We offer
our conclusions on the evolution of the models and thoughts on areas of future developments in
Section 6.

2 FOUNDATIONAL MODELS

The evolution of the models along time makes it possible to classify them into foundational models
and their extensions or derived models, which deal with issues not covered by the first ones.
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Fig. 2. Operation of a binomial tree broadcasting algorithm along �log2 (P )� = 4 steps between P = 16

processes. A directional arrow connecting two processes (nodes in the tree) is a point-to-point message

transmission.

Fig. 3. The LogP model and its parameters.

2.1 Concepts and Formalisms

It is now more than two decades since the Bar-Noy and Kipnis Postal Model (Bar-Noy and Kipnis
1992) attempted to analytically model the communications of a fully connected network by intro-
ducing the issue of the latency of the network for first time. Tp2p (m) = λ. The model is asynchro-
nous and assumes that at most one message can be sent or received by a processor per timestep.
Two years later, the Hockney model, presented in the introduction, added bandwidth to the postal
model, which limits the amount of data to be transferred at a time. The cost of a point-to-point
transmission isTptp (m) = α +m β . Because of its simplicity, the Hockney model has played an im-
portant role in the evaluation and optimization of any collective algorithm—in particular, those of
MPI implementations. All the works apply Hockney assuming that a node is allowed to execute
a sending operation and a receiving operation at the same time (for instance, the time for two
processors to send each other a message of length m is also T (m)) but is not allowed to execute
more than one sending operation or more than one receiving operation at the same time.

Beyond the single point-to-point transmission, to appreciate the significance of performance
modeling, let us consider a more complex communication, the well-known binomial tree broad-
casting. It proceeds according to the following algorithm. A process named root sends to the
rest. Figure 2 shows the algorithm deployment. The process root sends a message to process
root + P/(2n), where P is the total number of processes and n is the current communication stage.
Acting as roots of their own P/(2n) node trees, these processes continue repeatedly until the
leaf node is reached. The theoretical cost of a collective algorithm has been typically evaluated
as the aggregate of the Hockney costs of its individual transmissions. Given that the height of
the full tree is �log2 P�, everything completes in that number of stages; thus, the algorithm cost
is T (m) = (α +m β ) × �log2 P�. This result can be analytically compared with those obtained by
alternative broadcast algorithms.

The convergence in the 1990s to the cluster architecture raised the development of the LogP

model (Culler et al. 1993, 1996b). Its name is an acronym from its four parameters (see Figure 3),
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Fig. 4. Representation of the cost of a point-to-point message transmission under the LogGP model, one
message of size m = 5 at the left and two messages at the right. Note that the gap д delays the emission of
the second message.

L, o, д, and P , standing for network delay, overhead, gap per message, and the number of processors
in the cluster. The overhead o is the time or cycles that the processor invests to send the message,
that is, to prepare the message, enqueue it in the send queue, and signal the network interface
card (NIC). It is the same for reception. Latency or network delay L is the time elapsed between
the instant in which the sender processor ends the sending action and the instant in which the NIC
interrupt notifies the target processor of message arrival. The actual latency that a message expe-
riences is undefined, but L bounds above this figure for an unloaded network. The transmission of
a short message has a cost ofTp2p = o + L + o. The model can be extended for further accuracy by
distinguishing between the sender (oS ) and the receiver (oR ) overhead (Culler et al. 1996b). Param-
eter д, for gap, is the minimum time interval needed by the network card between two consecutive
packet injections to the cable (likewise for receptions). Its reciprocal, therefore, gives the effective
bandwidth in terms of messages per unit time. The L and д parameters configure a finite capacity
network, meaning that a processor can send up to �L/д� messages before being blocked in the net-
work. Indeed, the key advance of LogP over the Postal andHockney models is that LogP recognizes
the contribution of the processor to the communication latency. The difference between o and д is
the amount of CPU cycles available for the processor to do other useful computation. This is how
the model exposes the overlapping of communication and computation. According to Karp et al.
(1993), the Postal model “turns out to be a special case of the LogP model (with д = 1 and o = 0).”

LogP is important, because it became the foundation of numerous subsequent models that ex-
tend it by adding parameters for representing specific characteristics of the communication and
platform. However, an important limitation of LogP is that it considers only short messages. The
model supposes that a long message is sent as a sequence of shorter messages, using the minimum
time interval д. Soon emerged LogGP (Alexandrov et al. 1995) to introduce a fifth parameter, the
gap per byte G, which represents the time elapsed between the injection in the network of two
consecutive bytes. The reciprocal 1/G is hence the network bandwidth for long messages, which
corresponds to the β parameter of the Hockney model. Of course, G models the network band-
width much more accurately than adding up the costs of multiple small messages limited by д
in LogP. As an example, the left side of Figure 4 plots the cost of a point-to-point transmission
as Tp2p (m) = 2o + L + (m − 1)G. The right side of the figure shows the cost of two consecutive
transmissions, Tp2p (m) = o + (m − 1)G + д + (m − 1)G + L + o = 2o + 2(m − 1)G + д + L.

2.2 Application Fields

Adopting the principal computing structure in HPC, most of the literature on the application of
communication performance models in clusters focuses on improving the performance of MPI
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collectives. We describe noteworthy works in this area and also on optimizing the schedule of
algorithms in clusters.

2.2.1 Advice on Performance of MPI Collectives. Thakur et al. (2005) use the Hockney model to
improve the overall performance of collectives in clusters with switched networks. More to the
point, the Hockney predictions guide the MPICH (MPICH 2013) library at runtime when selecting
one among the multiple algorithms available to a collective operation depending on the message
size. This work applies the Hockney model, making ideal assumptions that processes can send
and receive messages simultaneously or there is no contention on the network. Likewise, Chan
et al. (2007) use the Hockney model to analyze some MPI collective algorithms for short and long
messages, proposing a parameterized family of algorithms to automate the optimization of col-
lective communication libraries. A Hockney-based optimal broadcast is developed by Träff and
Ripke (2005) and evaluated in clusters of SMP nodes. Rabenseifner and Träff (2004) discuss un-
der the Hockney model the MPI reduction operations, considering fully homogeneous platforms.
They propose algorithms for the specific case that the number of processes is not a power of two.
The Hockney cost of All-to-all collective is discussed by Kale et al. (2003) for 2D-mesh, 2D-Grid,
and Hypercube topologies in homogeneous clusters. Hatta and Shibusawa (2000) addressed the
gather collective in heterogeneous clusters. Here, latency and bandwidth are specific to each pair
of processes so that Ti, j (m) = αi j +mβi j . Ooshita et al. (2002) develop a method for finding opti-
mal broadcast trees in heterogeneous clusters. Only small messages are considered so that only the
latency of the Hockney model is used, termed ti (initiation cost of process i), which is calculated
as half a round trip of a 4B message between two identical nodes. Hasanov et al. used the Hockney

model for the design and analysis of hierarchical modifications of classic collective algorithms for
homogeneous large-scale platforms in Hasanov and Lastovetsky (2017) and Hasanov et al. (2015a,
2015b). SimGrid is the most popular simulation tool of large-scale distributed systems. In addition
to Grids, it covers Clouds, P2P, and HPC systems (Casanova et al. 2014). Its network model is the
Hockney model. Last, but not least, the High Performance Linpack (HPL) algorithm benchmarks
the Top500 list. Its scalability analysis is based on a Hockney communication performance model
(Chou et al. 2007; Petitet et al. 2016).

Pješivac-Grbović et al. (2007) provide a thorough report of MPI collective algorithms, analyzed
with LogGP, Hockney, and PLogP. Martin et al. (1997) use LogGP to study the impact of network
features on the performance of applications. They conclude that applications are quite sensitive to
slight alterations of overhead o and per-message bandwidth L/д but are unexpectedly tolerant to
a lower per-byte bandwidth 1/G and to a greater latency L.

2.2.2 Algorithm Design for Optimal Communication Schedule. The idea is reorganizing the com-
putation of the algorithm so that, as far as possible, it overlaps the communication, hence minimiz-
ing the delays produced by the latency and bandwidth of the network. The method is to express
the algorithm in terms of the parameters of the model, empowering the designer to address criti-
cal performance points, avoiding the myriad of idiosyncratic machine details. Needless to say, this
approach lays the foundation for devising efficient and portable parallel algorithms in a cluster.
The postal model is used in Bar-Noy and Kipnis (1992) to study different broadcast algorithms and
in Bernaschi and Iannello (1998) to advise on the schedule of broadcast and reduction algorithms.

The LogP broadcast modeling deserves to be highlighted here since it quickly provides insight
on the role of the model in optimizing an algorithm in a current cluster. Look at Figure 5. Once
the root process sends the message at time 0, it enters the network at time o and arrives to the
target network controller at o + L. The corresponding interrupt copies the message to the receiver,
which has it available at L + 2o. Note that subsequent messages depart from the root process at
times o + д, o + 2д, and so on. Now, consider a type of broadcast where each receiver behaves as
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Fig. 5. The LogP model at work, modeling a simple algorithm, a linear broadcast between three processes
(here, д > o). The cost of the operation is given as the time length of the longest path, TBcast = д + 2o + L.
In general, a linear broadcast among P processes has a cost TBcast = (P − 2)д + 2o + L. Note that L and o
determine the time to perform an individual point-to-point message transmission, while parameter д is key
to making a faithful representation of a sequence of messages originating from the same source process
(broadcast or scatter) or directed to the same destination process (gather). It often happens that o > д. In
this case, after this long o experimented by a messagem2, the previous messagem1 has already been injected
in the cable; thus,m2 never experiments the gap delay. As a result, the cost analysis can ignore the gap.

the root of its own tree. Interestingly, achieving the optimal performance from this algorithm,
that is, the minimum completion time, results in an unbalanced tree, because a node ni can be-
gin to broadcast long before another node nj had received anything. After discussing the idea,
Culler et al. (1993) present and analyze with LogP some example algorithms commonly used in
applications, such as broadcast, summation, or FFT. Likewise, Karp et al. (1993) propose optimal
scheduling under LogP for six different problems. Dusseau et al. (1996) use LogP to model a set of
sorting algorithms. One of the conclusions is that LogP, even though it offers accurate predictions,
underestimates the cost of the algorithms because it does not consider contention costs beyond its
network capacity constraint. Martin et al. (1997) use LogGP to study the impact of network features
on the performance of applications. They conclude that applications are quite sensitive to slight
alterations of overhead o and per-message bandwidth L/д but are unexpectedly tolerant to a lower
per-byte bandwidth 1/G and to a greater latency L. Santos (1999) studied the problem of broad-
casting k-items from one processor to the remaining processors and proposed a slight variation of
LogP allowing buffering of messages, under which an optimal k-item broadcast is developed. Park
et al. (1996) propose the design of optimal trees based on LogP for the multicast communication
pattern used in broadcast and scatter MPI operations. Iannello et al. (1998) show that LogP is a
useful analysis tool for designers to get insights into the issues affecting the total communication
time, using a platform with a Myrinet network. Finally, Hoefler et al. (2005) apply LogP to the
modeling and evaluation of different algorithms implementing the MPI_Barrier collective.

