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Resumen
Esta tesis se enmarca en el ámbito de la Cuantificación de la Incertidumbre, un campo
multidisciplinar con una marcada orientación práctica que integra conceptos
provenientes de diversas disciplinas como la Matemática Aplicada, la Ingeniería, la
Computación y la Estadística. La Cuantificación de la Incertidumbre puede definirse
como el proceso de análisis de las incertidumbres asociadas a las predicciones basadas en
modelos matemáticos. Una de las principales dificultades inherentes a la realización de
tales análisis es que una buena parte de los modelos empleados utilizados en ingeniería
son altamente demandantes computacionalmente, lo que resulta en que muchas técnicas
comunes de análisis como la simulación Montecarlo o los algoritmos MCMC resulten
inviables. Una estrategia capaz de sortear estas dificultades consiste en la sustitución
los modelos originales por metamodelos, es decir, aproximaciones computacionalmente
ligeras del modelo original. No obstante, en entornos prácticos son frecuentes los proble-
mas mal condicionados y los comportamientos no lineales de los modelos involucrados,
los cuales comprometen la efectividad del enfoque propuesto. Además, muchos fenó-
menos incorporan una incertidumbre intrínseca no directamente observable o medible,
cuya naturaleza requiere el empleo de simuladores estocásticos, añadiendo una capa de
dificultad al tratamiento estadístico del problema en cuestión. La presente investigación
aborda el análisis de la incertidumbre en el marco de problemas de ingeniería comple-
jos que enfrentan los desafíos mencionados anteriormente. Con este fin, se propondrán
diferentes metamodelos capaces de reemplazar eficientemente los modelos computa-
cionalmente intensivos originales. Además, se presentará una nueva técnica para la
construcción de metamodelos en contextos estocásticos.
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Abstract
This thesis is situated within the realm of Uncertainty Quantification, a multidisciplinary
field with a pronounced practical orientation that integrates concepts from various disci-
plines such as Applied Mathematics, Engineering, Computer Science, and Statistics. Un-
certainty Quantification can be defined as the process of analysing the uncertainties as-
sociated with predictions based on mathematical models. One of the primary challenges
inherent in such analyses is that a significant part of the models employed in engineering
are highly computationally demanding, rendering many common analysis techniques
such as Monte Carlo simulation or MCMC algorithms unfeasible. A strategy capable of
overcoming these difficulties involves substituting the forward models with metamod-
els, i.e., computationally lightweight approximations of the original model. However,
in practical environments, ill-conditioned problems and nonlinear behaviours of the in-
volved models are common, compromising the effectiveness of the proposed approach.
Additionally, many phenomena incorporate intrinsic uncertainty that is not directly ob-
servable or measurable, whose nature requires the use of stochastic simulators, adding
a layer of difficulty to the statistical treatment of the problem at hand. This research ad-
dresses the analysis of uncertainty within the framework of complex engineering prob-
lems that face the aforementioned challenges. To this end, various metamodels capable
of efficiently replacing the computationally intensive original models will be proposed.
Additionally, a new technique for constructing metamodels in stochastic contexts will be
presented.
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Chapter 1

Introduction

1.1 Motivation

One of the primary goals of mathematicians, scientists and engineers engaged in un-
derstanding physical phenomena has been to develop mathematical models capable of
describing these realities. The accelerated development of computer science in recent
years has made possible to explore many challenges in science and engineering through
simulation, tackling problems that were once considered intractable. Computer simula-
tions provide a comprehensive approach to study systems that have been effectively
modelled, but whose solution is analytically unsolvable [1]. Computational models
have found successful applications in a wide range of disciplines, including chemistry,
economics, health, materials science, or civil engineering, just to mention a few [2–6].
Nonetheless, not all the parameters and conditions required for the simulations are al-
ways known nor experimentally measurable, and this uncertainty impacts on the simu-
lation outputs. The process of quantifying and analysing the uncertainty in mathemati-
cal models constitutes the central concern of Uncertainty Quantification (UQ) [7].

From a general point of view, a mathematical model is nothing more than a ’black
box’ function M : D ⊂ RM → RN mapping some input parameters (often referred to
as design variables) from a parameter space D into certain quantities of interest (QoI) [8].
Within the realm of UQ, two major types of questions can be distinguished: forward
and inverse problems. The former challenge, also known in the literature as Uncer-
tainty Propagation (UP), involves analysing the propagation of parameter uncertainties
through the computational model. During this process, uncertainties in the model input
parameters are transformed into uncertainties of the output parameters. Theoretically,
such problems are well solved by brute force through Monte Carlo Simulation (MCS) [1].
Nevertheless, as we discuss below, this is rarely feasible in practice due to computational
constraints when dealing with complex numerical models. On the other hand, an inverse
problem occurs when the QoI is known, but the model parameters responsible for that
output are not. Moreover, in many instances, it is even unclear if the model is appro-
priate at all to represent the behaviour of the system. In these cases, model selection is
an additional challenge [9]. It should be noted that inverse problems involve inferring
potential causes by examining the observed or measured effect. This type of task is typ-
ically ill-posed and ill-conditioned, meaning that small changes in the effects can result
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in significant changes in the associated solution, which can even lead to a loss of unique-
ness of the solution. [10]. As a consequence, inverse problems are generally much more
difficult to solve.

In practice, addressing UQ problems poses significant challenges, particularly when
computationally intensive simulators are utilised to model the physical reality. These
models have found widespread application in diverse fields such as structural mechan-
ics [11] or materials science [12], employing popular techniques like the Finite Element
Method (FEM), Boundary Element Methods (BEMs) or mesh-free numerical simulators.
However, such simulators can take anywhere from a few minutes to several hours to
run [13]. As a consequence, since MCS suffers from an extremely small convergence
rate of O(1/

√
n) [14], the employment of such complex simulators makes unfeasible the

straightforward application of this technique.
A simple and efficient approach to overcome MCS difficulties is the utilisation of

surrogate models. Roughly speaking, a surrogate model, or metamodel is a function
that emulates the behaviour of a simulator but at negligible computational cost per
run. Mathematically, given a model M, a metamodel can be defined as a function
M̂ : D ⊂ RM → RN such that M̂(x) ≈ M(x), ∀x ∈ D. For the sake of simplicity,
in this thesis, it will be assumed that N = 1. Note that this assumption holds with-
out loss of generality, as fitting a surrogate model for each QoI would suffice otherwise.
Currently, surrogate models have garnered substantial attention in scientific literature,
owing to their flexibility and applicability to a wide variety of problems (see [15–19], to
point out a few examples).

From the previous discussion, the main motivation of this thesis is to develop an effi-
cient surrogate modelling framework capable of approximating computationally inten-
sive engineering models, handling highly non-linear response surfaces, and accounting
for intrinsic uncertainties. The computational efficiency of the surrogate modelling ap-
proach to be developed should allow conducting UP and Bayesian parameter inference
analyses with computational times compatible with quasi real-time analysis.

1.2 State of the art review

In this section, an overview of the two primary areas investigated in this thesis is pro-
vided. Firstly, a classification of metamodelling techniques is presented, along with a
discussion of their respective strengths and weaknesses. Subsequently, recent literature
regarding Bayesian inference is examined, with a particular focus on the integrated ap-
plication of surrogate models and Bayesian inference techniques

1.2.1 Surrogate modelling

As pointed out in Section 1.1, many classical statistical methodologies such as Monte
Carlo analysis require the simulation of thousands of scenarios, becoming unfeasible
when applied to computationally intensive models. In this light, surrogate modelling
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stands out as a versatile strategy to circumvent the challenges associated with resource-
intensive simulators. There exist a myriad of surrogate modelling techniques, each one
based on a different mathematical approach. In a first step, metamodelling methods can
be classified into three broad categories [20]: (i) reduced-order models (ROMs) [21]; (ii)
multi-fidelity methods [22]; and (iii) data-driven or responsive surface methods (RSMs).
ROMs techniques are developed by projecting the governing equations of the original
model onto a low-dimensional subspace. Hence, this class of methods have the ad-
vantage of retaining the physics underlying the model. However, a major drawback of
this approach in practical applications is its limited applicability, as it requires access
to the model governing equations, which is often not available when using commer-
cial software. Secondly, multi-fidelity methods are built by simplifying the underlying
physics or reducing the numerical resolution. The main challenge of these techniques
is their high case-dependency and the requirement for specialised expertise in order
to balance prediction accuracy and computational efficiency. Finally, RSMs consist in
employing a reduced number of realisations of the forward model to characterise be-
haviour of the system across the entire parameter space. It should be highlighted that,
unlike multi-fidelity methods, they do not request expert knowledge of the system un-
der study. Moreover, even if the QoI of the forward model is the output of a locked
commercial software, RSMs only require the input/output relationship provided by the
original model. As a consequence, the key advantage of these approaches lies in the fact
that the forward model does not need to be modified and can be therefore treated as a
black box [23]. Such features have fostered rapid developments of RSMs in recent years
as a non-intrusive technique with great flexibility in a wide range of applications. The
process of building a response surface surrogate model is depicted schematically in Fig.
1.1. After sampling the parameter space (a), the corresponding model evaluations are
obtained by executing the forward model on selected points (b). This step typically rep-
resents the most computationally intensive phase of the process. It is worth noting that
access to the source code of the forward model is not required; rather, the ability to iter-
atively run the forward model for all the sampling points suffices. Finally, the responses
of the model at the sampling locations are used to construct the surrogate model (c).

-2
-1

0
1

2

X-1

-0.5

0

0.5

1

Y

0

1

2

3

4

5

6

Z

(a) (b) (c)

FIGURE 1.1: Surrogate model building process: exploration of parameter space (a), evaluation of forward
model (b), and estimation of the response surface (c).
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Some of the most popular response surface methodologies found in recent scien-
tific literature include Kriging [12], Polynomial Chaos Expansion (PCE) [24], Radial Ba-
sis Functions (RBF) [25], Support Vector Machines (SVM) [26], and Neural Networks
(NN) [27]. The selection of one technique over another depends on many factors, in-
cluding the nature of the problem, the available computational resources, the objective
of the analysis (prioritising speed or accuracy), or even the prior knowledge of the prac-
titioner about surrogate modelling. For this reason, a substantial amount of research
has been carried out over the last two decades comparing different metamodelling tech-
niques. For instance, in the early 2000s, the works of Jin et al. [28, 29] were the first
to compare various popular methodologies for building surrogate models. Their find-
ings showed that RBF and Kriging outperformed the other alternatives. By contrast, the
authors concluded that Kriging suffered from a slow tuning process, especially when
large samples are used. This is explained by the need, during the tuning process, to
repeatedly invert a matrix whose size corresponds to the number of observed realisa-
tions of the forward model. Posterior analyses persisted in emphasising Kriging as the
most accurate method [30, 31]. In the same line, works by Van Gelder et al. [32] and
Kroetz et al. [15] suggested Kriging and NN as the best approaches. Li and co-authors
found SVM as the top technique, but with Kriging ranking a very close second [33]. In
a recent comparison of popular metamodelling methods, Østergård and co-authors [16]
further supported the superiority of Kriging, while highlighting the approach sensitivity
to model options. After analysing a comprehensive and diverse set of problems, Kiani-
far and Campean [18] recommended the use of Kriging, stressing its robustness against
problem scale or non-linearities in the response surface. Along the same lines, in an
up-to-date review of more than 200 papers, Alizadeh et al. [17] pointed out that Kriging
outperforms all other metamodelling techniques in terms of accuracy for different types
of problems .

Another widespread methods employed in engineering practice for constructing sur-
rogate models are PCEs. This family of techniques aims to provide a functional approx-
imation of a computational model through its representation on a suitably built basis
of polynomial functions [34]. PCE has been successfully applied in a wide variety of
engineering contexts, including materials analysis [35, 36] and the assessment of civil
structures like bridges [37] and dams [38, 39]. PCE stands out as an excellent choice
for constructing surrogate models. Firstly, PCE, by its intrinsic design, enables the nat-
ural incorporation of various probability distributions (uniform, Gaussian, etc.) into
the input parameter space. Secondly, PCE allows for the calculation of leave-one-out
(LOO) error estimates analytically from the model coefficients themselves. This feature
enables control over potential overfitting without requiring additional forward model
evaluations. This is particularly advantageous in practical contexts where running a sin-
gle simulation takes hours of computation. Moreover, a PCE model can be easily post-
processed to obtain further information about the QoI, including the mean and variance
of the model as well as a sensitivity analysis of the different model inputs [40]. Finally,
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PCE can be naturally integrated into the Kriging framework, resulting in a more pow-
erful meta-modelling technique, known as Polynomial Chaos Kriging (PCK) [41]. On the
other hand, PCE faces limitations when applied to complicated problems. Overall, PCE
approaches works better when applied to globally smooth problems [24]. Additionally,
PCE suffers from the so-called ’curse of dimensionality’, meaning that the number of
forward model realisations required to construct an accurate metamodel increases expo-
nentially with the dimension of the problem. As a consequence, the performance of the
method drops dramatically in high-dimensional contexts (10 or more dimensions).