3 KEEPING THE PACE OF THE HPC PLATFORM DEVELOPMENT

As with the case with LogGP, the HPC research community soon identified limitations, weak-
nesses, and open issues in the foundational models, and readily addressed them through derived
models. It has been two decades since Tam and Wang (1999) provided insightful discussion on the
similarities and drawbacks of the pioneering communication models. The cluster evolution has
brought new modeling issues that could hardly be considered in 1993. We can highlight areas such
as accurate MPI cost prediction, the contention for the channel, the irruption of multi-core nodes
in the hierarchy of the network, or, more recently, the heterogeneity of the platform. This section
summarizes proposals of derived models, with a focus on their specific abilities.
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Fig. 6. Transmission of a point-to-point message of sizem = 5 modeled in LogGPS under parameters (s = 2,

S = 4). Asm > S , rendezvous is used. Asm > s , the first s bytes are sent under Gs and the rest under Gl .

3.1 Accurate Modeling of MPI Primitives

LogP/LogGP has exhibited an overall good performance for communication primitives built either
at machine level or on Elan or Active Messages, both low-level communication libraries. However,
it becomes inaccurate for higher-level primitives, such as those from MPI. As an example, buffer
space constraints at the receiver impose the support of communication protocols in the implemen-
tations of MPI_send. Two of these protocols are eager and rendezvous, applied to short and large
messages, respectively. In the eager case, the message is sent assuming that the target has enough
store. Under rendezvous, however, the sending of a small control message precedes the delivering
of the actual message. The purpose is to urge the receiver to provide enough buffering. The sender
blocks until the confirmation arrives. Rendezvous incurs hence a significant added cost at the be-
ginning of the communication, which must be considered in a model, something that LogP/LogGP

does not do. This overload is called synchronization cost by Ino et al. (2001). To capture this cost,
they developed the LogGPS model, which presents three differences with respect to LogGP. First,
and most important, it adds the message length threshold parameter S . When m > S , the sender
waits for an acknowledgment. Otherwise, just an asynchronous message is shipped. Second, for
better accuracy, the overhead in sender is size dependent: os (m) = o′ +mOs , where o′ is a con-
stant and Os is a factor per byte. Likewise, in the receiver, or (m) = o′ +mOr . Third, the model
adds one more parameter, the length s . For m ≤ s , G becomes Gs and Gl for m > s . Let us assume
a system with s = 2 and S = 4. Suppose a message of sizem = 2. Beingm ≤ S , it will be sent asyn-
chronously. Its LogGPS cost is Tptp (m) = o′ + 2Os + 2Gs + L + o

′ + 2Or . If m = 3, as still m ≤ S ,
the message will also be sent asynchronously. However, now, m > s , with the consequence that
the third byte is sent under Gl , with cost Tptp (m) = o′ + 3Os + 2Gs +Gl + L + o

′ + 3Or . Figure 6
illustrates the cost of sending a synchronous message.

Chen et al. (2009) proposed LogGPO after observing that the LogP family fails to make satisfy-
ing predictions on the communications of MPI. The potential overlap of computation and com-
munication may have a broad incidence on the overall performance of an MPI program, which
use non-blocking communication to this end. However, the fact is that current MPI implementa-
tions fail to attain a true overlapping. The authors also point out that the reason is the signifi-
cant communication overhead that can be introduced by the MPI implementation, such as the de-
sign of the communication progress engine. The issue here is that LogGP ignores this augmented
overhead, assuming a perfect overlap degree that leads to unrealistic predictions. To tackle the
problem, LogGPO extends LogGP to capture the real overhead of MPI libraries and characterizes
the potential overlap between computation and communication in MPI programs. LogGPO in-
troduces the overlap for sender Os and receiver Or ; both later split into a set of parameters for
representing different aspects of the non-blocking communication. These aspects are MPI wait

time Ow , the NIC initialization time Oi , the memory copy time Oc , and the time to process a
control message O ′. The model defines the overlap ratio of computation to communication. The
computation time C is denoted in the sender as Rso =

C
C+Os

and in the receiver as Rro =
C

C+Or
.

The result is a high number of parameters. To get a flavor of the model, Figure 7 illustrates two
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Fig. 7. A rendezvous communication of K = 5 bytes modeled in LogGPO. The plots differ on the relative
arrivals of MPI_Recv and MPI_Wait in the receiver.

modeling cases of sending a message of size K = 5 under the rendezvous protocol with MPI
asynchronous primitives. The instant of invocation of MPI_Wait makes the difference. Let us
examine first the upper case. In the sender side, we have that the overhead introduced by
MPI_Wait is Osw = 2O ′ +Oi + L +G (K − 1) + (Tr −Tsw ); hence, Os = O

′ +Osw . In the receiver
side, MPI_Wait does not introduce overhead; thus,Orw is zero and, hence,Or = 2O ′ +Orw = 2O ′.
The modeled cost is Tptp = 2(2O ′ + L) + (Tr −Tsw ) + 2Oi +G (K − 1) + L. Regarding the lower
case, note that the sender side has the same behavior as before. However, in the receiver side,
MPI_Wait now introduces a significant overhead Osw = 2O ′ +Oi + L +G (K − 1); hence, Or =

O ′ +Orw . The modeled cost is Tptp = 2(2O ′ + L) +Oi +G (K − 1) + L + (Trw −Tsw ).

3.2 The Network Hierarchy

Many HPC infrastructures, such as Grid’5000, couple multiple clusters via wide-area networks. A
major problem in programming parallel applications for such platforms is their hierarchical net-
work structure: latency and bandwidth of WANs often can be orders of magnitude worse than
those of local networks. The Parametrized LogP or PLogP model (Kielmann et al. 2001) was con-
ceived with the goal to optimize MPI’s collectives in this scenario. An insightful experimental
rationale supports the transformation of LogP parameters д, os , and or into piecewise linear func-
tions of the message size m. The left side of Figure 8 shows that PLogP uses two differentiated
parameter sets for LAN and WAN, identified by a subscript as Ll and Lw . Though the notion of
latency in PLogP is slightly different from those of LogP/LogGP (see the right side of Figure 8), the
gap and overhead parameters are equivalent in both models. Kielmann et al. (2000) “Like L, д(m)
covers all contributing factors. From д(m) covering os (m) and or (m), follows д(m) ≥ os (m) and
д(m) ≥ or (m).” Under PLogPTp2p (m) = L + д(m). The right side of Figure 8 shows the parameters
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Fig. 8. On the left, the PLogP parameters, illustrating the difference of L between LogP/LogGP and PLogP.
The right plot represents a sequence of n messages under PLogP. Note that the latency L contributes to the
cost only at the start of the communication; hence, the cost will be T = L + д(m1) + д(m2) + · · · + д(mn ).

in a row of n messages of growing size. Inter-cluster Messages are split into multiple segments and
sent in parallel over different WAN links. The model is applied at runtime for deciding the segment
size and the optimal tree in broadcast inter-cluster operations. Both inter-cluster and intra-cluster
collectives are explored by Barchet-Estefanel and Mounié (2004), with decisions based on PLogP.

Modern HPC clusters are composed of multi-core nodes linked by a high-performance network
technology. This fact broadens the concept of “network” to a hierarchy of channels with different
capabilities. Also derived from LogGP, Yuan et al. LogGPH (Yuan et al. 2010) supports the rep-
resentation of hierarchical networks by recognizing the concept of “communication level.” They
allocate a different battery of parameters per level. Two processes running in the same socket
communicate in level 1 through shared memory, in level 2 if they run in the same node but in a
different socket, and in level 3 through the network. The cost of a transmission in level i of the hier-
archy is Ti (m) = 2oi + (m − 1)Gi + Li , 0 ≤ i ≤ H . Hierarchical algorithms are modeled in phases
involving different channels. Let us consider the broadcast case. The first stage consists of an inter-
node broadcast performed between selected processes, one per node. The second stage consists of
a local broadcast inside each node through shared memory, where the selected node acts as the
root. A Hockney-based hierarchical model was proposed in the mpC programming system to pre-
dict the communication cost of parallel algorithms in heterogeneous clusters of shared-memory
multiprocessors (Lastovetsky 2002).

3.3 Communication Contention

Models discussed up to this point are known as contention free, valid as long as there is no con-
tention on the network. That is why Moritz and Frank (2001) considers that the LogP family has
been successful in the rather restricted boundaries of “regular applications with good communica-
tion locality and tight synchronization.” Concurrent access to a shared channel, however, shrinks
its available bandwidth and degrades the overall performance. Modeling this situation, for instance,
is required to provide accurate cost estimation of network demanding collectives as All-to-all. Two
types of contention can be identified (Tam and Wang 2003), node contention, the contention for
the resources at nodes, and link contention, the contention for the network links.

In Distributed Shared Memory (DSM) machines, the time invested by the processor is off-loaded
to a special network controller. Thus the o parameter of LogP is understood in Holt et al. (1995)
as the mere occupancy of the network controller. The authors study the effects of o and L on the
performance of a variety of communication patterns in a simulation environment. Their con-
clusions allow identification of situations where a controller becomes a performance bottleneck.
This and some other experiences on contention effects motivated the first model that considered
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contention, LoPC (Frank et al. 1997). The acronym misses out the letter g because it is considered
negligible in the discussed platform. The send overhead is also ignored. Regarding contention,
LoPC considers it only in the receiver node. Processes communicate via active messages. As
messages are short, the contention is only attributable to the battle for the processor between
the threads that handle the incoming messages. The cost of a transmission can be represented as
Tptp = Sl + So , with Sl the latency, with the same definition as L in LogP and with So the overhead
in the reception processor, including the contention.