From the previous state-of-the-art, it is evident that there remain numerous open
questions regarding the construction of surrogate models. One of the less explored top-
ics is the approximation of highly nonlinear surfaces. In such problems, commonly used
surrogate models such as PCE, Kriging, or even PCK suffer from very low convergence
rates, rendering their use ineffective. The results presented in Section 3.2 demonstrate an
efficient approach capable of overcoming these limitations. Another recent challenge in
metamodelling literature is the emergence of stochastic simulators in engineering prob-
lems, which incorporate inherent randomness into their predictions. In this regard, tech-
niques such as Stochastic Kriging (SK) [42] have emerged to approximate these types of
models. However, only the simplest version of SK has been successfully implemented.
This thesis proposes a novel approach combining SK and PCE, which outperforms stan-
dard methods available the literature.

1.2.2 Surrogate model based Bayesian inference

The problem of parameter estimation is a central concern in statistical theory. Infer-
ence problems typically emerge based on a set of data (observations of a random phe-
nomenon) and a mathematical model dependent on specific parameters, aiming to shed
light on the nature of the underlying process. The theory of statistical estimation ad-
dresses the methodologies necessary for obtaining accurate findings of the parameter
values. Within statistical theory, there are two fundamental approaches that dominate
the current scientific paradigm: the classical or frequentist approach and the Bayesian
approach. The differences between these two perspectives are not only methodological,
but fundamentally philosophical. For example, a key difference between frequentist and
Bayesian statistics is the treatment of model parameters. Frequentist statisticians con-
sider the true parameters of the model to be unknown but fixed, whereas in a Bayesian
context these parameters are represented as random variables [43]. After decades of re-
search, it is not possible to conclude that one approach is universally preferable to the
other [44]. The primary criticism of Bayesian methodology concerns its susceptibility to
the incorporation of subjective information into the data analysis process. This opens
the risk of introducing errors or biases that would not otherwise occur [44]. On the other
hand, Bayesian practitioners claim that Bayesian statistics enables the inclusion in the
data analysis of all relevant information related to the problem, obtaining more natural
and coherent results [43, 45].
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Regardless of the philosophical aspects, Bayesian inference encountered other chal-
lenges in its early stages. Direct Bayesian inference is typically not possible, as the math-
ematical equations governing the problem are usually high-dimensional and analitically
intractable. For much of the 20th century, drawing inferences in Bayesian statistics was
limited to a few specific theoretical cases. This constraint played a significant role in
leading many statisticians to adopt a frequentist point of view in practice [46]. However,
the paradigm shifted in 1990 with the groundbreaking paper of Galfand and Smith [47],
that quickly popularised Markov Chain Monte Carlo (MCMC) methods. MCMC are a
family of simulation-based techniques that effectively address the issues above. The ba-
sic idea of every MCMC procedure is to exploit the law of large numbers by constructing
a Markov chain with a stationary distribution proportional to the posterior distribution.
As a result, a sample of the joint probability distribution function (PDF) of the model
parameters can be obtained by collecting the states of the chain [48]. Sampling a PDF
via MCMC algorithms has significant advantages, including their simplicity of imple-
mentation and their applicability to a wide range of problems. Furthermore, MCMC
algorithms are guaranteed to converge if the sample size is large enough [49]. These
features, together with the development of computing, favoured the widespread use of
the first MCMC algorithms such as Metropolis-Hastings and Gibbs sampler [50]. However,
since these methods are simulation-based and require a significant number of iterations
to achieve success, they can suffer from slow convergence rates [51], especially if the
simulator is computationally demanding.

In order to improve the efficiency of the most elementary MCMC techniques, several
alternatives have been proposed in the literature in recent years. For instance, Hamil-
tonian Monte Carlo (HMC) takes advantage of Hamiltonian dynamics to incorporate
information about the local geometry of the distribution, reducing the correlation be-
tween successive samples. This enables the PDF to be explored more effectively, thus
reducing the total number of samples needed [52]; Particle MCMC (PMCMC) brings
Sequential Monte Carlo (SMC) into the realm of MCMC methodology and is typically
applied in the context of time series analysis where the likelihood of the observed data is
not analytically tractable [53]; Adaptive Metropolis tackles the problem of misspecifica-
tion of some user-defined settings in the Metropolis Hastings framework by allowing an
automatic tuning of the algorithm [54]. As a result of this development, Bayesian infer-
ence via MCMC has become a common standard in a broad range of disciplines, such as
structural identification [55], epidemiology [56], hydrology [57] or economics [58], just
to mention a few.

Despite these advances, conducting Bayesian inference on sophisticated models that
consume a large amount of computational resources remains challenging. In this con-
text, surrogate models offer an efficient solution to perform Bayesian inference in a cost-
effective manner while retaining the accuracy of high-fidelity models. For instance, PCE
metamodels have been successfully applied for Bayesian model calibration in subsurface
flow systems [59]. Analogously, Schneider and co-authors [60] employed PCE surrogate
models to characterise the mechanical properties of a cross-laminated timber plate. In
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a similar vein, Kriging has also been effectively employed in combination with MCMC
techniques in multiple contexts. The work of Fursov et al. [61] demonstrates the joint use
of Kriging and HMC to perform inference on reservoir models. Equally noteworthy, Ier-
imonti and co-authors [62] proposed a Kriging-based conjugate Bayesian identification
methodology for online damage identification of an instrumented monumental building,
the Consoli Palace in Gubbio (Italy). Finally, in the context of chemical engineering, Del
val et al. [63] proposed an original approach employing a Kriging surrogate of the like-
lihood function in the Bayesian inference instead of approximating the forward model
directly. Nonetheless, a common limitation of MCMC algorithms arises when explor-
ing multimodal PDFs characterised by modes separated by regions of low probability
density. This phenomenon often slows down convergence, leading to increased com-
putational demands. To address this issue, this thesis proposes a novel approach that
combines surrogate models with the Delayed Rejection Adaptive Metropolis (DRAM)
algorithm developed by Haario et al. [64] for Bayesian parameter estimation of ill-posed
problems.

1.3 Objectives

The overall purpose of this research is to provide an advance in the development of effi-
cient surrogate models of computationally burdensome engineering problems together
with their subsequent application to fast uncertainty quantification and Bayesian infer-
ence analyses. This general objective is divided into four sub-objectives:

Obj. 1: Review the state-of-the-art of response surface meta-modelling techniques, and
development of an innovative surrogate model capable of handling highly non-
linear response surfaces.

Obj. 2: Development of a novel surrogate-based Markov Chain Monte Carlo (MCMC)
approach for parameter inference applications.

Obj. 3: Implementation of best suited surrogate model for the uncertainty quantification
and parameter inference of computationally burdensome engineering problems,
including the homogenisation of composite materials and the governing equa-
tions of hydrogen diffusion in metallic alloys.

Obj. 4: Extension of the surrogate modelling approach to be developed in Obj. 1 for the
metamodelling of stochastic simulators.

1.4 Organisation of the thesis

This thesis has been structured in four chapters and three appendices as described below:

• Chapter 1 constitutes a brief overview of the state of the art of the fields of surro-
gate modelling and (surrogate model assisted) Bayesian inference, followed by a
summary of the scientific contributions resulting from this work.
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• Chapter 2 provides a comprehensive overview of the main theoretical results nec-
essary for an easy understanding of the contributions. Specifically, this chapter in-
cludes a review of the fundamental concepts of surrogate modelling theory in Sec-
tion 2.1, as well as a detailed presentation of the main metamodelling techniques
employed throughout the thesis in Sections 2.2 and 2.3. In addition, a grounding
in Bayesian statistics is provided in Section 2.4.

• Chapter 3 furnishes the main scientific findings achieved during the development
of the thesis. Section 3.1 demonstrates the capabilities of surrogate models in order
to perform UP analysis in engineering contexts, in particular within the realm of
composite materials. Section 3.2 discusses an approach for approximating highly
non-linear functions without compromising computational efficiency, and its fur-
ther application to the hydrogen diffusion phenomenon in metallic alloys.

• Chapter 4 provides the conclusions of the conducted investigation, as well as a
discussion of open questions for further research.

• Appendices A, B and C contain respectively the three full papers published in top-
tier scientific journals during the development of the thesis.

1.5 Contributions

The pursuit of the objectives in this thesis has yielded several noteworthy contributions
to the field of surrogate modelling, as evidenced by peer-reviewed scientific articles and
communications at international conferences. In order to highlight their importance they
are listed below:

• Peer-reviewed publications.

– J.C. García-Merino, C. Calvo-Jurado, E. García-Macías, Surrogate modeling
of the effective elastic properties of spherical particle-reinforced composite
materials, Journal of Mathematical Chemistry 60(8) (2022) 1555-1570.

– J.C. García-Merino, C. Calvo-Jurado, E. García-Macías, Polynomial chaos ex-
pansion for uncertainty propagation analysis in numerical homogenization of
2D/3D periodic composite microstructures, Composite Structures 300 (2022)
116130.

– J.C. García-Merino, C. Calvo-Jurado, E. Martínez-Pañeda, E. García-Macías,
Multielement polynomial chaos Kriging-based metamodelling for Bayesian
inference of non-smooth systems, Applied Mathematical Modelling, 116 (2023)
510-531.

– J.C. García-Merino, C. Calvo-Jurado, E. García-Macías, Sparse polynomial
chaos expansion for universal Stochastic Kriging, Computational and Ap-
plied Mathematics 444 (2024) 115794.
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• Communications at international conferences.

– Kriging-based numerical approximation of effective elastic properties of rein-
forced anisotropic materials, Conference on Mathematical Methods in Science and
Engineering Conference (CMMSE) 2021.

– 2D and 3D surrogate model comparison for the effective elastic properties of
particle-reinforced composite materials, International Congress on Fundamental
and Applied Sciences (ICFAS) 2021.

– Cost-efficient modeling for estimating the elastic properties of fiber-reinforced
composites, International Conference on Mechanical Models in Structural Engi-
neering (CMMoST) 2021*.

– LAR-PCE based Stochastic Kriging for non parametric problems, International
Conference of Numerical Analysis and Applied Mathematics (ICNAAM) 2022

– An optimal sparse basis selection for Stochastic Kriging, Conference on Mathe-
matical Methods in Science and Engineering Conference (CMMSE) 2023.

– Stochastic surrogate modelling of short fiber-reinforced composite materials,
International Conference on Mechanical Models in Structural Engineering (CM-
MoST) 2023**.

*Awarded as second best predoctoral paper.

**Awarded as best predoctoral paper.

• Research stays

– Research stay at Lappeenranta-Lahti University of Technology (LUT) from
June 12th, 2022 to September 16th, 2022.
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Chapter 2

Theoretical background

This chapter provides a theoretical basis for the fundamental issues that are addressed
throughout the thesis. The first part discusses the development of surrogate models,
including both common features of all meta-modelling approaches as well as a detailed
presentation of the main techniques employed in this work: PCE, Kriging, and Polynomial-
Chaos based Kriging (PCK). The second part focuses on Bayesian inference, presenting
some key theoretical concepts and an overview of the most popular algorithms.

2.1 Surrogate modelling: basics

The standard process for building an RSM surrogate consists of three basic steps. First
of all, a set of points in the parameter space of the forward model, known as the training
set or Experimental Design (ED), is selected. Secondly, the model is evaluated on these in-
stances, and a metamodel is fitted based on the collected input/output data. Finally, the
performance of the surrogate model is assessed [65]. A schematic representation of the
process of fitting a metamodel is depicted in Fig. 1.1. The capabilities of a constructed
surrogate model depends on several factors. Selecting an appropriate ED, employing a
suitable metamodelling method, and providing adequate specifications for each partic-
ular technique can dramatically enhance its accuracy and efficiency.

Sampling the design space, with the aim of getting the maximum amount of infor-
mation from a limited number of trials, has become a key issue in computer-based simu-
lation [66]. The straightforward rationale behind this is that when the underlying model
is complex and time consuming to evaluate, a proper ED becomes crucial to reduce the
number of evaluations of the forward model and hence the computational cost of build-
ing the surrogate [67]. However, it should be highlighted that in some techniques, such
as Kriging, both the fitting and evaluation time of the metamodel are strongly linked
to the size of the ED [68]. This can become a potential limitation when working with
large sample sizes or when the surrogate model is intended to be evaluated intensively
(e.g. for solving successive inference problems with real-time collected data). Some of
the most common methods reported in the literature for obtaining a training set are dis-
cussed below.

Two of the simplest ED that can be implemented are Monte Carlo (MC) sampling
(also known as pure random sampling) and grid sampling [69]. Monte Carlo sampling
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is based on the generation of independent random numbers according to the joint PDF
of the forward model input parameters [70]. On the other hand, grid sampling consists
of subdividing the area of interest using squares and taking samples from the nodes or
points of intersection of the grid lines [71]. Fig. 2.1 (a) and (b) depict a grid sample and
a MC sample on the 2D unit hypercube of 36 points each, respectively. These techniques
offer easy implementation and minimal computational cost, but are often inefficient at
exploring the parameter space. In a proper ED, the new points should be far away from
existing locations to avoid redundant samples. This goal is referred to as the space-
filling objective [72]. As it can be seen in Fig. 2.1, MC sampling concentrates several
points in specific areas, while leaving large regions uncovered. On the other hand, grid
methods locate a large number of samples at the margins of the parameter space, leaving
the inner space less explored. However, it has been reported in the literature that, in
general, it is preferable for the ED to cover the entire space rather than focusing on the
boundaries [69].
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FIGURE 2.1: (a) A 36 points grid sample on 2D unit hypercube. (b) A pure random sample on the same

parameter space.

A refined approach for space-filling sampling are low-discrepancy sequences, also known
as quasi-random methods. Low-discrepancy sequences are sequences S ⊂ [0, 1]D of points
with the property that any subset {x1, x2, ..., xn} ⊂ S has low discrepancy [73]. Derived
from numerical integration, the discrepancy is a measure of the error in volume esti-
mation by Monte Carlo methods. Formally, the discrepancy of a set P ⊂ S is defined
as [74]:

D(P) = sup
E

∣∣∣∣∣ 1
N

N

∑
i=1

1{xi∈E} − Vol(E)

∣∣∣∣∣ ,

where E represents the set of all rectangular boxes of the form E = [0, t1]× ... × [0, tD),
tk ∈ [0, 1) for all k ∈ {1, ..., D}, and vol(E) is defined as vol(E) = ∏D

k=1 tk. Note that
the definition can be easily extended without loss of generality to any sequence of points
outside the unit hypercube.

For sampling purposes, it follows from the definition that a set of points P has a low
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discrepancy if the number of points from P that fall into an arbitrary subset Q ⊆ P is ap-
proximately proportional to the measure of that subset [73]. In other words, the discrep-
ancy is a measure of how evenly a set of points fills a space [74]. Low-discrepancy meth-
ods provide samples with a high level of uniformity in a multidimensional space, but
without statistical independence [66]. Some popular quasi-random designs are Sobol,
Van der Corput and Halton sequences [73, 75]. Among these, Sobol’s sequence is the
most extended technique and its effectiveness has been demonstrated in metamodelling
practice (see e.g. [67, 70]). The major drawbacks of these methods are their poor space
coverage in high dimensions. Fig. 2.2 depicts the 2D projection of the first 120 points of
the Sobol sequence on dimensions 1 and 2 (left) and 8 and 40 (right), respectively. It is
clear that the space-filling Sobol’s design works well on dimensions 1 and 2, but the pro-
jection to dimensions 8 and 40 reflects an extremely inefficient sampling. For a thorough
discussion about low-discrepancy sequences, refer to references [73, 76, 77].
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FIGURE 2.2: (a) Projection of a Sobol’s sequence 120 points sample on 2D unit hypercube on dimensions 1

and 2. (b) Projection of the same sample on dimensions 8 and 40.

Beyond the techniques mentioned above, the most referred sampling method in the
literature by far is the Latin Hypercube Sampling (LHS) [66, 69]. A Latin hypercube is
constructed by dividing each dimension of the design space into n equal intervals and
placing exactly one point in each interval for each dimension [73]. Intuitively, such con-
figuration is similar to having n rooks on a n × n chess board without threatening each
other. Fig. 2.3 (a) shows a 10-points ED generated by LHS on the unit square. LHS design
can be easily generalised to evenly sample a non-uniform probability distribution of the
input parameters. To do so, it is sufficient to divide the space in each dimension not into
n equal intervals, but into n intervals each one containing 1/n of the probability mass of
the PDF of the respective parameter [78]. However, despite its flexibility and ease of im-
plementation, LHS is not exempt from limitations. A major drawback of the LHS method
is that it does not have any restriction to prevent points from clustering together as the
sample size increases. This means that the sample relies on chance to achieve correct
space-filling properties. In an extreme scenario, the design could consist of a diagonal
of points crossing the parameter space (see [73]). Moreover, LHS provides the entire
sample all at once. If the performance of the metamodel is deemed unsatisfactory after
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obtaining a training set through LHS, the gathered data and the surrogate model are typ-
ically discarded, and the whole process begins again with a new, larger sample from the
parameter space [72]. Given that, in general, it is very difficult to determine in advance
an appropriate sample size, sequential strategies that add points incrementally on a base
ED have been recently proposed [72,79,80]. There are two common approaches to aggre-
gate points to a given sample. The first one, purely geometric, consists of selecting new
locations in the least explored regions of the parameter space [73]. In contrast, adaptive
techniques aim to add new samples in regions where the surrogate model struggles to
emulate the forward model, such as non-linearities or pronounced jumps. These posi-
tions, which are not necessarily opposed, are referred to in the literature as exploration
and exploitation [79]. Therefore, an efficient strategy would be to start the sampling step
with a reduced ED obtained by LHS and, in case the obtained metamodel accuracy is
not sufficient, add new points to the training set applying a sequential method.

In a recent paper, Fugh and co-authors [80] reviewed the effectiveness of fourteen
different sequential sampling techniques for calibrating Kriging surrogate models. To
do so, the authors not only assessed the different approaches in terms of accuracy, but
also took into account criteria such as the robustness of the method in high-dimensional
situations, the computational cost of implementation, or the coding complexity, among
others. The findings of those authors reflected that the best sampling method in terms of
overall performance was the Maximising Expected Prediction Error (MEPE) proposed by
Liu et al. [81], an approach combining both exploration and exploitation aspects. How-
ever, its capabilities were closely followed by the purely geometric exploration technique
Monte Carlo-Intersite-proj-th (MIPT) presented in [73]. In addition, when other factors are
taken into account, MEPE requires fitting a Kriging model for each new sample point,
with the associated computational cost. In fact, MEPE is a sampling method only appli-
cable within the Kriging framework and challenging to implement. Conversely, MIPT
approach does not suffer from the aforementioned problems. MIPT method is based in
sampling a new point by maximising the distance to the sample points already included
in the ED. For that purpose, in each iteration, a large Monte Carlo sample C of candidates
over the parameter space is collected and the point x ∈ C that maximises the distance to
the current training set is selected. Formally, given an ED {x1, ..., xn} a new sample xn+1

MIPT

is chosen by solving the optimisation problem:

xn+1
MIPT = arg max

x∗∈C

(
min
xi∈ED

∥∥∥x∗ − xi
∥∥∥

2

)
.

A 10-point ED generated by HS on the unit square is depicted in Fig. 2.3 (a). For the
purpose of comparison, a 40-point ED generated from the ground up by LHS on the unit
square is depicted in Fig. 2.3 (b). In contrast, Fig. 2.3 (c) illustrates an extension of the 10-
point ED shown in Fig. 2.3 (a) generated according to the MIPT method comprising also
40 points. It is clear that the parameter space is more evenly filled after the application
of MIPT. Consequently, for challenging metamodelling problems, MIPT is an easy-to-
implement strategy capable of saving a lot of resources in sampling and posterior fitting
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processes.
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FIGURE 2.3: (a,b) LHS 10 points samples on the 2D unit hypercube with 10 and 40 points, respectively. (c)

A 40 points sample generated from (a) according to MIPT method.

Another key aspect in the development of surrogate models is the assessment of
model performance. There exist two main approaches to address this task: cross-validation
(CV) methods and independent validation set testing [65]. The suitability of either proce-
dure depends on factors inherent to the problem at hand, such as the computational
cost of evaluating a single point in the parameter space or the time availability of the re-
searcher. CV methods consist of dividing the ED into a collection of disjoint subsets, each
of which is used to assess the predictive capability of the surrogate model trained by the
remaining subsets [82]. Formally, given a mathematical model M : D ⊂ RM → R and
an ED {x1, x2, ..., xn} ⊂ D, it is straightforward to define the set of pairs T = {(xi, yi), i =
1, ..., n} where yi = M(xi) for all i ∈ {1, ..., n}. Then, the set T is split into L exclusive
and exhaustive subsets with approximately equal size such that [8]:

L⋃
ℓ=1

Tℓ = T , and Ti ∩ Tj = ∅ ∀(i, j) ∈ {1, ...L}2.

Afterwards, L surrogate models denoted by M̂−ℓ, k = 1, ..., L are fitted taking the
union of these subsets as the training set letting the left-out subset for testing. Thus, L
error measures are obtained by:

εℓ = ∑
(xi ,yi)∈Tℓ

(
yi − M̂−ℓ(xi)

)2
, ℓ = 1, ..., L,

and the CV error is then straightforwardly defined as:

εCV =
1
L

L

∑
ℓ=1

εℓ

When L = n, i.e. when each subset consists of only one sample, the CV error is re-
ferred to as leave-one-out (LOO) error. LOO validation has become a popular assessment
method in the field of surrogate modelling due to its ability to provide approximately
unbiased estimates of error without the need for obtaining new samples [82]. As a major
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drawback, this method multiplies the computational time required for testing, as each of
the metamodels is entirely independent of the others when different points are left out.
Therefore, LOO is especially suitable in situations where running the forward model is
very time-consuming, and, consequently, small training sets are utilised [83].

On the other hand, error assessment using a validation set consists of extracting a
collection of points {x1, x2, ..., xK} from the parameter space, independent of the ED and
called validation set, and running both the model and the surrogate on it. Then, the dif-
ference between the values returned by the forward model and the metamodel is mea-
sured. Different error metrics can be employed to quantify this difference, distinguish-
ing between global error metrics and others that are more focused on the maximum error
committed locally. Among the former, Normalised Root Mean-Square Error, (NRMSE), the
Normalized Average Absolute Error (NAAE) and the Coefficient of Determination (R2) are
particularly noteworthy whilst in the latter the most popular option is the Normalised
Maximum Absolute Error (NMAE) [80, 84]. A detailed overview of these metrics is pro-
vided in Table 2.1.

TABLE 2.1: Error metrics for the accuracy assessment of surrogate models over a validation set
of size K.

Normalised Root Mean-Square Error (NRMSE) Coefficient of Determination (R2)

NRMSE =

√
∑K

i=1

(
M̂(xi)−M(xi)

)2

max
i

(
M(xi)

)
− min

i

(
M(xi)

) R2 = 1 −
∑K

i=1

(
M̂(xi)−M(xi)

)2

∑K
i=1
(
M−M(xi)

)2

Normalized Average Absolute Error (NAAE) Normalized Maximum Absolute Error (NMAE)

NAAE =
∑K

i=1

∣∣∣M̂(xi)−M(xi)
∣∣∣

KσM
NMAE =

max
i

∣∣∣M̂(xi)−M(xi)
∣∣∣

KσM

where σM =

√
1

K − 1

K

∑
i=1

(
M−M(xi)

)2
and M denotes the arithmetic mean of the

model evaluations on the validation set.

2.2 Polynomial Chaos Expansions

Let M : D ⊂ RM → R be a computational model. In PCE framework, input parameters
are represented by a M-dimensional random vector X = (X1, ..., XM) with known PDF
fX. Consequently, the model output or QoI becomes also a random variable Y = M(X)
whose properties are determined by the propagation of the uncertainty of the design
variables through the computational model M. The intuitive idea of a PCE metamodel is
to represent the random variable Y as a series of random variables, that is, Y = ∑∞

j=0 yjZj.
When Zj are orthonormal polynomials on a random vector X, this series is referred to
as a Polynomial Chaos Expansion [85], naming the method. In order to rigorously define a
surrogate PCE, it will be necessary to introduce a probabilistic setting.
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Let (Ω,F , P) a probability space, where Ω is the event space equipped with the σ-
algebra F and P a probability measure defined on F , and denote by L2(Ω,F , P; R) the
space of real random variables X with finite variance defined on Ω. Given X1, X2 ∈
L2(Ω,F , P; R), an inner product can be defined as [85]:

< X1, X2 >L2= E[X1X2] =
∫

Ω
X1(ω)X2(ω)dP(ω).

This inner product induces naturally the norm: ||X||L2 =
√

E[X2]. It can be proved
that, equipped with this norm, L2(Ω,F , P; R) is a Hilbert space which admits a numer-
able basis

{
Zj
}∞

j=0 [85]. The first step to set up a PCE metamodel will be to construct a
basis consisting of multivariate orthonormal polynomials in the input vector X. For the
sake of simplicity, it will be assumed from now on that the design variables are indepen-
dent. Consequently, the joint PDF of input parameters fX may be cast as ∏M

i=1 fXi , where
fXi refers to the marginal PDF of Xi, i = 1, ..., M.

Consider a family
{

ψ
(i)
k , k ∈ N

}
of orthonormal polynomials with respect to Xi, i.e.,

sattisfying:
E[ψ(i)

j (Xi) ψ
(i)
k (Xi)] = δjk, (2.1)

where subscript k denotes the degree of the polynomial ψ
(i)
k and δjk refers to the Dirac

delta function [34]. Such a family can be obtained by applying the Gram-Schmidt or-
thogonalization procedure to the collection {1, x, x2, ...} and normalising the resulting
orthogonal polynomials [86]. For standard distributions, the associated family of or-
thogonal polynomials is well known. For example, if Xi follows an uniform distribution
U(−1, 1), the (normalised) Legendre polynomials satisfy Eq. (2.1) [87]. Some common
distributions ans their associated families of orthonormal polynomials are reported in
Table 2.2. It should be noted that, when design variables follow different distributions,
it is still possible to use the orthogonal polynomial families listed in Table 2.2 through an
isoprobabilistic transformation. For example, a lognormal variable can be transformed
into a function of a standard normal variable, which can then be used in conjunction
with Hermite polynomials [85].

Finally, a multivariate polynomial basis can be constructed from the previously de-
fined univariate polynomials by tensor product. Defining a multi-index α = (α1, ..., αM)

as an ordered list of integers, it is possible to associate a multivariate polynomial Ψ to
any multi-index α by:

Ψα(X) =
M

∏
i=1

ψ
(i)
αi (Xi). (2.2)
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TABLE 2.2: Classical families of univariate polynomials for PCE metamodelling.

Type of variable Orthogonal Polynomials Orthonormal basis

Uniform U(−1, 1) Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian N(0, 1) Hermite Hek(x) Hek(x)/
√

k!