LoGPC (Moritz and Frank 2001) extends LogGP to mesh networks to represent the impact of net-
work contentionCn ; thus,T (m) = oS + L + (m − 1)G +Cn + oR . Here, n is a dimension of a K-ary
N -cube mesh (N dimensions andK nodes per dimension).Cn comes from the average switch delay,
derived solving the linear system resulting from a M/G/1 queuing model. Unfortunately, the num-
ber of parameters raises significantly. The authors observed that network contention represented
up to 50% of the overall execution time in three numerical codes in the Alewife machine.

Tam and Wang (1999) define a model, rooted on LogP, that also exposes the contention explicitly.
The model splits the overhead in the receiver into two parameters—Or and Ur . Or —representing
the cost of the asynchronous receiving event in the kernel, while Ur is the added cost in the
user space. A single global switch models the network as a complete graph. The latency param-
eter L(m,p) includes the network contention by its dependency on the number of processes p. L
is influenced by the BL parameter, which represents the available buffers in the central switch,
which cannot serve two consecutive packets within the gap period д. The cost of a transmis-
sion is modeled as Tptp (m,p) = Os (m) + (k − 1)д(m) + L(m,p) +Or (m) +Ur (m), where k =m/b
is the number of fragments of the message, with b being the size of the fragment. This cost is
considered to be that of a data movement through the network between two remote processes.
The model also considers parameters for intra-node communications. Thus, though being a hard-
ware model, the data movement abstraction makes it a precursor of the middleware performance
models.

Next, we briefly review different interesting works on modeling contention in high-performance
networks. The traditional linear point-to-point cost model used in a Myrinet cluster (with worm-
hole routing) is Tptp (m,h) = ts + hδ +mf , where ts is the send and receiving overhead of LoдP ,
f the reciprocal bandwidth, h is the length of the path through the switches of the network,
and δ the delay in the switch. Kim and Lee (2001) argue that this model is insufficient in the
presence of synchronization protocols, the varied behavior of the switches and the contention
in the links. Thus, they derive a piece-wise linear model by adjusting measured delays. Suppose
that m is in the interval [x0,x1], which has a slope S . In the absence of contention, Tptp (m,h) =

Tptp (x0,h) + S × (m − x0) + δ (h − 2). Under contention,TC
ptp (m,h) = ηmaxTptp (m,h), where ηmax

is the upper bound of messages contending for using any of the links on the path. They use BIP,
a low-overhead user-level communication library for Myrinet. The model is tested against an “ad
hoc” and a binomial broadcast, with suggestive rather than conclusive results.

Though perceived as a first approach, Martinasso and Méhaut (2005) proposes an interesting
contention model in a single-switch Myrinet network of 104 bi-Itanium2 two-core nodes, this
time using MPI as a user-level library. They capture the impact of both node and link contention
using just two hockney models, one contention-free and another on node contention. The authors
extend the study to Infiniband networks in Martinasso and Méhaut (2011). Jerome et al. (2008)
perform a quite similar study on bandwidth sharing for multiprocessor clusters connected by Eth-
ernet, Infiniband, and Myrinet networks. A study of the mechanism of flow control of each type
of network gives place to its particular model. Experiments of resource sharing categorize various
conflict types and output “penalty coefficients.”
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Steffenel (2006) and Barchet-Steffenel and Mounié (2006) dwell on the incompetence of tradi-
tional performance models to predict the cost of the All-to-all collective. They try to solve this
problem with the identification of the contention network signature parameters γ and δ of a given
network.γ represents the ratio of the theoretical lower bound of the communication operation and
the actual measured execution time, and δ is an extra supplementary contention factor of observed
slopes. Both parameters are functions of the message size and the number of processes. They are
used to augment a linear model previously determined, with the goal of fitting the real cost of
All-to-all. PLogP or other models are used to estimate the contention-free communication cost.
The network contention is then linearly incremented. The cost of the transmission is expressed as
Tptp (m) = L + д(m) + γ + δ under PLogP.

Bidirectional TCP traffic introduces contention over Ethernet channels. Zhu et al. (2013) have
developed a communication model that characterizes the asymmetry of this contention.

3.4 Platform Heterogeneity

LogP originally aimed at clusters of homogeneous single-processor nodes linked by a single
network. Banikazemi et al. (1998), however, targeted their work to clusters of heterogeneous
workstations. Their work reveals how the overhead of MPI point-to-point transmissions can vary
significantly depending on the capabilities of the nodes. In other words, each processor i has a
specific t i

ini message initiation cost. Since collectives involve more than one workstation, the ques-
tion arises as to whether the heterogeneity can be used to the advantage of implementing them
faster. Two new approaches are proposed to implement broadcast and multi-cast with reduced
latency. Later, Banikazemi et al. (1999) propose a model with the goal of optimizing collectives
in the cited platforms. It is based on the definition of the cost of a point-to-point transmission
being Tptp (m) = Os (m) +Ot (m) +Or (m), where the three O parameters are linear functions of
the message size m. Thus, the overhead in the sender is Os (m) = Sc + Sm m, the overhead in the
receiver Or (m) = Rc + Rm m, and the overhead of the transmission Ot (m) = Xc + Xm m.

Computational grids emerged almost two decades ago as an infrastructure that connected dis-
tributed computational sites worldwide. This system is heterogeneous both in nodes and networks.
Bhat et al. (1999) extend the Hockney model with communication costs summarized by inter-node
cost matrices. The cost of a transmission between process i and process j is defined asTi j + βi j ×m,
with Ti j representing the start-up time attributable to the i process, including the latency of the
link connecting the processes i and j. They provide several heuristics to find efficient broadcast
and multi-cast over grids with heterogeneous networks. Bhat et al. (2003) also studied the all-to-all
collective in these systems.

HiHCoHP (Hierarchical Hyper-Clusters of Heterogeneous Processors) is a model proposed by
Cappello et al. (2001, 2005) aimed at modeling multi-level hierarchical networks of heterogeneous
clusters. A transmission between sender Ps and receiver Pr traverses multiple levels in the network
hierarchy, ordered from the lower-latency/higherbandwidth level. The communication costs are

represented by the message processing costs at the processors in level k of the hierarchy σ (k )
s

and σ (k )
r , the costs of packaging and unpackaging each packet of the message π (k )

s and π (k )
r , and

three parameters representing the delays of the network: (1) the network latency λ(k ) that includes

the latencies of the levels lower than k ; (2) the network end-to-end bandwidth β (k ) , including the

lower-level bandwidths; and (3) the network capacity κ (k ) as the maximum number of packets in
transit at once through the level k of the network. The cost of sending a message in p packets in a

pipelined network can be represented asT (m) = σ (k )
s + π (k )

s p + λ(k ) +
p−1

β (k ) + σ
(k )
r + π (k )

r p, given a

per-packet delay of 1/β (k ) . The model also includes the processor time to perform a unit of work
as ρi for each Pi . HiHCoHP is applied to broadcast and reduction operations.
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Fig. 9. Concept of message transmission in log2P. Ps is the sender process while Pr is the receiver. Sending a
message through shared memory imposes two transfers in the channel. Physical memory reads and writes
have slightly different performance, thus, the overhead and the latency parameters are different. Notwith-
standing, considering them the same is a reasonable simplification here.

HLogGP (Bosque and Pastor 2006; Bosque and Perez 2004) is an offspring of LogGP that addresses
the heterogeneity of both processors and channels. HLogGP extends the os , or , and д scalar param-
eters of LogGP as vectors of p components, p being the number of processors. On the other hand,
L and G are now matrices of p × p components (one per pair of processors). The model includes
the processor-dependent computational power as a new parameter denoted by Pi . The cost of a
transmission between processors i and j is Ti→j (m) = Li j + oSi

+ oRi
+ (m − 1)Gi j . The authors

provide a methodology for estimating the value of the parameter for each pair of processors in a
small cluster, and they are applied to the prediction of the execution time of a matrix multiplication
code and to a volumetric magnetic resonance image compression application.

Lastovetsky et al. (2006) address the cost of communications on a switched Ethernet network
connecting a set of heterogeneous processors. The model proposed, LMO, discusses the impact of
this heterogeneity on the communication costs of a battery of operations, both of point-to-point
and collective. Just like LogGP, LMO conscientiously segregates processor and network costs. The
cost of the transmission between the processors i and j is Ti→j (m) = Ci +mti +Cj +mtj + Lij +

m/βij. ParametersCi andCj are specific delays attributable to each particular processor, reflecting
the processor heterogeneity. ti and tj are specific per-byte costs, which reflect channel heterogene-
ity. The fixed network delay parameter Lij introduces additional flexibility in expressing the cost
of collective operations. It is added to the original model by Lastovetsky et al. (2009). βij is the
transmission rate of the channel. LMO and its parameter measurement procedure are discussed in
detail by Lastovetsky and Rychkov (2007) and Lastovetsky and Rychkov (2009).

Nasri et al. (2008) propose a model called PLP for predicting the communication cost in hierarchi-
cal and heterogeneous mono-processor platforms. The model takes into account the multiple levels
of a hierarchical structure of a network and models the point-to-point cost asT (m) = L + Ps + Pr .
Ps and Pr are the times spent in preparing the transfer at sender and receiver processors, and are
split up in multiple costs represented by processor-dependent parameters. Network latency L is
defined as L = (n − 1)G + Lt , withG being the inter-frame gap, that is, the gap cost in sending the
n consecutive Ethernet frames into which a message is divided, and Lt the latency cost of a frame
transfer. The PLP model is applied to point-to-point and collectives.