Gamma Γ(a, 1) Laguerre La
k(x) La

k(x)/
√

Γ(k+a+1)
k!

Beta B(a, b) Jacobi Ja,b
k (x) Ja,b

k (x)/Ja,b,k

Ja,b,k =
√

2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

It is obvious that, by construction, such polynomials satisfy E[Ψα(X) Ψβ(X)] = δαβ,
i.e are also orthonormal. Moreover, it can be proved that the set of all multivariate poly-
nomials defined in Eq. (2.2) forms a basis of the Hilbert space L2(Ω,F , P; R) [86]. As a
result, the model response Y can be represented as:

Y = M(X) = ∑
α∈NM

aαΨα(X). (2.3)

Although Eq. (2.3) is exact for an infinite number of polynomials, it is obvious that
in practice only a finite number of terms can be computed. Once a polynomial basis has
been determined, the next steps to construct a PCE surrogate model are to select a finite
set of multi-indices A ⊂ NM and compute the corresponding coefficients aα for α ∈ A.
Many different strategies can be taken into account to truncate the polynomial series.
One of the simplest approaches consists in selecting the set of all polynomials whose total
degree |α| = ∑M

i=1 αi is up to p, i.e., the set of multi-indices AM,p = {α ∈ NM : 0 ≤ |α| ≤
p} [88]. Nevertheless, it should be noted that the cardinality of AM,p is (M+p

p ). Therefore,
in large-dimensional problems or non-linear systems where high degree polynomials are
required to represent the response surface, the number of coefficients to be computed
drastically increases, and so the subsequent computational burden of the method. As a
partial solution, a more restrictive hyperbolic truncation scheme was proposed by Blatman
and Sudret [89].

In practice, it is often observed that PCE surrogate models are mostly determined
by terms where only few variables are involved. This phenomenon is referred to as the
sparsity-of-effects principle [85]. To take advantage of it, the hyperbolic truncation scheme

selects all the multi-indices belonging to AM,p with q-norm ∥α∥q =
(

∑M
i=1 |αi|q

) 1
q

less
than or equal to p, namely:

AM,p,q = {α ∈ AM,p : 0 ≤ ∥α∥q ≤ p}, 0 < q ≤ 1. (2.4)

Note that, the smaller q, the fewer polynomials will be considered in the final ex-
pansion, although all the univariate high-degree terms remain included. On the other
hand, when q = 1, the hyperbolic truncation coincides with the standard one, i.e.,
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AM,p,q = AM,p. Nonetheless, although substantial cost reductions can be achieved us-
ing the hyperbolic truncation scheme, the number of coefficients in the expansion may
still be considerable. An adaptive technique based on the least-angle regression (LAR)
algorithm for selecting a minimal basis will be explored in Section 3.3.

The last step to build a PCE metamodel is the computation of the coefficients aα. The
aim is to find the set a = {aα, α ∈ A} which minimise the mean-squared error, that is:

a = arg min
a∈RcardA

E

(M(X)− ∑
α∈A

aαΨα(X)

)2
 . (2.5)

Given an ED {x1, ..., xn} ⊂ D and the vector y =
(
y1 = M(x1), . . . , yn = M(xn)

)T

collecting the realisations of the forward model on the ED, an estimated solution to the
problem 2.5 is given by:

â = arg min
a∈RcardA

1
n

n

∑
i=1

(
M(xi)− ∑

α∈A
aαΨα(xi)

)2

. (2.6)

The solution of the optimisation problem defined by Eq. (2.6) reads:

â =
(
ΨTΨ

)−1
ΨTy (2.7)

where Ψij =
(

ψαj(x
i)
) j=1,..., cardA

i=1,..., n
is computed from the evaluation of the basis polyno-

mials onto each point in the ED and referred to as the information matrix [86]. It should be
noted that, in order to be well-posed, the number of unknown coefficients (i.e., card A)
in Eq. (2.7) must be smaller than the size of the ED. An empirical rue of thumb is to take
an ED size from two to three times the number of unknowns [86]. In light of the above,
the prediction of a PCE metamodel at an arbitrary point x of the domain D is given by:

M̂PCE(x) = ∑
α∈A

âαΨα(x). (2.8)

This formulation of a PCE metamodel presents some additional benefits. For exam-
ple, the calculation of the LOO error presented in Section 2.1 is immediate, making it
a good alternative when obtaining a validation set is not available. Through algebraic
derivations, it can be proved that it is possible to compute the LOO error from a single
expansion trained with the full original ED. Denoting by hi the i-th component of the
vector h = diag

{
Ψ
(
ΨTΨ

)−1
ΨT
}

, the metamodel LOO error estimate reads [85]:

εLOO =
k

∑
i=1

(
M
(
xi)− M̂PCE(xi)

1 − hi

)2

. (2.9)

As a consequence, since it is often difficult to know a priori the optimal degree of
expansion, a suitable strategy is to construct different surrogates and to compare their
LOO errors. A concurrent increase in the expansion degree and the LOO error is an indi-
cator that the model is suffering from overfitting. Note that, for metamodel comparison,
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a normalised version of the LOO error estimation is available by dividing the expression
in Eq. (2.9) by the sample variance Var(y).

The ability to perform direct sensitivity analysis constitutes another strength of PCE
models. The purpose of sensitivity analysis is to quantify which input parameters Xi,
i = 1, ...M, or combinations thereof, best explain the variability of the QoI [40]. In this
light, Sobol’s indices are considered one of the most effective sensitivity measures for
general computational models [90]. The idea behind the construction of Sobol’s indices
involves decomposing the response of a computational model M as the sum of a con-
stant function M0, M univariate functions denoted by Mi, (

n
2) bivariate functions Mij,

and so forth, as shown in Eq. (2.10):

M(x) = M0 +
M

∑
i=1

Mi(xi) + ∑
1≤i<j≤M

Mij(xi, xj) + . . . +M1,2,...,M(x) ∀x ∈ D. (2.10)

Once the response of the model has been described following Eq. (2.10), the process
continues decomposing the variance of the model output into fractions which can be
attributed to inputs or sets of inputs. For example, given a model depending on two
parameters, one might find that 70% of the output variance is attributable to changes
in the first input, 20% by the variance in the second one, and 10% due to interactions
between both. In this context, the first-order Sobol’s indices are defined as [40]:

Si =
Var[Mi(Xi)]

Var[M(X)]
. (2.11)

Similarly, the second-order Sobol indices are defined by:

Sij =
Var[Mij(Xi, Xj)]

Var[M(X)]
. (2.12)

Following the same logic, it is possible to define Sobol’s indices for each set of input
parameters u = {i1, ..., is} ⊆ {1, ..., M}. Consequently, each index Su will be a sensitivity
measure describing which amount of the total variance is due to the uncertainties in the
set of input parameters u. Finally, the total Sobol’ index ST

i , i = 1, . . . , M is defined as
the sum of all the Sobol’ indices involving the parameter i [86]:

ST
i = ∑

i∈u
Su. (2.13)

In this light, the index ST
i quantifies the total impact of a given parameter Xi including

all its interactions [40].
The Sobol’s indices can be straightly approximated from a PCE surrogate. Indeed,

defining for each set of variables u ⊆ {1, . . . , M} the set of indices Au depending only
on u as:

Au = {α ∈ A : αk ̸= 0 if and only if k ∈ u} , (2.14)
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Eq. (2.8) can be re-written as:

M̂PCE(x) = ∑
u⊆{1,...,M}

∑
α∈Au

âαΨα(x), (2.15)

since the set of all Au defines a partition of A. Therefore, due to the orthogonality of the
PCE basis, it is verified that:

Var

[
∑

α∈Au

âαΨα(x)

]
= ∑

α∈Au

â2
α. (2.16)

Thus, the estimated value of the index Su obtained via the PCE surrogate is given by:

Ŝu =
∑α∈Au

â2
α

∑α∈A â2
α

. (2.17)

Analogously, the total indices ST
i , i = 1, . . . , M, can be approximated by:

ŜT
i =

∑α∈AT
i

â2
α

∑α∈A â2
α

, with AT
i = {α ∈ A : αi > 0} . (2.18)

This last property of PCE metamodels will play a crucial role to define the Multi-element
Polynomial Chaos-based Kriging surrogate model, whose construction will be discussed
in detail in Section 3.2 and paper B. For a more in-depth analysis of sensitivity analysis
in the PCE framework, interested readers may refer to [40].

2.3 Kriging

Kriging (also known as Gaussian process regression) in one of the most popular methods
for surrogate modelling in engineering practice [17]. First proposed by the South African
mining engineer Danie G. Krige in the 1950s and further developed by the French math-
ematician Georges Matheron in the 1960s, Kriging was originally conceived as a geo-
statistical method for estimating ore grades in mining [65]. It has since evolved into a
widely employed statistical technique for interpolation and spatial prediction in various
fields such as geology, material science, and machine learning. The key mathematical
assumption defining the method is that the output M(x) of the model in an arbitrary
point x ∈ D is a realisation of an underlying Gaussian random field. Given a proba-
bility space (Ω,F , P) a random field is defined as a collection {Fx : x ∈ X} of random
variables indexed by an arbitrary set of indices [91]. For the sake of simplicity, only real
random fields verifying that X ⊂ RM will be considered hereafter. Thus, it is possible
to understand a random field as a random multivariate function F : (X , Ω) → R which
assigns a probability distribution F(x, ω) to each point x ∈ X . A random field is said to
be Gaussian if, for all λ1, ..., λk ∈ R and x1, ..., xk ∈ X , ∑k

i=1 λiFxi follows a multivariate
Gaussian distribution [92].

Taking into account the preceding considerations, a Kriging model MK for approxi-
mating M is defined by a Gaussian random field:
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MK(x) = T (x) +Z(x, ω), x ∈ D (2.19)

where the term T (x) represents the mean of MK and is referred to as trend and Z(x, ω)

is an zero-mean field. As a consequence of Gaussian assumption, it can be proved that Z
is second-order stationary [92]. This means that it can be fully characterised by its variance
σ2 and an auto-correlation function R (x, x′) = R (|x − x′| ; θ), depending only on the
difference |x − x′| and some hyper-parameters θ to be determined. On the other hand,
the trend term T (x) = f (x)T β = ∑s

r=1 βr fr (x) is a linear regression model comprising s
user-selected regression functions fr (x) and its corresponding (unknown) regression co-
efficients βr (e.g, fr (x) = xr). This formulation corresponds to the most general version
of Kriging, referred to as Universal Kriging (UK). However, the prevailing implementa-
tion of Kriging in the literature [17], labelled as Ordinary Kriging (OK), assumes that the
trend term consists of a constant value β0 to be estimated.

The auto-correlation function R is selected by the user and must satisfy R (0; θ) = 1
and R (|x − x′| ; θ) → 0 when |x − x′| → +∞ [65]. Moreover, when the input dimension
M is greater than one, it is common to restrict the possibilities to functions of the form
R (|x − x′| ; θ) = ∏M

i=1 Ri(xi, x′i ; θi), where xi, x′i and θi denote the i-th coordinate of the
vectors x, x′ and θ, respectively [93]. The most frequent choice is the Gaussian model,
although other popular alternatives can be found in Table 2.3.

TABLE 2.3: Frequently used correlation models for Kriging [93].

Correlation family Ri(xi, x′i ; θi)

Linear max

(
0, 1 − |xi − x′i |

θ−1
i

)

Exponential exp
( |xi − x′i |

θi

)
Gaussian exp

(
−1

2

( |xi − x′i |
θi

)2
)

Matérn 3/2
(

1 +
√

3
|xi − x′i |

θi

)
exp

(
−
√

3
|xi − x′i |

θi

)
Matérn 5/2

(
1 +

√
5
|xi − x′i |

θi
+

5
3

( |xi − x′i |
θi

)2
)

exp
(
−
√

5
|xi − x′i |

θi

)

The prediction M̂K(x) of a Kriging model at any point of the parameter space is a
direct consequence of the Gaussian assumption. Given an ED {x1, ..., xn} ⊂ D and an
auto-correlation function R satisfying the aforementioned conditions, and assuming for
simplicity that the values of β and θ are known, it is verified that for any x ∈ X the joint

probability distribution of
(
M̂K(x), y

)T
satisfies [94]:
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(M̂K(x)
y

)
∼ Nn+1

([
f(x)Tβ

Fβ

]
, σ2

[
1 r(x)T

r(x) R

])
, (2.20)

where r(x) denotes the vector of cross-correlations between the prediction point x and
each one of the observations of the ED, that is, (ri(x))i=1,...,n = R(x, xi) and y is the vec-
tor containing the realisations of the forward model on the ED. Similarly, F = (Fij) =

( f j(xi)) is the information matrix and R refers to the correlation matrix given by (Rij) =

(R(xi, xj)), i, j = 1, ..., n. Conditioning this joint distribution on the training sample, it
is obtained a Gaussian random variable referred to as Kriging predictor, whose expected
value will be the prediction of the metamodel in an arbitrary point [94]. In addition,
the variance value provides a measure of the prediction’s uncertainty without requiring
additional calculations. An interesting property of Kriging predictor is its interpolating
nature: it is easy to verify that the variance of the prediction on training samples col-
lapses to zero. Consequently, it holds that MK(x) = M(x) for all x ∈ ED. Analytical
expressions of the mean and variance of Kriging predictor are given in Eqs. (2.21) and
(2.22), respectively [93]:

E[M̂K(x)] = f(x)Tβ + r(x)TR−1(y − Fβ), (2.21)

Var[M̂K(x)] = σ2
(

1 − r(x)TR−1r(x) + u(x)T(FTR−1F)−1u(x)
)

, (2.22)

where u(x) = FTR−1r(x)− f(x). The main practical challenge in the implementation of
a Kriging model is the estimation of the parameter β of the trend and the parameters θ

and σ2 of the stochastic term Z . Given an estimation θ̂, optimal values of β̂(θ̂) and σ̂2(θ̂)

can be computed through the so called best linear unbiased estimator (BLUE) using Eqs.
(2.23) and (2.24), respectively [41]:

β̂(θ̂) =
(

FTR−1F
)−1

FR−1y, (2.23)

σ̂2(θ̂) =
1
n
(y − Fβ)T R−1 (y − Fβ) , (2.24)

As a consequence of the above, fitting a Kriging metamodel is reduced to the iden-
tification of the proper hyperparameters θ. There exist two main procedures in Kriging
literature for obtaining a suitable estimation, based on either maximum likelihood (ML)
or leave-one-out cross-validation (CV). However, both approaches require solving chal-
lenging minimisation problems, given respectively in Eqs. (2.25) and (2.26) [41, 95]:

θ̂ML = arg min
θ

[
1
n
(y − Fβ)T R−1 (y − Fβ) |R|1/n

]
, (2.25)

θ̂CV = arg min
θ

[
1
n

yTR−1
(

diag(R−1)
)−1

R−1
]

. (2.26)
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It is unclear whether any of the approaches has superior capabilities, and the liter-
ature addressing the subject is scarce. It has been suggested that when the correlation
function is misspecified, CV performs better than ML, while ML is optimal when the
model is well specified [95]. Note that solving any of the minimisation problems (2.25)
or (2.26) is the most computationally challenging step when fitting a Kriging surrogate.
Two algorithm families are primarily employed to accomplish this task: local optimis-
ers, typically gradient-based, and global methods, such as evolutionary algorithms. The
former tends to converge faster and require fewer objective function evaluations, but
they may perform poorly due to the possibility of becoming trapped in flat regions or
local minima, especially with increasing input dimensions [93]. It should be noted that,
in any case, it is required to repeatedly invert the matrix R for each combination of hy-
perparameters θ considered. This process has a computational complexity O(n3) [68],
which makes fitting a Kriging metamodel a computational challenge when the sample
size is large. Furthermore, as obtaining the Kriging prediction at a point x ∈ X requires
calculating the cross-correlation vector r(x), the evaluation time of the metamodel will
also be affected negatively by large EDs. These issues will be further explored in Section
3.2.

2.3.1 Polynomial-chaos based Kriging

The aforementioned PCE and Kriging surrogate modelling methods can be combined
in a natural way to produce a completely new technique referred to as Polynomial Chaos
based Kriging (PCK). The basic idea PCK consists of approximating the global behaviour
of the computational model M employing a PCE surrogate model whereas Kriging man-
ages the local variability of the model output. To this end, a polynomial expansion will
be incorporated as the trend term into the Universal Kriging formulation presented in
Section 2.3.

Let M : D ⊂ RM → R be the computational model to be approximated, and suppose
that an ED {x1, ..., xn} ⊂ D and the corresponding realisations y of the forward model
on it are available. Additionally, knowledge of the joint PDF of the M-dimensional in-
put of the model is assumed, as established in Section 2.2. The construction of a PCK
metamodel involves two main steps: first, the determination of the set of polynomials
contained in the regression part, and secondly, the calibration of the correlation hyper-
parameters θ as well as the Kriging parameters σ2, β. Synthesising the above, and em-
ploying the notations of Sections 2.2 and 2.3, the PCK surrogate model is given by Eq.
(2.27) [41]:

MPCK(x) = ∑
α∈A

β̂αΨα(x) +Z(x, ω). (2.27)

Consequently, the PCK prediction in any given point x ∈ D) reads:

E[M̂PCK(x)] = Ψ(x)β̂ + r(x)TR−1(y − Ψβ̂) (2.28)
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It should be noted that the selection of the polynomial basis A is particularly impor-
tant in the context of PCK. An excessive number of polynomials can lead to overfitting
problems. Therefore, taking into account adaptive algorithms such as LAR to create a
sparse basis becomes essential when constructing a PCK metamodel [41]. This point will
be further discussed in Section 3.3.

2.4 Bayesian Inference

Flexibility and generality characterise Bayesian inference. A key advantage of the
Bayesian approach over frequentist inference is its ability to quantify uncertainty di-
rectly, making it possible to fit complex models with with numerous parameters in a
natural way within a common framework [96]. This section provides an overview of
Bayesian inference to set the results of Section 3.2 in context.

2.4.1 Basic concepts

Statistical inference can be defined as the process of drawing conclusions about unob-
served quantities from observations. Any inference process begins by defining a model,
denoted by f , from which to extract information to a certain data set. In general terms,
we can write:

y = f (x, θ) + ε, (2.29)

where y = {y1, ..., yn} represents the observations of the model, θ = {θ1, ..., θm} a set
of unknown parameters and x = {x1, ..., xn} the conditions, set by the experimenter,
under which the model is evaluated. Finally, ε describes the model error. Within the
Bayesian framework, Eq. (2.29) can be interpreted to signify that each observation yi is
the realisation of a random variable whose probability distribution depends on xi and
the unknown parameters set θ. In this context, the goal of statistical inference is to ob-
tain information about θ. Since from a Bayesian point of view {θ1, ..., θm} are random
variables with its own PDFs, it is possible to to take advantage of Bayes’ theorem by
writing:

p(θ|y) = p(θ)p(y|θ)
p(y)

, p(y) =
∫

p(θ)p(y|θ)dθ. (2.30)

Each term in Eq. (2.30) has its own interpretation. p(θ) is known as the prior distri-
bution of parameters θ, representing what is known about the parameters of the model
before seeing any data. p(y|θ) is referred to as the likelihood, and represents what is
known after learning from the data. The posterior distribution of parameters, p(θ|y), de-
notes the conditional probability distribution of the unobserved parameters, given the
observed data. Posterior distribution can be seen as a compromise between data and
prior information. Finally, p(y) is known as the evidence or marginal likelihood. Evidence
is a normalising constant calculated by integrating the likelihood of the data over the
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entire parameter space of the model, weighted by the prior distribution of the parame-
ters. Although this quantity plays a central role in Bayesian model selection, computing
such an integral is typically very challenging, especially in contexts where the parame-
ter space is multi-dimensional. As a result, most inference algorithms seek to avoid an
explicit computation [97].

Equation (2.30) provides a simple illustration about the differences between the fre-
quentist and Bayesian viewpoints. The former paradigm relies solely on data or expe-
rience, assigning probabilities to events based on empirical evidence from repetitions of
the experiment of interest. In contrast, the Bayesian process is based on subjective as-
sessments of the relative likelihood of events [44]. Prior distributions represent the (sub-
jective) beliefs of the experimenter about the probability distribution of the unknown
parameters before observing any data. These assumptions are updated as more data
is collected, resulting ultimately in a posterior distribution that reflects the beliefs of
the practitioner at the end of the inference process. As a consequence, Bayesians and
frequentists interpret their estimates of the parameters of interest differently. From the
frequentist point of view, given a model f dependent on a set of parameters θ and a data
set y, the outcome of the inference process will be a single interval for each parameter θi

(referred to as confidence interval), containing its true value with a sufficiently high given
probability. It is noteworthy that these intervals are random before the observation of
the data, but fixed afterwards. Moreover, in the frequentist framework, practitioners
consider the parameters θi as unknown but fixed values. As a result, the statement ’The
interval [a, b] contains the true value of θi with a 95% probability’, should be understood
in terms of the relative frequency. That is, if the process of obtaining the confidence inter-
val is repeated a sufficiently large number of times, it is expected that approximately 95%
of these replications will yield an interval containing the true value of the parameter [98].
On the other hand, from a Bayesian perspective, the result of an inference process is the
full posterior distribution of parameters. In contrast to the frequentist standpoint, the
statement ’The interval [a, b] contains the true value of θi with a 95% probability’, can
be now understood much more literally, in the sense that 95% of the probability mass
of the posterior distribution lies within the interval [a, b] [98]. Within Bayesian frame-
work a region [a, b] fulfilling such property is referred to as a credible interval rather than
a confidence interval. However, it is important to note some differences with the clas-
sical concept. In the first place, a credible interval does not necessarily have to be an
interval in multimodal distributions (see Fig. 2.4). Thus, it is better to refer to them as
credible regions. Furthermore, the Bayesian credible interval is not fully determined after
observing the data. This is due to two reasons: firstly, the choice of prior distribution can
impact on the resulting posterior; in addition, there exist an infinite number of intervals
containing a given percentage of the posterior probability mass. Therefore, equal-tailed
credible intervals and high-density regions (HDR) are employed the most in practice.
An equal-tailed credible interval at level (1-α)% is a region that encompasses (α)% of
the probability mass of the posterior distribution around the median. Equal-tailed cred-
ible intervals are easy to compute and are useful when the PDF of the parameters is
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symmetric and unimodal. On the other hand, an HDR is a region C in the parameter
space that contains 100(1 − α)% of the posterior mass satisfying that for all θ1 ∈ C and
θ2 /∈ C, g(θ1|x) ≥ g(θ2|x), being g is the posterior PDF of parameter θ [99]. It follows
immediately from the definition that the HDR is the smallest of all regions of probability
coverage (1-α). Fig. 2.4 depicts the equal-tailed credible interval and HDR at 95% for a
given Gaussian mixture, illustrating that only the latter is able to capture the bimodal
nature of the distribution.
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FIGURE 2.4: Bayesian estimates: 95% Highest density region (a) and 95% Equal-tailed credible interval (b)

2.4.2 Markov Chain Monte Carlo: the Metropolis-Hastings algorithm

Computing the posterior distribution analytically or numerically according to Eq. (2.30)
is a very challenging task. For this reason, an alternative procedure should be sought.
To circumvent the problem of calculating the model evidence, it is important to note that
this factor is independent of the θ parameters of interest. Therefore, an interesting strat-
egy is to consider methods that allow drawing samples from the posterior directly, with-
out explicit computation. This can be done through the MCMC family of algorithms. To
gain an understanding of MCMC, let us begin with some fundamental concepts.

A stochastic process is a sequence of random variables {X0, X1, ....}, where the indices
0, 1, 2... represent successive time states. Given any time t ≥ 0, it is possible to represent
the conditional probability of a future event from all the events already observed. In
this context, it is said that {X0, X1, ....} is a Markov process (or chain) if the conditional
probability of a future event depends only on the immediately preceding state. That is,
if [100]:

P(Xt+1|Xt, Xt−1, ..., X1, X0) = P(Xt+1|Xt), ∀t ≥ 0. (2.31)

A Markov process is fully determined by its initial distribution and its transition kernel
[101]. The initial distribution is simply the marginal distribution of X0. Denoting by X
the state space of the Markov chain, i.e., the set of all possible realisations of the terms of
the chain, a transition Kernel is the conditional distribution of Xt+1 given Xt. That is, a
function K : X ×B(X ) → [0, 1] verifying:
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1. ∀x ∈ X , K(x, ·) is a probability measure,

2. ∀A ∈ B(X ), K(·, A) is measurable,

where B(X ) is the Borel set on X . Note that it is assumed that the transition kernel
does not depend on t. This property, known as time-homogeneity, is common in MCMC
literature.

The intuitive idea of MCMC methods is to construct a Markov chain such that, after
a certain time, it stabilises on a distribution that does not depend on time or the initial
conditions. This distribution is referred to as the stationary or invariant distribution of
the process. By selecting a suitable transition kernel, it is possible to ensure that the
stationary distribution matches a given distribution of interest (e.g. the posterior p(θ|y)),
even if a expression of the latter is unknown.

There are two ways to understand MCMC: from the perspective of a practitioner
or from a mathematical standpoint. From a purely practical point of view, MCMC is
usually seen as a ’black box’: the Markov chain is a tool that produces some output
when executed, which is the required invariant distribution, and whose inside cannot be
seen [102]. Beyond the obvious, since from the black box point of view nothing is con-
sidered apart from the above, some problems such as pseudo-convergence can arise: a
Markov chain may appear to have converged to its equilibrium distribution even though
it has not. This can be the case if the distribution of interest is strongly multimodal (see
for example, the one depicted in the Fig. 2.4), requiring many iterations to move from
one mode to another. When the time required to switch between these parts is much
longer than the length of the simulated Markov chain, it may appear to have converged,
but this ’equilibrium’ is highly dependent on the initial point of the chain [102]. From
a theoretical perspective, one can consider questions such as the existence and unique-
ness of the stationary distribution of a given Markov process or whether it is possible
to ensure that this distribution coincides with the distribution of interest, provided it
exists. Answering these questions is generally difficult, and related results are scattered
throughout the mathematics, statistics, and engineering literature, making it challeng-
ing to get a full overview of MCMC foundations [103]. A synthesis between the two
approaches is presented below: firstly, some key results from the theory of Markov
processes that allow to ensure convergence to a stationary distribution of a particular
chain are presented. Then, the Metropolis-Hastings (MH) algorithm, one of the most
elementary MCMC methods, is described and proved that fulfils the convergence crite-
ria. Finally, some guidelines for the practical implementation of MCMC algorithms are
provided.