3.5 The Middleware Costs

The general adoption of clusters of multi-core machines has seen a rise in new approaches to
performance modeling. Memory logP (Cameron and Sun 2003) augments LogP to estimate the
cost of a communication inside a memory hierarchy. Cameron and Ge (2004) and Cameron
et al. (2007) propose lognP, a model addressing the middleware costs of the communication (see
Figure 9). Derived from the previous work on memory logP, its main idea is that in a point-to-point
transmission, the message progresses as a succession of transfers (copies) through intermediate
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buffers between the end-to-end buffers. The aggregate of the costs of the n individual transfers
yields the cost of the transmission: T (m) =

∑n−1
i=0 (max {дi ,oi } + li ), where o (overhead) is the per

transfer time dedicated by the CPU given that the message is contiguous. The gap д is o plus
the resource contention. Often, a message is stored in non-contiguous or strided ways. In these
cases, an additional packing and unpacking burden appears that is shouldered by the CPU. This
overload is modeled by the latency l parameter. Under the simplifications max {oi ,дi } = oi and
li = 0 ∀ i for contiguous messages, the model produces a transmission cost in shared memory
given byT (m) = 2 × o = omw . In a network, the point-to-point communication can be represented
as the sequence of three transfers, with cost T (m) = o′mw + o

′
net , with o′mw encompassing the

cost of a local transfer to/from the NIC in both nodes and o′net the cost of the network transfer.
Although simple, the transfer concept conveniently suits the MPI blocking communication
representation when no segmentation is present. Notwithstanding, note that these foundations
lead to oversimplified cost expressions of collectives and more general algorithms. For instance,
the cost of the binomial tree broadcast with contiguous messages in shared memory is modeled,
similarly to LogGP, as Tbcast (m) =

⌈
log2 (P )

⌉ ×T (m) = �log2 P� (2 × o).
Tu et al. (2012) consider that the new clusters of multi-core nodes are not addressed appropri-

ately by the former models, with the main consequence that they are unable to predict the per-
formance of collectives with enough accuracy. They propose the mlognP model. It extends lognP

in order to distinguish the assortment ofm communication channels1 present in the platform and

captures their hierarchy. The cost in channel c (0 ≤ c < m) is T c =
∑nc−1

j=0 oc
j . Regarding nc , it be-

longs to the vector n = {n0,n1, . . .nm−1}, which has one component per channel. Each component
indicates the number of transfers experienced by a message before reaching the target buffer. The
overhead oc is the per-transfer processor load. Note that the channels used by the processes are
determined by their locality, as are the associated costs. When only one channel is considered,
lognP and mlognP become equivalent. Both models are applied to the basic flat tree and binomial
broadcast operations.

Rico-Gallego and Díaz-Martín (2015) introduce the τ -Lop model. It addresses the representation
of contention in the channels. The model is tested in a large shared memory system being applied
to a wide spectrum of collective algorithms, either supported by point-to-point primitives or ad-
hoc shared memory techniques, like those found in Open MPI. Rico-Gallego et al. (2016) extends
τ -Lop to represent the network communication. It models and empirically studies the contention
in multi-core clusters, with emphasis on their combination of channels of different natures and
performance. In τ -Lop, a message transmission is a concatenation of possibly concurrent progress-
ing transfers, with a cost defined as T c (m) = oc (m) +

∑s−1
j=0 L

c
j (m,τj ). The overhead oc (m) is the

time interval from the transmission start-up to the instant in which data begin to be injected in
the c channel. The overhead not only covers the software stack cost but also that of the agree-
ment protocol, as rendezvous. Lc , known as Transfer time, represents the time it takes to copy
the message data between two buffers of the c channel. τ -Lop captures the fact that a transfer
may share the c channel with other concurrent transfers. As a result, L is not just a function of
m but also a function of the number τ of such competing transfers. The number of transfers s
that makes up a transmission is channel dependent. As an example, the model represents the
cost of a segmented transmission in shared memory (c = 0) through shared buffers of size S as
T 0 (m) = o0 (m) + 2L0 (S, 1) + (k − 1) L0 (S, 2), shown in Figure 10. τ -Lop introduces the concept of
concurrent transmissions for better accuracy and expressive power when modeling collective op-
erations. The expression A ‖T c (m) means the cost of A concurrent transmissions T contending

1The term channel is used in this article instead of the original level used in mlog
n

P model.
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Fig. 10. τ -Lop cost analysisT 0
p2p (m) of a shared memory transmission of a message split up ink = 3 segments

of size S . The transmission entails four steps and six transfers (arrows).

for the c channel. For instance, the Binomial Tree algorithm plot in Figure 2 shows a cost given by

ΘBin (m) =
∑log2 P−1

i=0 [2i ‖T c (m)]. As can be seen, τ -Lop captures that each stage doubles the num-
ber of involved processes, making the contention grow exponentially. τ -Lop is applied to predict
the cost of a wide collection of MPI collective operations and the SUMMA (Van De Geijn and Watts
1997) kernel in Rico-Gallego et al. (2016). τ -Lop is extended in Rico-Gallego et al. (2017) with a set
of formal assumptions to cope with complex communication cost expressions appearing in het-
erogeneous environments, where messages of different lengths progress simultaneously (some-
times concurrently) through different communication channels. The model is applied to predict
the costs of heterogeneous SUMMA and wave equation kernels, using 1D and 2D data partitions.
Results are evaluated on a cluster of CPUs and GPUs connected by both Ethernet and Infiniband
networks.

3.6 Scalability

Hoefler et al. (2010) present a simulation framework, LogGOPSim, to evaluate parallel algorithms
at large scale. Its main goal is to study the scalable behavior of collective MPI algorithms. The
simulation framework departs from a Group Operation Assembly Language (GOAL) (Hoefler
et al. 2009b) representation of the communications in an algorithm in order to evaluate its per-
formance. The authors propose a new model, LogGOPS. It is basically LogGPS, with emphasis on
its per-byte overhead parameter O . The cost of a point-to-point transmission under this model is
represented as 2o + L + (m − 1)O + (m − 1)G. LogGOPS is applied to linear (gather and scatter),
binomial (broadcast) and dissemination communication patterns.

3.7 Domain Generality versus Specificity

Martinasso and Méhaut (2011) and Tam and Wang (1999) point out a trend toward two extremes.
Models are either too general and theoretical or too adapted for a particular platform or appli-
cation. LoP (Hoefler and Rehm 2005), for instance, is a more accurate model than LogP for small
messages in Infiniband networks. Departing from an empirical study of the platform, the authors
derive a model characterized by the parameter set (λ1, . . . , λ6). A fitting procedure estimates these
six values, adjusting them to the output of a set of benchmarks executed on the platform. Due
to the complexity of LoP, Hoefler et al. (2006) propose LogfP with the additional goal of gaining
insights on the hardware parallelism of Infiniband that previous models ignore. LogfP “encourages
the programmer to use the inherent hardware parallelism in the transmission of small messages.”
Compared to LogP, LogfP “considers that sending the first f messages is for free.” The ability of
Infiniband to send small messages at once (up to f , where the network saturation starts appear-
ing) makes д zero. Furthermore, in RDMA-based Infiniband transmissions, the receiver overhead
oR is not applicable. The parameters of the model are measured using a round-trip time (RTT)
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benchmark with 1-toP and P-to1 transmission patterns. According to the authors, LogfP “made it
possible to enhance the performance of the barrier operation for InfiniBand up to 40% in compari-
son to the best known solution.” Hoefler et al. (2008) use LogfP to characterize the cost introduced
by multi-stage switches.

Chan et al. (2015) propose an empirical and specific performance model for predicting the overall
time of execution of mesh-centric codes on a network composed by heterogeneous clusters. They
evaluate the model in a small-scale cluster for a finite element application. The execution time for

a process i is texec
i = (t

comp
i + tcomm

i − tsavinд
i ) × Δ. t

comp
i is the computation time and t

savinд
i is

the time saving in communication time due to the overlap of communication and computation.
Δ is the number of iterations of the algorithm. The communication time tcomm

i is defined as the
addition of the transmission costs of a process i through the L levels of the network hierarchy to
all its neighbors in each level, defined as the set {dl

i }. The communication pattern in the evaluated
application is the exchange pattern. Consequently, the time is multiplied by 2. Finally, we have

that tcomm
i =

∑L
l=1 (2 ×∑d l

i

j=1 t
l
ij), where t l

ij = tavд (β × bl
ij) is the average time spent by a process i in

sending bl
ij elements of β bytes to a process j. It is empirically calculated and statistically adjusted

using a benchmark that ensures the contention in the communications.

4 EXPERIMENTAL METHODS TO BUILD MODELS

Thus far, we have introduced the most relevant models and their parameters. In this section, we
focus on the methodologies proposed for measuring the parameters, also known as the methods,
to build the model experimentally.

When we compared the analytical description of a model and the experimental description to
construct it, we found that there is sometimes a large gap between the two. Typically, the complex-
ity of experimentally building a model is quite high. In many cases, extra intermediate parameters,
which we call empirical parameters, are introduced to experimentally determine the values of one
or more analytical parameters of a model. These extra empirical parameters account for the id-
iosyncrasies of the underlying MPI implementation or the nature of the network. Thus, one of the
key qualities of a model is its tunability, which would allow its construction with low experimen-
tal complexity preferably via use of empirical parameters that can be determined accurately but
at low cost. To illustrate, we consider three examples. Culler et al. (1996b) in their experimental
construction of LogP model for Active Messages use an intermediate parameter Δ, representing a
controlled amount of computation, to determine or . One can observe in the popular MPI imple-
mentation MPICH and Open MPI that the underlying algorithm of a collective changes depending
on message size. Threshold parameters are introduced by Lastovetsky and Rychkov (2009) to char-
acterize these sizes. Rico-Gallego et al. (2016) use two parameters, H and S , to represent the switch
between eager and rendezvous protocols and message segmentation, respectively, in the experi-
mental construction of τ–Lop. When presenting an experimental method to build a model, the
techniques used to improve its accuracy on various behaviors of the underlying implementation
should be discussed, such as buffering, protocol changes (e.g., from eager to rendezvous), transfer
of long/bulk messages, and non-linearity that may arise owing to variations/fluctuations in the
network.