Given a Markov process {X0, X1, ....} characterised by the transition kernel K(·, ·),
π : B(X ) → [0, 1] is said to be a stationary distribution of the chain when it is verified
that:

π(B) =
∫
X

K(x, B)π(x) dx, ∀B ∈ B(X ). (2.32)

A Markov process does not necessarily need to have a stationary distribution. However,
there are simple sufficient conditions that can be checked in most MCMC algorithms
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to ensure the existence of at least one stationary distribution. One of these conditions
is referred to as detailed balance. A Markov chain with transition kernel K satisfies the
detailed balance condition if there exists a probability measure π satisfying [101]:

K(y, x)π(y) = K(x, y)π(x), ∀x, y ∈ X . (2.33)

Therefore, it can be easily verified that π is a stationary distribution of the chain. In fact,
for each measurable set B ⊆ X , it holds that:

∫
X

K(y, B)π(y)dy =
∫
X

∫
B

K(y, x)π(y)dxdy

=
∫
X

∫
B

K(x, y)π(x)dxdy =
∫

B
π(x)dx = π(B)

since
∫
X

K(x, y) dy = 1.

One question that arises from this result is whether the measure π is unique. The answer
lies in the concept of irreducibility. A Markov chain is said to be irreducible if, for every
set A with positive probability (respect to π), the chain has some chance of visiting A in
finite time, independent from the initial state [103]. That is, a Markov chain is irreducible
if there exists an n ∈ N such that Kn(x, A) > 0 for all x ∈ X and A ∈ B(X ) such that
π(A) > 0, where Kn is defined recursively by:

Kn(x, A) =
∫
X

Kn−1(y, A)K(x, dy), n > 1, K1(x, A) = K(x, A). (2.34)

Note that the notation K(x, dy) in Eq. (2.34) indicates the transition of the chain from
a state x to some arbitrary state y ∈ X . Irreducibility is a sufficient condition to ensure
the uniqueness of the stationary distribution, provided it exists [103]. Moreover, it can
be proved [104] that an irreducible chain that admits a stationary distribution has some
chance of visiting any set A with positive probability an infinite number of times and,
furthermore, that the expected total number of visits to any such set A is infinite. When
the latter condition is fulfilled, the Markov process is said to be recurrent, and conver-
gence is assured regardless of the initial value of the chain [100].

Considering the foregoing, the MH algorithm is presented below. MH relies on two
essential components: 1) a target distribution π(x) known except for a constant of pro-

portionality (i.e. π(x) =
1
Z

p(x) for some given function p(x) and some unknown con-
stant Z which normalises p to make it a probability distribution) and 2) a conditional
density q(x, y) easy to simulate and referred to as the proposal distribution. In order to
construct the corresponding Markov chain, at each iteration of the algorithm, a candi-
date y from the state space X is proposed and an α acceptance probability of that state
calculated. If the candidate is accepted, the chain moves to that state; otherwise, it re-
mains in the current state and a new candidate is proposed in the next iteration. The
algorithm will ultimately deliver samples from the target distribution [100]. The whole
process is detailed in Algorithm 1.
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Algorithm 1 Metropolis-Hastings Algorithm

1: Initialize x0 ▷ Initial state
2: for t = 1 to T do ▷ Number of iterations
3: Propose a candidate y from proposal distribution q(xt−1, ·)
4: Calculate acceptance probability:

α(xt−1, y) = min
{

1,
p(y)q(y, xt−1)

p(xt−1)q(xt−1, y)

}
5: Generate a uniform random number u ∼ Uniform(0, 1)
6: if u ≤ α(xt−1, y) then
7: Accept the candidate: xt = y
8: else
9: Reject the candidate: xt = xt−1

10: end if
11: end for

Note that the ratio p(y)/p(x) is the same as π(y)/π(x). The requirement that p(x)
must only be proportional to the density, rather than exactly equal to it, makes the MH
algorithm particularly useful for Bayesian inference. Recalling Eq. (2.30), since the pos-
terior distribution satisfies p(θ|y) ∝ p(θ)p(y|θ), that is, it is known except for a pro-
portionality constant p(y) hard to compute, it follows immediately that MH algorithm
allows to bypass the difficulties of evidence calculation.

The proposal distribution q has to be specified by the researcher. A common choice is
a Gaussian distribution centred at xt−1 in each step t. An interesting property of this pick
is that q(x, y) = q(y, x), which simplifies the calculation of the acceptance probability α.
Under these conditions, it will now be verified that the MH algorithm converges to the
desired distribution. It is easy to check that that the transition kernel of the process
defined in Algorithm 1 is given by:

K(xt, y) = q(xt, y)α(xt, y) + δxt(y)r(xt),

where δxi denotes the delta-Dirac mass located at xi and r(xt) = 1 −
∫
X

α(xt, s)q(xt, s)ds

stands for the probability of rejecting the sampled candidate from the proposal distri-
bution. Now, it is straightforward to verify the detailed balance condition given by Eq.
(2.33):

The case where xi+1 = xi is trivial. On the other hand, if xi+1 ̸= xi we have:

K(x, y)p(x) = α(x, y)q(x, y)p(x) =

min
{

1,
p(y)q(y, xt−1)

p(xt−1)q(xt−1, y)

}
p(x, y)p(x) =

min {1, q(x, y)p(x), p(y)q(y, x)} = K(y, x)p(y).
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Note that, if a value y belongs to the support of the target distribution but is never ex-
tracted from the proposal distribution, then q(x, y) = 0. Denoting by E the support of
the target density, a simple condition that guarantees that all the values belonging to E
can be generated as proposals is that q(x, y) > 0 for all x, y ∈ E , which is satisfied with
Gaussian proposals. Furthermore, this property is also a sufficient condition for estab-
lishing the irreducibility of the chain [101]. Summing all of the above, it is concluded
that the MH algorithm converges to the target distribution π(x).

2.4.3 MCMC in practice

Focusing on the paradigmatic case of Gaussian proposals, despite having established
theoretical convergence to a stationary distribution, not all possible proposals will ex-
plore it with equal efficiency [54]. If the variance of the Gaussian proposal is too small,
then the acceptance probability α is close to 1 because points that are close to each other
have similar densities. In this case, the distribution target is explored at a very slow
pace. On the other hand, when the proposal variance is too large, once the chain reaches
a point in a high probability region the new candidates tend to be far from this region
towards areas of low density. Therefore, the proposals are often rejected and the chain
remains stuck at high-density points for long periods of time. As a result, an inadequate
proposal can incur in higher computational costs and yield poorer estimates. Fig. 2.5
(a,b) and (c,d) demonstrate an example of chains and their estimation of the target dis-
tribution for a too small and too large proposal, respectively. An optimal acceptance rate
is about 44% in one-dimensional problems and 23% in the general case [105, 106]. Fig.
2.5 (e,f) depicts the same example but selecting an appropriate proposal. However, it is
worth noting that as long as the acceptance rate is not too low or too high, the algorithm
will perform well overall, so these values should be understood as general guidelines.

Another relevant consideration in practice is the question of burn-in. Under irre-
ducibility conditions, the Markov chain defined by the MH algorithm converges to the
stationary distribution regardless of the initial state. However, if this point is in an area
of very low probability density, the chain may need a period of iterations to reach the in-
variant distribution. Burn-in period is defined as a set of early samples that are discarded
because the chain has not yet converged [107]. An important consideration regarding
burn-in is its post-hoc nature. Decisions about burn-in must be made after sampling
and observing the chains. It is often a good idea to be conservative: if the chain is long
enough, discarding additional samples is safe, as the remaining ones are drawn from the
stationary distribution [107]. Fig. 2.5 (a) shows that, since the initial state of the chain
(X0 = 0) is outside the high density area of the target distribution and the proposal is
very small, the chain takes a few hundred iterations to converge. Therefore a conserva-
tive burn-in period of 500 samples has been discarded.
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FIGURE 2.5: MH sampling from a Gaussian mixture with: a too small proposal (a,b), a too large proposal
(c,d) and an appropriate proposal (e,f). A burn-in period of 500 samples has been considered in the first

scenario.

In addition to the aforementioned difficulties, a bad proposal can lead to the pseudo-
convergence problem described in Section 2.4.2, especially in distributions whose modes
are separated by areas of low probability density. A simple and commonly employed
trial-and-error diagnostic for this behaviour consists in running multiple chains with
different initial states, and observe whether they converge to different modes. Another
possibility is to employ adaptive algorithms such as Adaptive Metropolis (AM) or De-
lay Rejection Adaptive Metropolis (DRAM) proposed by Haario et al. (see ref. [54, 64]).
These alternative algorithms are based on similar theoretical principles but allow for
adjusting the proposal as the chain progresses. Fig. 2.6 (a,b) illustrates the pseudo-
convergence phenomenon through the exploration of a bimodal Gaussian mixture with
a poorly-tuned MH. Fig. 2.6 (c,d) demonstrates the performance of the AM algorithm us-
ing the same proposal and initial state of the chain. Refer to [108] for a general discussion
about adaptive MCMC algorithms.
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FIGURE 2.6: Comparison of MCMC sampling from a Gaussian mixture with modes separated by a region
of low probability density, using the MH algorithm (a,b) and the AM algorithm (c,d). A burn-in period of

500 samples has been considered in both scenarios.
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Chapter 3

Results and Discussion

This chapter presents the main findings obtained during the development of the thesis,
which culminated in the three publications included as appendices.

3.1 PCE for estimation of the effective elastic properties of com-
posite materials

The first case study involves the development and subsequent UP analysis of a poly-
meric material through computational models via PCE. Two different 2D and 3D mod-
els of a composite material consisting of an epoxy matrix doped with glass particles are
investigated, and the results are compared with experimental data extracted from the
literature. The presented results demonstrate the ability of the proposed methodology
to perform UP analyses with minimum computational effort.

3.1.1 Composite materials

Composite materials, often simply referred to as composites, are defined as the artificial
combination of two or more materials, known as phases [109]. Composites encompass a
wide range of materials, from classical reinforced concrete or masonry to the latest nano-
modified materials. There are several reasons why a new material resulting from the
combination of various components can outperform conventional ones. Typical exam-
ples include materials that are cheaper, lighter, stronger or more durable than classical
alternatives [110]. Consequently, there exist a myriad of composites. Common exam-
ples are particle-reinforced [111], fibre-reinforced [112] or laminated materials [113], just
to mention a few. SEM micrographs of some particle-reinforced and fibre-reinforced
microstructures observed are depicted in Fig. 3.1. The present case study focuses on
predicting the effective mechanical properties of a composite consisting of glass particle-
reinforced epoxy matrix. Epoxy polymers exhibit several desirable mechanical proper-
ties, including high bending/compression strength, wear resistance, and coefficient of
friction, making them suitable for numerous engineering applications, particularly as
adhesives [114]. However, their inherent brittleness and susceptibility to crack propa-
gation constitute significant limitations. To address this limitation, rigid glass and silica
particles are commonly employed to enhance the toughness of epoxy polymers [114].
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The resulting composite has found widespread applications across various fields, such
as automotive and aeronautics [115].

(a) (b)

10μm50μm

FIGURE 3.1: (a): Zr48Cu36Ag8 Al8 metallic glass particulate reinforcement (reproduced from [116]). (b)
Cross sectional uniform distribution of carbon fibres in epoxy matrix (reproduced from [117])

There are three approaches for addressing the challenge of predicting the effective
mechanical properties of a composite, namely experimental, analytical and numerical
procedures. Experimental methods provides accurate results, but requires appropriate
materials and means to perform laboratory tests. Moreover, while experimental data are
accurate in particular scenarios, their predictive capabilities in the presence of changes
in experimental conditions are limited. On the other hand, a multitude of analytical ap-
proaches have been proposed in the literature, such as the Mori-Tanaka [118] method
or the Hashin-Shtrikman [112] bounds, just to name a few. However, these methods
are limited by the need to rely on assumptions and simplifications of the underlying
microstructure. In view of the above, numerical methods have become particularly pop-
ular owing to their ability to represent the exact geometry of complex composites [119].
However, the development of high-fidelity models of material microstructures is a chal-
lenging task involving extraordinary computational burden [120]. In this light, surrogate
modelling techniques have opened vast new possibilities to overcome such limitations.

3.1.2 Representative volume elements

One of the most popular numerical approaches for determining the effective proper-
ties of composites consists on virtually testing a representative volume element (RVE) of the
material using Finite Element (FE) methods. An RVE is defined as a sample of a compos-
ite that is structurally typical on average of the entire material and contains a sufficient
number of inclusions for the apparent overall moduli to be effectively independent of
the surface values of traction and displacement [121]. Consider a composite of interest
occupying a domain with boundary Γ = ∂Ω. Let Ω1 denote the region occupied by the
filler material embedded within the matrix Ω0, each with their respective boundaries Γ1

and Γ0 verifying Γ0 ∪ Γ1 = Γ and Γ0 ∩ Γ1 = ∅. The elastic response of the material to
a certain boundary force field t, an imposed displacement field at the boundary ū, and
a volume force field g is governed by the elliptic steady-state problem described by Eq.
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(3.1): 
−div [C(x)ε(x)] = g in Ω
u(x) = ū on Γ0

C(x)ε(x) · n = t on Γ1

(3.1)

where u(x) denotes the displacement field and n the outer unit normal to the domain
boundary Γ. In this context, the strain tensor ε can be obtained through the displacement
field u(x) by:

ε ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (3.2)

and related to the stress tensor by the generalized Hooke’s law σ(x) = C(x)ε(x), where
C(x) refers to the stiffness tensor of the composite at a point x within the domain. Specif-
ically, C(x) takes the form of either C1(x) or C0(x), depending on whether the point x
lies within Ω1 or Ω0, with C1 and C0 denoting the elastic tensors of the filler and the
matrix, respectively.

In this light, the elastic properties of the composite are determined by the stiffness
tensor C. However, extracting the exact solution of the displacement field from Eq. (3.1)
is a challenging task, and closed-form solutions can only be found for simplified or ideal
microstructures. Consequently, it suffices to determine the overall behaviour of the com-
posite represented by the homogenised elastic tensor C∗ satisfying the problem

−div [C∗ε(x)] = g in Ω
u(x) = ū on Γ0

C∗ε(x) · n = t on Γ1.

(3.3)

In order to solve the problem given by Eq. (3.3), once defined a suitable RVE of the
investigated composite, it is subjected to a series of virtual tests by imposing certain
boundary conditions on its external faces. In this work periodic boundary conditions
given by Eq. (3.4) are adopted due to their acknowledged higher accuracy for low-to
medium-scale RVEs [122]

ui = ε̂ ijxj + vi, (3.4)

where ε̂ ij denote the volume average strains, and vi represents the local periodic part of
the displacement components ui on the boundary surfaces. As a result, the proposed
RVE shall satisfy geometrical periodicity. For better understanding, Fig. 3.2 (a) depicts
the modelling of the material as the periodic replication of a suitable RVE. In a similar
manner, Fig. 3.2 (b) shows the constraint equations to be defined for a pair of nodes
located on the opposite surfaces A− and A+, where Sij stands for the components of
the compliance matrix in Hooke’s law and Ui is the is the displacement tensor in the
i-direction.
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FIGURE 3.2: (a) Representation of a periodic composite and definition of the RVE. (b) Periodic boundary
conditions for a pair of nodes located on the opposite surfaces A− and A+.

In view of the preceding discussion, the volume average stresses σ̂ij and strains ε̂ ij in
the RVE can be computed as:

σ̂ij =
1
V

∫
V

σijdV, ε̂ =
1
V

∫
V

ε ijdV, (3.5)

where V denotes the volume of the considered RVE. Finally, the ij-th component of the
elastic tensor can be directly estimated as C∗

ij = σ̂ij/ε̂ ij. Interested readers can refer to
reference [123] for an extended discussion on numerical homogenisation.

In order to ensure realistic modelling of the material microstructure, the proposed
RVE must allow for a degree of randomness in the distribution of the doping fillers.
However, developing an RVE with a high volume proportion of particle reinforcement
is a challenging task, as classical algorithms for randomly placing spheres in a cubic
model only achieve a maximum filler volume fraction of 30% [124]. For this reason, a
dropping and rolling algorithm has been employed in this work for the development of
the RVE [125]. This process consists of simulating a physics system for the particles,
where inclusions are sequentially introduced in the RVE under a gravitational field, and
the stacking process is governed by rigid contacts and sliding with pre-existing parti-
cles. The ultimate filler volume fraction ξ1 is controlled via an inter-particle parameter
describing the minimal distance between particles. To ensure the periodicity of the mi-
crostructure, the spheres are allowed to bypass the walls and reappear on the opposite
side of the box. A schematic description of the algorithm is provided in the Fig. 3.3.
Examples of 2D and 3D RVEs developed for this work are depicted in Fig. 3.4.
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FIGURE 3.3: Outline of the dropping and rolling algorithm for 2D RVEs.
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FIGURE 3.4: (a) Example of a periodic 200 µm edge 2D RVE matrix doped with ξ1 ≈ 50% of glass particles
with radius 10 µm. (b) RVE doped with ξ1 ≈ 50% volume fraction of glass microspheres with radius 20 µm.
(c) Example of a 3D RVE generated particle distribution by means of the rolling and dropping procedure

with ξ1 ≈ 50%.

For the construction and homogenisation of the microstructure, a combination of
scripts generated in MATLAB environment and the commercial FEM tool ANSYS [126]
is used. Once the geometry is constructed in Matlab, it is discretised in ANSYS using
plane-strain 8-nodes quadratic elements (PLANE 183) for 2D RVEs, while 4-nodes linear
tetrahedral solid elements (SOLID 285) are used for 3D RVEs. At the end, a numerical
homogenisation script is executed in ANSYS. It is important to emphasise that the ho-
mogenisation process takes only a few minutes for 2D models but can exceed 6 hours in
the case of 3D models. This renders conducting traditional Monte Carlo analyses infea-
sible, making necessary the use of surrogate models.

3.1.3 PCE-assisted Uncertainty Propagation analysis

Following the theoretical framework introduced in Section 2.2, two PCE surrogate mod-
els, namely M̂2D and M̂3D, have been constructed in order to compare how uncertainty
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is propagated through different material models. The variables of interest under consid-
eration were the filler volume fraction and the mechanical properties (Young’s moduli
and Poisson’s ratios) of the composite constituents. The former was assumed uniformly
distributed and ranging from 0 to 50%. On the other hand, the elastic properties of
the phases were considered to be normally distributed with the statistical properties
reported in Table 3.1 following Ref. [127]. Note that the standard deviations of the me-
chanical properties have been obtained by imposing a total uncertainty (3σ) of ±10% the
mean values of each distribution [128]. After establishing the distribution of input vari-
ables, an ED of 50 points and an independent validation set of 25 points were sampled
by means of the LHS method described in Section 2.1. Subsequently, RVE construction
and homogenisation scripts were executed for each combination of parameters consid-
ered. For the concluding step of PCE model fitting, polynomial expansions of degree up
to 4 were selected, and q = 0.95 was taken in Eq. (2.4). In order to enhance the accuracy
and robustness of the meta-model, the LAR method for selecting an adaptive basis was
also applied to this case study.

TABLE 3.1: Statistical distributions of the material parameters.

Variable Notation Distribution

Young’s modulus of epoxy matrix [GPa] E0 Gaussian N (3, 0.1)

Poisson’s ratio of epoxy matrix [-] ν0 Gaussian N (0.4, 0.0133)

Young’s modulus of glass reinforcement [GPa] E1 Gaussian N (76, 2.5333)

Poisson’s ratio of glass reinforcement [-] ν1 Gaussian N (0.23, 0.0076)

Volume fraction of inclusions [-] ξ1 Uniform U (0, 0.5)

It can be observed in Fig. 3.5 that the surrogate models M̂2D and M̂3D faithfully
reflect the behaviour of the corresponding models M2D and M3D on the independent
validation set, with R2 > 0.99 in both cases.
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FIGURE 3.5: Comparison of the numerical estimates by FEM model and predictions of the PCE
surrogates in terms of the elastic moduli in (a) 2D and (b) 3D cases.
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For UP analyses, in both 2D and 3D scenarios, 25 000 Monte carlo samples were
drawn from the parameter space described in Table 3.1. The use of the metamodel en-
ables this procedure to take less than a second. Results of the process are depicted in
Fig. 3.6, where red dashed lines represent the 95% confidence levels. In order to validate
the numerical predictions, the characterisation data reported by Smith in reference [129]
for the same composite investigated herein are included in the figure. It can be observed
that the 3D model fits the data slightly better, especially in the high volume fraction re-
gion. Interestingly, it is noted that the uncertainty in the Young’s modulus increases for
larger filler contents (higher that 25%) in the 2D scenario, while remains almost constant
when considering 3D RVEs. The results demonstrate the usefulness of simplified 2D
models for rapid analysis, but also reveal their limitations in capturing the behaviour
of three-dimensional composites reinforced with doped particles at high filler volume
fractions.
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FIGURE 3.6: Comparison between the prediction of the Young’s moduli of epoxy/glass composite versus
the filler volume fraction ξ1 in the 2D (a) and 3D (b) cases. 95% confidence levels are indicated with red

dashed lines. Experimental data retrieved from reference [129].

Finally, it is worth noting that the presented approach provides additional benefits.
Particularly interesnting is the possibility of performing uncertainty propagation anal-
ysis for each of the variables separately by simply keeping fixed the other parameters
to their mean value. For example, Fig. 3.7 depicts the estimated PDFs from the Monte
Carlo samples of the composite of interest doped with 15% and 45% filler respectively,
after varying each of the mechanical properties reported in Table 3.1. It can be seen that
for low filler volume fractions uncertainties in E0 dominate the effective Young’s mod-
ulus of the composite. In fact, almost no effect is observed for variations in the elastic
modulus of the glass inclusions and the remaining parameters. Nonetheless, for higher
filler volume fractions, significant influence is found due to uncertainty in the Poisson’s
ratio of the host matrix.
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FIGURE 3.7: PDFs of elastic properties of 2D and 3D composites made of epoxy doped with 15% and 45%
of glass inclusions considering uncertainties in the matrix Young’s modulus (a), matrix Poisson’s ratio (b),

Young’s modulus (c) and reinforcement Poisson’s modulus (d).
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3.2 Surrogate assisted MCMC: Multi-element PCK applied to
TDS flux curves

PCE and Kriging metamodelling techniques presented in Sections 2.2 and 2.3 consti-
tute both excellent options to approximate relatively simple models exhibiting smooth
behaviour. Nevertheless, great challenges emerge when the forward model presents
substantial non-linearities. The approach outlined in paper B consists of a simple reg-
ular block partitioning approach. On this basis, the space domain is partitioned into
distinct subregions with splitting directions chosen on the basis of a preliminary sensi-
tivity analysis, prioritising the division of those parameters exhibiting the highest sen-
sitivities. This approach allows to accommodating nonlinear behaviours in the forward
model while retaining flexibility and minimal computational cost.

FIGURE 3.8: SEM images of the evolution of an hydrogen-assisted crack in a nickel-based metallic alloy
sample during in-situ tension (reproduced from [130]).

A formidable challenge for surrogate modelling is given by the Thermal Desorption
Spectroscopy (TDS) governing diffusion equation. TDS is an experimental technique
employed to study the desorption of molecules from a solid surface as a function of tem-
perature, being key for characterising the Hydrogen embrittlement (HE) phenomenon
in metals. HE involves the loss of ductility and toughness of metallic alloys induced by
hydrogen atoms deposited at micro-structural defects as dislocations, grain boundaries
or vacancies [131, 132], which may lead to the appearance of cracks with the subsequent
risks of unpredictable and premature failures in systems exposed to hydrogenated en-
vironments (Fig. 3.8). In this context, a TDS experiment comprises exposing a metal-
lic specimen to a gas of interest at a known pressure and temperature, allowing gas
molecules to be adsorbed onto the surface of the sample. Then, the sample is heated at
a controlled rate and, as the temperature increases, the adsorbed molecules gain enough
energy to overcome the binding forces holding them to the surface, causing desorption.
Finally, the flux of desorbing molecules is monitored using a mass spectrometer [133].
In light of the above, an hydrogen trap can be defined as a site on the surface of a metal
where hydrogen atoms are captured due the aforementioned defects. When a metallic
sample is heated during a TDS analysis, the trapped hydrogen atoms are released from
the surface and detected. For a better understanding, the kinetics of hydrogen trapping
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and detrapping in metals is commonly described with a two-level system as sketched in
Fig. 3.11 (b) for the case of a single trap.

The interpretation of TDS data for the characterisation of hydrogen traps is of piv-
otal importance for the design of HE-resistant alloys. However, the process of charac-
terising these traps via Bayesian inference is a very challenging task due to two primary
reasons: firstly, the significant computational burden required to solve the partial dif-
ferential equation (PDE) governing TDS experiments, and secondly, the presence of the
multi-modality phenomenon described in Section 2.4.3. In order to circumvent these
difficulties, a metamodel-assisted version of the adaptive MCMC DRAM algorithm de-
veloped by Haario et al. [64] was implemented for maximum efficiency.

The rest of the section is divided into two parts: firstly, the detailed development
of the metamodelling approach is presented, followed by its application for Bayesian
analysis in the TDS context.

3.2.1 Multielement Polynomial Chaos based Kriging

The PCK metamodel technique presented in Section 2.3.1 suffers from low convergence
rates when the forward model M exhibits non-smoothness [134]. Thus, achieving ac-
curate predictions often demands significantly larger ED sizes. This aspect undermines
the computational efficiency of the PCE-based Kriging model, which is dominated by the
O(N3) complexity of the Kriging predictor. As a result, long construction times or even
memory overflow issues emerge when solving the hyperparameters optimisation step
described in Eqs. (2.25) and (2.26). Furthermore, the larger the size of the ED, the slower
the evaluation of the corresponding metamodel, reducing or vanishing the advantages
of the surrogate approach. To address this issue, a multi-element PCK (ME-PCK) model
inspired by the ME-gPC method by Wan and Karniadakis [135] is proposed. This tech-
nique consists in partitioning the random input space into a finite set of non-overlapping
subdomains. Then, a local PCK surrogate model is constructed in each subdomain fol-
lowing the formulation in Section 2.3.1. Finally, these local surrogates are assembled into
a global metamodel, forming a piece-wise function. In order to determine the direction
of the partitions, an approach relying on sensitivity analysis based on the Sobol’s indices
has been adopted. Note that, as referred in Section 2.2, the Sobol’s indices can be read-
ily computed as a by-product of the PCE. Therefore, priority in the partitioning is given
to the direction of those parameters with highest sensitivity, i.e., those with the great-
est effect on the variability of the QoI. Regarding the total number of partitions, it can
be a priori determined depending on the available computational resources. Increasing
the number of partitions will always imply improvements in the metamodel tuning and
evaluation speed, but its effect on the approximation accuracy is unclear.