We would like to highlight one disconcerting commonality of most measurement methods, al-
though some of the works we surveyed do a commendable job at presenting them. While most
of the presentation in research work is spent in introducing the model and theoretical analysis
of algorithms using the model, the same rigor is not followed while explaining the measurement
method for the model. In most cases, considerable imagination is demanded on the part of the
reader to infer how the model parameters have been measured. This is because the method is
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either not presented using pseudocode (as one would for an algorithm) or is not formulated in
the form of simple mathematical equations, which would have enhanced its understanding by a
discernible reader. We conclude, hopefully not sounding too pedagogical, by saying that a mea-
surement method of a model that is poorly explained will only hinder the practical adoption of the
model.

4.1 Some Methods Found in the Literature

In this section, we present the measurement methods for a few notable models to demonstrate
how the authors of the models have taken into account some of the myriad complexities involved
in the accurate and reliable measurement of their model parameters.

Culler et al. (1996b) describe an experimental methodology to build their LogP model for three
platforms whose communication layer is implemented using Active Messages. The first step
is to obtain the RTT using a single Active Message request-reply operation, with cost RTT =
2 × (os + L + or ). Then, they execute a sequence of n requests to measure the average time per
request or message cost. For small n, the message cost is RTT = os since the sender is busy issuing
requests without processing any replies. For larger n, one or more replies arrive during the issuing
of requests. The processor then spends or to process each reply. Eventually, messages will saturate
the network completely, in which case the message cost becomes д. Consequently, the or cannot
be measured directly using RTT because the request is idle for some time waiting for a reply and
then spends or consuming the reply from the network. Therefore, to measure or , the authors in-
troduce a controlled amount of computation Δ between the messages. Then, the average message
cost is plotted as a function of n for different values of Δ. From these plots, д is calculated to be the
asymptotic value of the plot for Δ = 0. The value of L is then obtained as L = (RTT /2) − os − or − д.

To build the LogGP model, Hoefler et al. (2009a) present an elaborate measurement method. The
fundamental building block of their method is called “the parametrized round trip time (PRTT) of
a ping-ping message.” PRTT(n,d,m) represents the PRTT of n transmissions of messages of sizem
from the sender to the receiver and the final response message to the sender. d is an artificial delay
between sending messages, which avoids network saturation. The PRTT of a single ping-ping mes-
sage with delay d = 0 is described as “PRTT (1, 0,m) = 2 × (os + L + or + (m − 1)G ).” Under vari-
able delay, PRTT (n,d,m) can be written as “PRTT (n,d,m) = PRTT (1, 0,m) + (n − 1) ×max{os +

d,д + (m − 1)G},” which allows calculation of the model parameters from the derived definition

“max{os + d,д + (m − 1)G} = PRTT (n,d,m)−PRTT (1,0,m)
n−1 ”. If d is chosen such that d > д + (m − 1)G,

then the send overhead os is calculated; otherwise, the values of the parameter д and G are ob-
tained by using least-squares fit for previous linear function. The receive overhead or is measured
using the approach by Kielmann et al. (2000). The latency parameter L is simplified as PRTT of a
small m = 1 message, PRTT (1, 0, 1)/2.

Kielmann et al. (2000) present a very comprehensive measurement methodology to build their
PLogP model. It is based on two processes, measurer and peer , and the average round trip time
RTTn (m) = L + (n × д(m)) + L + д(0) of sending n messages of sizem by themeasurer to the peer ,
which acknowledges them with a single empty message. Using RTTn (0), n starts as 10 and is dou-
bled until saturation is assumed to be achieved, at which point the value of д(0) is determined.
Using д(0), Latency L is determined applying the previous RTTn (0) definition, and the gap per
message д(m) for m > 0 by using RTTn (m). It is not clear how the send overhead os (m) is mea-
sured. The receive overhead parameter, or (m), is determined using one more round trip where
the measurer sends a 0-bytes message, waits for the previously determined RTT (m), and then
consumes the m-bytes message that is already waiting in the receive buffer. They also provide a
simple conversion table to calculate the LogGP parameters from the PLogP parameters.
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Lastovetsky and Rychkov (2007) and Lastovetsky et al. (2009) describe a very comprehensive ex-
perimental methodology to build their LMO model on a heterogeneous cluster of sixteen nodes. In
a generalized p-node cluster, there are 2p + p2 unknowns: p fixed-processing delay parametersCi ,
p variable-processing delay parameters ti , and p2 bandwidths βij between each pair of processors i
and j. In order to frame a sufficient number of equations, the authors use round-trip operations and
design additional experiments, called point-to-two experiments, which consist of communications
from one processor to two other processors and back. A point-to-two experiment is essentially a
linear scatter followed by a linear gather. However, in their experimental cluster with a switched
network, they observed that collective operations behave differently for different message size
ranges. Hence, they introduce extra parameters that are intrinsic to their measurement method to
account for this irregularity.

Cameron et al. (2007) use a set of micro-benchmarks based on an enhanced mpptest package to
build their lognP model experimentally. As an example, the estimated execution time of a point-
to-point network transmission in their log3P model is equal to omw + onet , with omw = 2o. To
obtain the value for omw , they use a round-trip transfer of contiguous messages from a process
to itself, called the send-to-self operation, and modeled as T0,0 (m) = omw +Tmem . The cost of the
memory copy Tmem is measured for different message sizes. The value of omw is calculated as
omw = T0,0 (m) −Tmem . Then, the value of onet is obtained from a round-trip transfer of contiguous
messages from a process to another process as onet = T0,1 (m) − omw . It should be noted that omw

and onet are functions of the message size.
Rico-Gallego et al. (2016) describe an experimental methodology for building their τ–Lop model

on a pair of multi-core clusters. There are two parameters to be estimated in the model per commu-
nication channel c in the platform, the overhead, and the transfer time. The overhead time oc (m) is
assumed to be contention independent. As it comprises the protocol and software stack costs, the
parameter is measured depending on the protocols implemented in the MPI libraries used, which
are usually eager and rendezvous. Round-trip time RTT c (m) is used to measure the shared memory
overhead for all message sizes and network overhead for messages following the eager protocol.
A simple ping operation Pinдc (m) using the MPI synchronous send operation MPI_Ssend is used,
which enforces the use of rendezvous protocol. The authors devise an operation Rinдc

τ (m) to mea-
sure the transfer time parameter Lc (m,τ ) for a message sizem where they ensure that τ processes
transfer data concurrently. It is implemented using MPI_Sendrecv, where process Pi receives from
Pi−1 and sends to Pi+1 at the same time.

4.2 A Framework to Assess a Building Method

There are several categories to assess the methodology adopted to measure the parameters of
a model. We organize them under an acronym called “MUOPIA” (pronounced as Myopia). It is
certainly reasonable to expect that any research work proposing a model should document an
experimental method to determine the values of its parameters accurately and precisely. We also
believe that if a model is to be considered comprehensive, the methodology to build it should tick all
the boxes, that is, satisfy all the goodness criteria in each category. However, we do understand that
the model and the methodology to build it may not address all the pertinent issues in each category
in a single research work (owing to space and time constraints). Therefore, we also attempt to
make aware models, which are able to do this over a course of time. We consider a measurement
methodology to be myopic (or suffering from MUOPIA) if it fails to meet the goodness criteria in
the majority of the categories. The MUOPIA categories are:

• Method: This describes the experimental method used to measure the parameters. The
authors of the model must clearly define the meaning of each parameter for the
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experimental platform selected and how to measure it. A good method should have low im-
plementation complexity, thereby ensuring easy reproducibility. Apart from documentation
of the method, a respectable practice is to make available the software that automates the
method.

• Uncertainty: It needs no reiterating that a measurement method must be statistically sound.
Hunold and Carpen-Amarie (2016) go over in excruciating detail the pitfalls that design-
ers of MPI measurement methods must avoid as well as the statistical design of MPI ex-
periments. Ideally, each parameter (not necessarily real valued) in the model must be rep-
resented by an interval (ā ± σā ), where ā is the estimated value and σā is the estimated
standard error. A good method would also quantify how the error scales with system
size. In this category, we also discuss the techniques used to improve the accuracy of the
method.

• Overhead/Complexity: We will focus primarily on two complexity measures. One is the time
taken to build the model. The other is the number of needed messages. A large execution
time would prohibit its employment in networks with highly fluctuating characteristics
where speed and adaptability of the measurement method are essential. Too many messages
can flood the network; if this happens too often, its overhead can be prohibitively high and
also intrusive.

• Portability/Platform Specificity: A measurement method, which is highly tailored or locked
to a particular underlying software implementation and a platform, will be non-portable.

• Intrusiveness: There are two types of interferences, inherent and causal. The first type
is inherent in a measurement method and needs to be recognized and corrected post-
measurement. The causal interference is induced by the measurement method into the am-
bient communications in a real-life system. The communications during model construc-
tion are separate from the communications during the execution of application that uses
the information from the model. The model construction can be static or offline. However,
a self-adaptable application can use an adaptive and dynamic communication model. This
property states that in a network that is not dedicated, which is the case for any cluster
(most definitely for WAN), a measurement method that floods the network frequently is
considered highly intrusive. A method that uses a minimal set of communications to de-
termine the values of the parameters is considered less intrusive. In any case, the authors
should ideally spend adequate efforts explaining how their model addresses this concern. A
highly intrusive measurement method can cause undue interference (or add noise) to other
communications in a real-life system. Even if a method does not consider intrusiveness ex-
plicitly, the consideration could be inherent in the way the model is constructed (e.g., LMO
(Lastovetsky and Rychkov 2009)). For instance: using only a sufficient set of equations to
determine the parameters of a model.

• AfterMath: This represents the aftermath of the analytical and experimental description of
constructing a model. It includes the following (not a comprehensive list): (a) data cleaning
and posterior statistical tasks performed to remove noise and thereby reduce the error of
measurements, (b) efficacy of the model in reducing the execution times of applications
employing communication operations, (c) analysis of the model predictions, (d) summary
of the maximum and average prediction errors of the model, and (e) automation of the
model construction via a software package. While it is too unreasonable to ask a model to
fulfill all objectives in this category, we expect a model to have performed good AfterMath

if it has reported average and maximum prediction accuracies and if it has demonstrated
improvements in execution times of applications by employing communications optimized
using the model.
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Table 2. Salient Characteristics of the Measurement Methods to Build
Communication Performance Models

Note: � means specified and ✗ means not specified.

Table 2 contains a summary of the salient characteristics of measurement methods described
in some notable research works. When a model deals with a category exclusively, we give it a �
for that category. If it does not consider a category in any way, we give it an ✗ for that category.
However, for some models, some of the categories are inherently dealt with in the design and
implementation of the method, in which case they deservedly get a �.

4.3 Best Practices for a Measurement Method

In this section, we describe a procedure that will showcase the best practices that should be applied
for determining the values of the parameters of a communication model on a given platform.

A communication model is defined by a set of analytical parameters that represent the public
interface of the model and are used to derive analytical expressions for the cost of point-to-point
and collective communication operations. For example, LogP has a set of three primary param-
eters, {L,o,g}; τ -Lop is defined by a set of two parameters, {oc (m),Lc (m,τ )}. The experimental
method to determine them is an iterative process. At each step, to determine the values of one
or more primary parameters, the model is extended or applied typically in two ways. In one
application, additional empirical parameters are introduced. These parameters are specific and
internal to an experimental procedure and are sometimes designed based on the intuition of
the experimenter. For example: Culler et al. (1996b) in the experimental method to build their
LogP model introduce a secondary parameter Δ, the amount of controlled computation between
messages, to measure or , the receive overhead. Hoefler et al. (2009a) in the measurement method

ACM Computing Surveys, Vol. 51, No. 6, Article 126. Publication date: January 2019.



126:22 J. A. Rico-Gallego et al.

to build their LogGP model use a parameter d , the artificial delay between messages, to determine
the send overhead os . The other is the use of the model to derive analytical cost expressions
for collective communication operations (e.g., using the model’s point-to-point parameters) to
compose a consistent system of equations to solve for the parameters. For example, Lastovetsky
and Rychkov (2007) and Lastovetsky et al. (2009) devise a point-to-two experiment, which is
essentially a linear scatter followed by a linear gather. To summarize, a model is therefore typically
extended in its measurement method where additional empirical parameters are introduced and
analytical cost expressions for collective communication operations are composed using the
model to aid the accurate determination of values of primary analytical parameters. One can
also say that a model is applied innovatively in this manner. Different application programmers
extend the model in different ways based on their intuition, application, and the platform.

The goal of a measurement method, then, is to design an optimal number of reliable experiments
that accurately determine the values of the primary analytical parameters by suitably extending
the model. Apart from guaranteeing the accuracy, the method must strive to minimize the total
execution time of the experiments.

The inputs to a measurement method are usually not mentioned but are quite important to the
design of efficient experiments. Some important ones are the following: (a) number of processors;
(b) message size; (c) representative communication patterns (involving point-to-point and collec-
tive operations); and (d) the nature of the network, for example, switched network, which would
allow parallel execution of non-overlapping experiments, thereby reducing the execution time to
construct the parameters of a model. Needless to say, the model itself whose parameters are being
measured is an input since it is used to derive the analytical cost expressions of point-to-point and
collective communications that are used as equations to solve for the model parameters. The out-
put from the measurement method is the values of the primary analytical parameters, where each
value is represented by an interval (ā ± σā ), where ā is the estimated value and σā is the estimated
standard error or standard deviation.

To simplify the exposition, we will assume that there are r analytical parameters of the model.
The goal then is to design experiments that construct a linear system of equations ≥ r . We do not
consider models in which the analytical expressions of cost of communications lead to a non-linear
system. To compose each equation, one or more experiments are designed and they are repeated
multiple times until statistical confidence of the measured values used in the equation (e.g., the
execution time) is achieved. The goal, then, is to design the optimal number of experiments to
compose the equations and to optimize the number of equations in the linear system.

There are several important guidelines outlined below that should be followed to compose the
linear system and to ensure better accuracy of the values of the parameters.

• In theory, to determine the values of the r parameters, one must compose a consistent linear
system where the number of linearly independent equations is equal to r . Mathematically
speaking, the equations of a linear system are dependent if at least one can be written al-
gebraically as a linear combination of the others. For example, if you have a linear system
of three equations where one equation can be algebraically written as a linear combination
of the other two equations, then the system is considered linearly dependent. However, the
best practice is to compose more than r linearly independent equations and subsequently
employ least squares regression to determine the solution. Composing more than r equa-
tions should be done for two reasons.
—The first reason can be attributed to the difficulty in experimentally observing linear de-

pendency in practice. Consider, for example, the construction of Hockney model (Execu-
tion time,T (m) = α +m β) with two parameters,α and β , using the input, message sizem.
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Fig. 11. Illustration of the importance of picking the proper range for an input parameter. In this exam-
ple, the communication model used is Hockney (T (m) = α + β ×m) represented by two primary analyt-
ical parameters {α , β } and the input parameter is the message size, m. The three dotted lines, {Line S,
Line M, and Line L}, represent linear fits for narrow ranges of small, medium, and large message sizes, re-
spectively. The blue solid line represents linear regression for the overall range. The linear regression fit is
α = 9.73E − 07, β = 6.783E − 07,R2 = 0.99.

From the point of view of linear algebra, round-trip experiments with any two different
message sizes are sufficient to obtain a system of two independent linear equations, the
solution of which will give us the values of α and β . However, depending on selected
message sizes, these values can vary significantly. The reason is that real-life experimen-
tal points {RTT (mi )}ni=1 (n > 2) for any reasonable range of problem sizes never lie on
any straight line. Therefore, experiments with only two message sizes are typically not
sufficient and the range of values for message size that should be used for composing the
equations must be chosen carefully. The advice here is not to use input values too close
to each other, which would result in good linear fit for this narrow range but poor fit for
other ranges (and overall range). This is illustrated in Figure 11. It shows the measure-
ment of two primary analytical parameters {α , β } in the Hockney communication model
(T (m) = α + β ×m) using an input parameter, message size (m). The execution times (T )
shown are the RTTs between two processes on a real-life cluster. The three dotted lines,
{Line S, Line M, and Line L}, represent linear fits for narrow ranges of small, medium, and
large message sizes, respectively. The blue solid line is obtained using linear regression
for the overall range. One can see that using any one of the three dotted lines can lead to
poor prediction accuracy. Hence, one must select a set of message sizes (cardinality more
than two) ranging from small to large to compose equations (> r ) to be input to linear
regression for solution. The same applies to other input parameters.

—The second reason relates to improving the ability of the model to predict well for di-
verse kinds of communication operations. A healthy measurement method must contain
at least r logically independent communication experiments. This must be differentiated
from linear independence of equations due to practical non-linearity of real-life systems.
This means that we need at least r independent equations even under the assumption
of perfect linearity of the real-life experimental platform. For example, in the case of
the Hockney model, one might consider a round-trip communication experiment involv-
ing 3 processors, p1 → p2 → p3 → p1, in addition to the traditional round-trip between
two processors for the same message size, m. This additional experiment is not logically
independent of round-trips involving two processors as its modeled execution time is
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RTT3 (m) = 3 × (α + β ×m) = 3
2 × RTT2 (m). Thus, it does not add any new information

to the model. On the other hand, a communication experiment comprising a simple col-
lective that involves point-to-point communications between three processors, where
one processor communicates with the rest and backwards, will be logically independent
from a point-to-point communication involving a pair among the three processors, if
the execution time of this experiment is expressed using the max operator for parallel
branches. In this case, the equation derived from the new experiment extends the model,
as the measured execution time is not expressed as a simple linear combination of the
execution times of involved point-to-point communications. Therefore, a healthy mea-
surement method must contain at least r logically independent communication experi-
ments, which typically means the use of both point-to-point and collective communica-
tion experiments. However, the best practice is to use more than r logically independent
experiments for reasons explained below.

• The more the logically independent communication experiments that contain communica-
tion operations that are truly representative of the application domain and platform, the
better the accuracy. The collectives here must be chosen to allow their intuitive expression
and accurate estimation of the model’s parameters. For example, Lastovetsky and Rychkov
(2007) and Lastovetsky et al. (2009) devise a point-to-two experiment, which is essentially
a linear scatter followed by a linear gather. Rico-Gallego et al. (2016) devise an operation
Rinдc

τ (m) to measure the transfer time parameter Lc (m,τ ) for a message sizem where they
ensure that τ processes transfer data concurrently. It is implemented using MPI_Sendrecv
where process Pi sends a message to process Pi+1, and receives a message from process Pi−1

at the same time.
• Since a set of logically independent communication experiments will involve collective op-

erations, the analytical expressions for the collective operations using the model must be
employed to frame the equations. This takes care of practical guidelines to be followed in
training a communication model, such as use of representative benchmarks to reduce the
bias. Since a mix of point-to-point and patterns involving collective operations (represen-
tatives from well-known scientific applications) is used in the construction of the model,
its prediction accuracy and therefore its ability to predict well for applications employing
diverse communication patterns is improved significantly.

• Several issues that arise when experiments employ collectives. First, how should the ex-
ecution time be measured and at which processor? We propose a collective design such
that they commence and terminate at the same (root) processor so that the execution time
can be measured at it. For example, consider the case of a linear scatter followed by linear
gather between a root processor and the rest. In this case, the clock is started at the root
before the commencement of the collective and stopped at the root after the termination
of the collective. The difference in clock times gives the execution time of the collective.
Second, the collectives can exhibit irregular behaviors such as different slopes in graphs of
execution time versus message size for different ranges of message sizes (small and large).
For example, Lastovetsky and Rychkov (2007) and Lastovetsky et al. (2009) observe a leap
in execution time for linear scatter for large messages on clusters based on a switched net-
work. They introduce a threshold parameter and compose two different sets of equations to
account for this irregular behavior, one for message sizes less than or equal to the thresh-
old parameter and the other for sizes greater than the threshold parameter. Therefore, it is
imperative to experiment with a wide range of input parameters (such as problem size) and
take into account the behavior of collectives specific to a platform.
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• If the underlying network is known to be switched, then the communication experiments
involving the collectives can be executed in parallel. A good practice is to design the experi-
ments such that they cover all available processors. Therefore, in a set of such experiments,
all of the processors participate in more than one experiment, resulting in redundant values
of some parameters, which can be used to reduce the number of steps required to achieve
statistical significance. This strategy not only reduces the execution time of the measure-
ment method but also improves the accuracy of estimation.

• To make sure that pipelining, cache effects, and the like do not occur, the experiments must
not be executed in a loop and sufficient time must be allowed between successive runs of an
experiment. This can be achieved, for example, by executing a run in a separate program.
For the time between experiments, we propose that it should be based on observations
(maximum) of the times taken for memory use to revert to base use and processor (core)
frequencies to come back to the base frequencies.

• For reliable estimation of the parameters, the experiments involved in composing each equa-
tion must be repeated multiple times until statistical significance of the measured values of
parameters used in the equation is achieved. For example, to determine the value of a pa-
rameter, the experiments are executed repeatedly until the sample mean lies in the 95%
confidence interval and a precision of 0.025 (2.5%) has been achieved. For this purpose, Stu-
dent’s t-test can be used assuming that the individual observations are independent and
their population follows the normal distribution, which can be verified using one of the
many well-known tests for normality, such as Pearson’s chi-squared test.

5 KEY ASPECTS: BUILDING AND REPRESENTATION

A communication performance model aims to provide an accurate estimation of the communica-
tion cost of an algorithm and a meaningful analytic representation of the communications in the
specific platform in order to aid in making decisions of optimization. We discuss next the factors
influencing the performance of a model, namely, the issues in the measurement of the parameters
and the influence of representation and design assumptions. The section concludes with a simple
reference frame for assessing the overall goodness of a model.

5.1 Accuracy Issues of the Building Procedure

We can identify two main aspects with a decisive influence on the quality of the estimation of the
parameters: the tools and procedures used to measure them and their inherent inaccuracy.

5.1.1 Benchmarking Tools. There is a severe shortage of user tools for measuring the parame-
ters of the models, mainly due to the different forms of measuring a parameter in the wide range of
existent platforms, with different architectures, middleware, and even operating systems. Hence,
the common practice is to resort to micro-benchmarks. This approach involves several subtle
platform-dependent issues such as buffer reuse and cache invalidation, synchronization times, and
more, which highly influence the final measured value. Note that these laboratory condition fac-
tors can be quite different from those present in the field execution environment of an algorithm.
Since many portable measurement methods use MPI operations to build a model, it is crucial that
the execution time of the MPI operation is determined with precision. Apart from dealing with
the various issues, the tools must offer flexible tunable options such as minimum and maximum
message size, number of repetitions, and execution time and output a statistical summary.

We will now present a survey of popular benchmarking tools. The Intel MPI Benchmark (IMB)
suite (Intel 2004) is a well-known and widely used micro-benchmark. It obtains the execution
time, latency, and throughput of MPI point-to-point and collective operations of a given MPI
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implementation. It offers several configurable parameters, such as minimum data transfer size,
maximum message size, and maximum repetition count for a benchmark.

NetPipe (Turner and Chen 2002) is another popular micro-benchmark. It measures the duration
of point-to-point message transmissions following different MPI communication modes as well as
the duration of memory copies. Huang et al. (2005) developed a network measurement tool called
Hpcbench to measure the latency and throughput of UDP, TCP, and MPI communications over
high-performance networks such as Gigabit Ethernet and Myrinet. The tunable parameters are
message size, number of repetitions, and allowed execution time of benchmark.

Netgauge (Hoefler et al. 2007) is an extensible framework with a simple interface, which allows
the inclusion of new benchmarks for measuring the parameters of newly designed models for a
variety of networks. The tool includes the measurements of the parameters of LogGP and PLogP

models. Salnikov et al. (2011) propose a toolkit that allows benchmarking an MPI communication
operation and that outputs basic statistics such as mean and standard deviation.

Sound statistical methods should be applied to design these experiments. SKaMPI (Reussner
et al. 2002), MPIBench (Grove and Coddington 2001), and MPIBlib (Lastovetsky et al. 2010) are three
benchmark suites that employ dispersion metrics along with estimators such as mean, minimum,
and maximum values for their MPI measurements. SKaMPI repeatedly executes a benchmark until
the current standard error is below an input-allowed threshold. In MPIBench, outliers are treated
specifically and detected and removed when their execution time exceeds an input threshold. MPI-
Blib repeatedly executes a benchmark until the sample mean is within 2.5% of the confidence in-
terval of 95%. The confidence interval of the mean is estimated using Student’s t-distribution.

Hamid and Coddington (2010) compare the outputs of several MPI benchmarking tools such as
SKaMPI, IMB, and MPIBench and report that they give significantly different results for certain
MPI operations, especially on the SGI Altix, with a shared memory ccNUMA architecture. They
state that the differences are due to the shortcomings in the tools to account for the architectural
peculiarities of SGI Altix and implementation details of SGI MPI for the Altix.

To summarize, the acute shortage of benchmarking tools can be attributed to several factors, the
most important being the implementation complexity in supporting diverse architectures, commu-
nication models, and the multifarious issues in underlying MPI implementations.

5.1.2 Reproducible Micro-Benchmarking. There is an inherent inaccuracy in parameter mea-
surement. It comes from widely different factors such as system noise or the difficulty in ensuring
real-life conditions, as is the case with contention. The point here is that statistical methods must
be used for improving accuracy, as mean values over a high number of executions, linear regression
methods, addition of communication patterns different from basic point-to-point, and experimen-
tal adjustment of the parameter values. Reducing such uncertainty in parameter measurement
requires each performance model to specify a precise measurement procedure. A model lacking
this procedure is unusable from a practical point of view. The procedure must be flexible enough
for adapting it to different platforms. One basic prerequisite that can assist in precise definition of
a measurement procedure is an unambiguous definition of the parameters. It also contributes to
the understanding of the model representation of the communications.

Almost all the research efforts that we surveyed assume that the measurements/observations
are independent and identically distributed. However, such works do not verify that this is the case,
assuming that the sample comes from a normally distributed distributionperforming a large num-
ber of iterations and taking an arithmetic mean of the observations. Hunold and Carpen-Amarie
(2015) describe the common experimental factors (controllable and uncontrollable) typically found
in MPI measurement methods. When execution times do not follow a normal distribution, then
statistical analysis based on confidence interval for the mean may not be correct. However, if the
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sample size is large enough, then the distribution of means will be normal due to the Central
Limit Theorem. Based on their experiments using MPI functions for different sample sizes, they
recommend use of a large number of samples (3,000 used in their experiments) of size at least 30.
Therefore, the question of what is a good number of samples and what is a good size to use that
minimizes the execution time of measurements is an open research problem. To make sure that
the measurements are independent, they recommend use of the autocorrelation function. It esti-
mates the correlation between two values of a variable measured at different times as a function of
the time lag between them. The authors were unable to obtain statistically uncorrelated data even
while using random waiting times between a pair of measurements. They recommend the use of
sub-sampling to remove correlation.

Hunold and Carpen-Amarie (2016) review the synchronization schemes used in MPI benchmark
suites such as MPI_Barrier and window-based using common logical global time and elucidate
their strengths and weaknesses. They report that the MPI_Barrier operation may interfere with the
communication operation, which is being benchmarked, and that window-based schemes suffer
from the issue of distributed clock drift so that the execution time tends to increase with the
number of experiments. Their work describes in depth the factors that contribute to a high grade
of uncertainty in the measurement.

In addition to the tools used for parameter measurements and the inherent difficulties in their
reproducibility, we summarize below a few other factors that can significantly influence the out-
come of measurements and that should be factored into the design of MPI experiments.

• The underlying MPI library. For example, while MPICH uses Nemesis for collectives, which
are implemented using point-to-point messages, Open MPI provides collectives based on
intermediate memory mapped to the processes involved, using its SM component. Hence,
different communication mechanisms require different modeling for the same collective
operation.

• Different MPI standard communication modes exist. For instance, a buffered send has a
different cost than a synchronous send in MPI. Models should consider this issue in their
predictions.

• Point-to-point mechanisms such as the segmentation of messages must be taken into ac-
count when estimating parameters. Thresholds for segmentation in different libraries could
be different. Some libraries may even lack message segmentation.

• The use of internal buffers and cache invalidation in micro-benchmarks is essential to pro-
vide accurate estimation. The tools should supply enough configuration facilities in this
regard.

• The parameter measurement has to be done under the same conditions as those of algo-
rithms being modeled. This often makes difficult to apply only one set of parameter values
to algorithms using different communication mechanisms.

5.2 Design and Representation

Two types of models can be identified depending on the parameter definition and what they rep-
resent. First are models with parameters that represent network-related features, as mainstream
LogP/LogGP and derivatives. They represent the platform behavior with latency, bandwidth, and
similar parameters. The main drawbacks of these models come from the representation of com-
plex communication patterns, the increasing complexity of modern HPC platforms, and the wide
variety of communication modes.

The first drawback is reflected in the simplicity of analytical representation of collectives. The
cost of a collective is usually a function of its number of stages and of the point-to-point cost.
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This simplification can lead to mistakes. For instance, the pair of algorithms Scatter and Recursive

Doubling Allgather (RDA) surprisingly results in the same cost formula, as can be seen in Pješivac-
Grbović et al. (2007), and was studied in Rico-Gallego and Díaz-Martín (2015). This prediction is a
long way from being accurate. It is true that the models get it right that both algorithms share the
number of stages (log2 P ). However, they are unable to represent, inter alia, that the whole amount
of data moved by RDA exceeds by far that of scatter.

The second drawback comes from the increasing complexity of modern HPC platforms that
is driving the growth of new inherited models from LogP/LogGP, which add features that reflect
specific network or architectural issues, such as LogGPH for hierarchical architectures and LogfP

for Infiniband networks. Contention is also an issue broadly studied. On the whole, however, the
efforts to represent contention have produced models too attached to the technological param-
eters of the target network, aimed at small-sized networks or dealing with nodes with a limited
number of cores. The effects of the physical topology of the processors are usually ignored, which
contributes to the fact that the contention impact of shared memory is overlooked when tack-
ling collective operations. Furthermore, the models operate in a reduced set of simple collectives.
Middleware models provide a more abstract measurement of the contention effects, far from the
platform details, and with a good level of accuracy but hiding the underlying causes of performance
degradation.

Finally, different communication modes and techniques have been represented in some models.
This is the case of LogGPS including the synchronization cost of transmissions and LogGPO repre-
senting the overlap of communication and computation of the communication. Nevertheless, some
of the characteristics of the communication are difficult or impossible to represent with network-
related parameters. Such characteristics are related to the middleware of communication used in
the platform. Middleware implementation includes techniques such as the improvement of the
point-to-point communication cost by message segmentation, the design of non-point-to-point
collectives on fat shared-memory nodes, communication paradigms not based on point-to-point
transmissions such as the Remote Memory Access defined in the MPI Standard, operating system
bypass to move data directly between different memory spaces in shared memory, or the packing
and unpacking of complex data layouts. The influence of these issues is reflected, for instance, in
the different costs shown in the execution of the same algorithm by different MPI libraries.

New formal models appear to solve previous issues. The result is a better representation with
a possibe loss of accuracy in the estimations and platform details. For instance, lognP contributed
to the transfer concept, the basic building block for representing transmissions. Nevertheless, this
model lacks several features commonly found in the current middleware. First, the intra-node
performance of MPI is greatly enhanced by segmentation. Even though the segmented and non-
segmented transmissions of a message build far different values in the model parameters, segmen-
tation is not explicitly considered in lognP . It considers a message cost as a half of the actually
measured cost in a real point-to-point shared memory transmission. Second, works introducing
the model define neither the meaning of contention nor its measurement. In fact, except for elab-
oration of the parameter, д, contention is not dealt with in this work. Third, although the model
is recent, it does not represent the mixture of communications through the different channels
present in current systems that is addressed by its inherited counterpartmlognP . Last, the packing
cost is usually not attributable to a point-to-point transmission when it is executed in the con-
text of a collective operation, but the cost is included at the beginning and end of the collective.
Beyond some basic broadcast algorithms, there is not enough evidence given today about the com-
petence of lognP and mlognP to express and predict the cost of the underlying algorithms of the
MPI collective operations. τ–Lop departs from the transfer concept and evolves it into a formal
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analytic framework able to meaningfully represent the collectives and reach a higher accuracy
in the estimations. Nevertheless, although based on a formal and complete definition, its main
drawback is the complexity of the parameter measurement procedure and the development of an
efficient tool for predicting communication costs based on the parameters.

A further set of issues can be identified in relation to the design assumptions made by the com-
munication models. LogGP, as an example, assumes linearity of the cost of the message trans-
mission with message size. Under LogGP, we can represent with only one parameter the cost
of sending a byte G multiplied by the message size. This approach requires precise measure-
ments and statistical methods for approximating the parameter value for accurately predicting
the cost of point-to-point transmissions and usually leads to inaccurate predictions of more com-
plex operations, as collectives. Models such as PLogP and lognP establish the cost of a mes-
sage transmission based on parameters that are functions of m and hence contain a vector of
scalar values. This approach allows for better accuracy at the expense of a higher number of
measurements.

Another assumption is that complex patterns of communication cost are supposed to be influ-
enced only by the number of processes and stages of the algorithm and, hence, scale proportionally
to P . Some models include contention representation for partially avoiding this oversimplification,
but most also assume that contention grows linearly with the number of transmissions over the
specific channel. Furthermore, almost all of the models predict the cost of an algorithm assuming
that communication departs from a set of processes ready to start the transmissions at the same
time and do not model wait times because of their usual random behavior. Hence, complex applica-
tions with multi-pattern communication behavior are nearly impossible to evaluate accurately as
a whole. The models do not represent cost as a function of time. As a consequence, current models
work better under a Bulk Synchronous Processing application model by repeating separate com-
putation and communication stages, with all processes starting the communication stage at the
same time. This behavior assumes that the computational load is balanced. While load-balancing
strategy used to be a predominant performance optimization strategy before the advent of multi-
cores, it may not give optimal solutions now even in homogeneous environments (Lastovetsky
et al. 2015, 2016; Lastovetsky and Reddy 2017).

Finally, general communication models assume a full connectivity network, although some mod-
els have been created to represent the cost of more specific networks as meshes and hyper-cubes.
Any relaxation of the previous assumptions will improve the usability of a communication per-
formance model.

5.3 A Reference Frame for Model Goodness

Every model is based on a set of parameters whose number, function, and measurement method
largely determine its accuracy. In general, few parameters simplify the usage of the model but
lead to inaccuracies because of the lack of representation of details involved in the communica-
tion. By contrast, a high number of parameters hinder model usability. In this section, we present a
reference framework for determining the overall goodness of a model. The framework has three di-
mensions: Reproducibility, Constructiveness, and Extensibility/Tunability. Table 3 loosely assesses
the most notable models based on these factors.

• Building Reproducibility: The parameters of a model are defined in abstract terms and are
estimated experimentally (built) for each specific platform. Owing to the vast and changing
(e.g., homogeneous to heterogeneous) platform landscape, the build procedure needs to
be redefined on emerging platforms. The building procedures of a good model would be
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Table 3. Salient Properties of Models

Note: � and ✗ mean satisfying and not satisfying the property, respectively.

reproducible, and only a comprehensive description of the building procedure ensures its
reproducibility.

• Constructiveness: The parameters of many models were devised for modeling the cost of
point-to-point communication. Its cost expression is then used as a building block of the
cost formulations of collective communications. A model that is constructive should be able
to build expressive and accurate cost expressions of algorithmic patterns that call point-to-
point and collective communications in myriad ways (regular, irregular, unconventional,
etc.) We consider that a model satisfies this property if the authors used the model to
report prediction accuracy for algorithms that use a mix of point-to-point and collective
communications.

• Extensibility/Tunability: This means the ability of the model to allow a graceful extension
or tuning to improve its practical prediction accuracy for different scenarios. For example,
for particular algorithms on specific networks, one may have to introduce extra parameters
or formal assumptions to bridge the gap between modeled and experimental results.

6 CONCLUSIONS AND PERSPECTIVES

In this article, we survey prominent communication performance models in the domain of high-
performance computing. Our review revealed interesting insights into the evolution of these
models.
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A communication performance model is conceived to achieve three principal objectives: first, to
accurately predict the time of communications; second, to serve as a reliable guide to design and
implementation of high-performance computing algorithms; and third, to inspire design of novel
high-performance architectures. BSP (Valiant 1990) and LogP (Culler et al. 1993, 1996a) have been
the pioneer models. The notable models that followed in their footsteps have chiefly striven to
achieve the first and second objectives. It is also fair to say that the paradigm shifts in HPC have
made a noticeable impact on the design path taken by the models. For example, the advent of multi-
core architectures resulted in high heterogeneity inside a node. This prompted the conception
of middleware performance models such as lognP (Cameron and Ge 2004; Cameron et al. 2007),
mlognP (Tu et al. 2012), and τ -Lop (Rico-Gallego and Díaz-Martín 2015), which aspire to accurately
predict cost of shared-memory transfers and contention inside a node.

Apart from achieving the three main target objectives, a key design goal of a model is to achieve
economy in terms of the minimal set of parameters (without sacrificing prediction accuracy) ab-
stracting the essence of communications, which include the costs due to application overhead, la-
tency and bandwidth of a communication network, and the anatomy of a communication network
(such as the hierarchical nature, heterogeneity, etc.). Achieving this economy on highly heteroge-
neous platforms will always be a formidable challenge. The typical pattern when one follows the
evolution of models has been to introduce additional parameters to make the models more realistic
by accounting for an essential but not-yet-captured characteristic. For example, the Postal Model

(Bar-Noy and Kipnis 1992) used one parameter to describe the latency of a network. The Hockney

model (Hockney 1994) followed with two parameters, which described the latency and bandwidth
of a network. The LogP (Culler et al. 1993, 1996a) model introduced four parameters. The models
that followed LogP introduced additional parameters accounting for several essential features such
as large messages in LogGP, contention in LoPC, synchronization in LogGPS, and so on. A break
in the pattern would happen due to an outbreak of a disruptive technology (e.g., the shift toward
multi-cores, accelerators, etc.).

In this survey, we also accord commensurate attention to measurement methodologies for deter-
mining the values of model parameters and open-source software tools used to build the models.
A measurement methodology is evaluated using several criteria: Method, Uncertainty, Overhead,
Portability, Intrusiveness, and AfterMath. We conclude that, with few exceptions, the rigor that is
followed in presenting a model is usually missing when presenting a measurement methodology.
There are several open-source software tools that have been developed to automate the construc-
tion of models. This software automation effort is made remarkably difficult by the myriad and
complex nature of optimizations in the underlying implementation (e.g., the MPI implementa-
tion). In addition, the disruptive shifts in HPC landscape (e.g., advent of multi-cores, accelerators,
etc.) means that the tools can quickly become outdated unless they keep abreast with technological
advancements.

Looking into the future, we envisage three areas that will have a salient impact on longevity of
existing models and the design and implementation of novel communication performance mod-
els. First, energy is now a leading design constraint along with performance in the HPC domain.
There is an abysmal lack of realistic and accurate energy models of communications. We believe
that a holistic approach employing realistic and accurate performance and energy models of com-
putations and communications is crucial for optimization of scientific applications on modern
HPC platforms for both performance and energy. Second, the advent of software-defined net-
works (SDNs), which afford users high software configurability and programmability of networks,
may elicit design of new models with novel abstractions. With several users simultaneously tun-
ing (configuring) the network to suit the needs of their applications, the number of degrees of
freedom will increase drastically. The question, then, is how will the models be able to deal with
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this additional complexity to accurately predict the cost of communications? Finally, there is now
a zealous focus on exascale computing. This may pose new challenges to the existing models
and may even necessitate a fresh/radical approach to design of novel models. We envision two
major challenges. The first is how to deal with the behavior of the model parameters with respect
to message size and the number of processors involved in the execution of the communication
operation as scale grows from small to extremely large. The question is, will the model be able
to predict accurately several irregularities or non-linearities in execution time of communications
with increase in scale? The second challenge is how to use the existing models innovatively to
optimize communications at this scale. A hierarchical approach is one possible way forward.
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