On this basis, given a computational model M : D ⊂ RM → R, a decomposition of
the domain D is defined as a collection

{
Dj ⊂ D, j ∈ J

}
satisfying

D =
⋃

j∈J
Dj, Dj ∩Dj′ = ∅, if j ̸= j′, (3.6)
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After setting a domain partition, for each region Dj a local ED is sampled and a
PCK surrogate -denoted by M̂j- is subsequently constructed. Thus, denoting by IDj the
indicator variable:

IDj(x) =

{
1 if x ∈ Dj

0 otherwise

the global Multielement PCK metamodel is defined as:

M̂ME−PCK(x) = ∑
j∈J

IDj(x)M̂j(x), ∀x ∈ D. (3.7)

The efficiency and accuracy of the proposed ME-PCK surrogate have been validated
first by approximating an exceptionally complex analytical benchmark function and then
by replicating the flux curves resulting from solving the governing diffusion equation
characterising TDS experiments. The first case study explores the Drop-Wave function,
also known as the Salomon function [136], given by:

f : [−10, 10]2 → R, f (x1, x2) = 1 − cos
(

2π
√

x2
1 + x2

2

)
+ 0.1

√
x2

1 + x2
2. (3.8)

Twelve surrogate models were constructed for illustrative purposes, varying the
size of the ED and the number of domain subdivisions. In particular, four experimen-
tal design sets EDi ⊂ D, i = 1, . . . , 4 containing 360, 720, 1440 and 2880 samples re-
spectively have been defined. Additionally, three different domain partition schemes,
namely P j, j = 1, . . . , 3, have been considered. These include P1 = [−10, 10]2 , P2 =

([−10, 0) ∪ [0, 10])2, and P3 =
([
−10, −10

3

)
∪
[−10

3 , 10
3

)
∪
[ 10

3 , 10
])2

, leading to a total of
two, four and nine sub-domains, respectively. The ME-PCK metamodels developed for
this example are denoted by Mj

i , where the subscript indicates the size of the ED and the
superscript the partition under consideration. The landscape of the investigated func-
tion as well as its approximation by five of the constructed surrogate models is depicted
in Fig. 3.9.
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It can be observed in Fig. 3.9 (a) that the Drop-Wave function is highly non-linear.
Among the presented surrogates, those trained with larger EDs, namely, M̂1

4, M̂2
4 and

M̂3
4, clearly outperforms the others as expected. However, the number of subdomains

do not seem to systematically improve or degrade prediction accuracy. Comparing mod-
els M̂1

3 y M̂3
3, the latter is undoubtedly superior to the former. Conversely, when ED4 is

considered, the global PCK surrogate outperforms the Multielement approach in terms
of accuracy. A more detailed analysis including evaluation times of the different meta-
models is depicted in Fig. 3.10. It is important to highlight that partitioning in a higher
number of regions leads to lower evaluation times for all the considered EDs. This re-
duction is mainly due to the reductions in the computational cost involved in the con-
struction of the Kriging predictor in Eq. (2.21). Additionally, it should be noted that
the accuracy of metamodels trained with a larger number of subdomains is higher com-
pared to those with no partitions for limited to moderate EDs, but this effect is inverted
for the larger EDs. Nevertheless, taking both metrics into account, the ME-PCK clearly
provides a cost-effective option for integrating the surrogate model into a Bayesian in-
ference scheme where evaluation time is crucial. Furthermore, the ME-PCK offers addi-
tional benefits. For instance, adjusting the M̂1

4 model takes over 2900 seconds, almost
twelve times longer than the 245 seconds required to construct M̂3

4. An in-depth analy-
sis of the accuracy and the evaluation and construction times of each metamodel can be
found in paper B.
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FIGURE 3.10: Performance assessment of PCK surrogate models for the Drop-Wave function (validation
set of 20 000 samples).

Having established the capabilities of the ME-PCK approach, the metamodelling of
TDS governing equation represents an exceptional case study to justify the use of the
presented approach in real engineering applications. Consider a one-dimensional spec-
imen of length L as sketched in Fig. 3.11 (a). Following the work by Raina et al. [137], a
non-dimensional version of the governing PDE describing the hydrogen diffusion in a
TDS test is given by:

∂θL

∂t

[
1 +

Nt

∑
i=1

Ki Ni(
1 + Ki θ0

L θL
)2

]
+

θL

T2

Nt

∑
i=1

Ki Ni ∆Hi ϕ(
1 + Ki θ0

L θL
)2 = DL

∂2θL

∂x2 , (3.9)

which represents an extended diffusion Fick’s law with sink terms. In this model, Nt

stands for the number of traps, θ0
L refers to the lattice occupation of hydrogen atoms

at the beginning of the process. The remaining non-dimensional variables involved in
Eq. (3.9) are described in Table 3.2.

The initial and boundary conditions of the PDE in Eq. (3.9) are schematically pre-
sented in Fig. 3.11 (a). Denoting by θL = θL/θ0

L, at t = 0 it is assumed an initial uniform
lattice occupancy θL

(
x, t = 0

)
= 1. Thereafter, the hydrogen lattice occupancy is as-

sumed zero at the boundaries, that is θL
(
x = ±1/2, t > 0

)
= 0. As temperature raises,

the lattice occupancy evolves spatially and temporally as sketched in Fig. 3.11 (c), and
the flux of hydrogen atoms J(t) diffusing out at boundaries is measured as presented in
Fig. 3.11 (d). This flux can be obtained in non-dimensional terms after solving Eq. (3.9)
as [137]:

J = −DL θo
L

∂θL

∂x
. (3.10)
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FIGURE 3.11: (a) A schematic illustration of initial and boundary conditions in a TDS test. (b) Schematic
definition of binding energy in a one-dimensional diffusion path. (c) Transient solution curves of the nor-
malised lattice occupancy fraction θL/θ0

L at different times t along the specimen’s thickness. (d) A schematic
of typical hydrogen desorption flux versus temperature curves obtained in a TDS test.

TABLE 3.2: Non-dimensional variables used in the hydrogen diffusion PDE employed for the
TDS tests.

Spatial coordinate x Lattice activation energy Q
Time coordinate t Trap binding energy ∆Hi

Heating rate ϕ Lattice diffusion coefficient DL

Trap density Ni Local equilibrium constant K
Temperature T Fractional lattice occupancy θL

In general, most of the variables involved in Eq. (3.9) are known constants dependent
on the material under study or inputs of the system controlled by the researcher. There-
fore, given specific experimental conditions, a hydrogen flux curve resulting from a TDS
analysis is determined as a function of the trap binding energies ∆H and trap densities
N of the existing hydrogen traps. Depending upon the hydrogen trap configuration,
several different regimes can be observed, as previously discussed by Raina et al. [137].
Specifically, their results for the case of metals containing a single trap showed that no
peak flux is attained for low trap densities and binding energies. Alternatively, when
a peak flux is found, those authors identified two distinct regimes (I and II) originated
by two types of microstructural defects, referred to as shallow and deep traps. Shallow
traps are characterised by large trap densities, and give origin to peak fluxes that are
highly sensitive to both N and ∆H. On the other hand, deep traps are characterised by
low trap densities, resulting in peak fluxes that are insensitive to the trap binding energy.
The existence of these different regimes turns the construction of a surrogate model cov-
ering the whole domain of the traps into an notably challenging task. However, it is
possible for two or more hydrogen traps to coexist and interact within the specimen
being investigated, resulting in the formation of new types of curves and sharply in-
creasing metamodelling difficulty. For the development of this case study, the possible
presence of up to two traps has been considered. In light of the preceding discussion, in
the surrogate modelling step, temperature and the trap densities and binding energies of
each trap are considered as input variables, which amounts to five design variables. That
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is, x =
[
T, ∆H1, ∆H2, log(N1), log(N2)

]T ⊂ R5. The variation of trap binding energies
and trap densities are selected as the physically meaningful ranges −40 ≤ ∆Hi ≤ −10
and 10−7 ≤ Ni ≤ 10−2. Temperature is set to range between 293 and 1200 Kelvin de-
grees. The values of the remaining physical quantities have been chosen to illustrate the
behaviour of a typical ferritic steel sample following Ref. [137]
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FIGURE 3.12: Surrogate modelling of the Hydrogen flux curves obtained by TDS of metals with different
values of trap binding energies and concentrations. Quantities in parenthesis represent the parameters of

the traps
(
∆H1, ∆H1, log(N1), log(N2)

)
.

The ME-PCK metamodel employed to approximate the TDS curves for posterior
Bayesian inference was constructed by splitting the activation energy domains (∆Hi,
i = 1, 2) in two, while three segments were considered for the partition of the domain
of the trap densities (log(Ni), i = 1, 2) and the temperature T. An ED consisting of 1000
sample points per region was selected using the MIPT method described in Section 2.1,
resulting in a total size of 108 000 samples. The final metamodel was assessed using an
independent validation set of 36 000 points. In addition, the evaluation time of the meta-
model was 2 ms per point, compared to 280 ms for the forward model, a reduction of the
computational burden of 99.3%. To illustrate the effectiveness of the surrogate model in
representing the different stages observed in the TDS test, Fig. 3.12 shows the compari-
son of the forward model and the surrogate predictions for a variety of combinations of
traps, including the case of fluxes without peak, one single peak, and two peaks. It is
clearly observed that the proposed PCK model can accurately reproduce all the different
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regimes observable in the TDS test.
It should be noted that the technical details regarding the mathematical develop-

ment, as well as the experimental conditions of the TDS analysis, have been omitted for
briefness in the main text. However, complete derivations and in-depth analyses are
included in paper B.

3.2.2 MCMC for TDS governing diffusion equation

In this last subsection, a Bayesian parameter inference analysis using the adaptive DRAM
algorithm and the previously defined ME-PCK surrogate model is presented. The un-
known parameters on which the inference process was performed were the trap binding
energies

(
∆H1, ∆H2

)
and densities

(
log(N1), log(N2)

)
of the two trap system previously

established in Section 3.2.1. Two experiments, namely EI and EII, were designed to as-
sess the performance of the proposed approach in inferring the parameters of hydrogen
traps across the two regions described in reference [137]. In each experiment, synthetic
experimental data were generated from the forward model. The first one, corresponding
to Fig. 3.12 (f), consists of a two-trap system with properties θ = (−35,−25,−2.5,−3).
On the other hand, the experiment EII is defined by θ = (−15,−30,−6,−3). The flow
curve resulting from this configuration is depicted in Fig. 3.12 (f). In this scenario, the
trap the pair (−15,−6) characterising one of the traps is located within the non-flux area
identified by Raina and and co-authors [137]. As a result, only the trap defined by the
pair (−30,−3) will be identifiable in the posterior inference analysis. Note (see Fig. 3.12
(h)) that modifying the pair (−15,−3) has no effect on the corresponding flux curve if it
remains within the non-flux area. Additionally, a second analysis of the EII experiment
was performed after affecting the flux curve with a significant zero-mean Gaussian white
noise (see Fig. 3.15) in order to demonstrate that the presence of measurement noise does
not substantially alter the inference outcome. In both experiments, since the TDS gov-
erning equation does not distinguish the order of the traps, the problem is ill-posed and
the posterior distribution is expected to exhibit two modes corresponding to two sym-
metric solutions. Consequently, the challenge for MCMC algorithms will be to explore
the PDF of the parameters of interest without getting stuck around one of the theoretical
solutions as it is usually the case when implementing standard MCMC methods.
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FIGURE 3.13: Markov chains generated by DRAM MCMC of trap parameters ∆H1, ∆H2, log(N1), log(N2)
for TDS Experiment EI.

The numerical results demonstrate the effectiveness of the proposed method for in-
ferring the characteristic parameters of a hydrogen trap. The Markov chain and the
joint posterior PDF obtained for Experiment EI are presented in Figs. 3.13 and 3.14, re-
spectively. A chain containing a total number of 200 000 samples with a burning pe-
riod of 50 000 samples were drawn utilising the adaptive DRAM algorithm. The signif-
icant number of required samples highlights both the necessity of a surrogate model-
based approach and the difficulty of addressing multimodal distributions during the
Bayesian inference process. As expected, the problem exhibits a bimodal behaviour
because of the existence of the two possible solutions θ = (−25,−35,−3,−2.5) and
θ = (−35,−25,−2.5,−3). Note that during the initial few thousand iterations, the chain
remains close to the first solution and subsequently alternates between both. For vali-
dation purposes, the posterior PDF has been also computed by direct integration of the
forward solution. To do so, the evidence of the model has been computed over a mesh of
604 elements. This required forty five hours of parallel computation on ten cores, while
the MCMC approach only required about four hours on a single core. The close fittings
between the exact marginal PDFs and those predicted by the surrogate model-based
Bayesian inference in Fig. 3.14 demonstrate the accuracy of the developed approach.
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)

obtained by numerical integration.

The sampling of the posterior PDF in Experiment EII was more challenging given
the existence of large regions of low probability, requiring up to 480 000 samples with
a burning period of the first 160 000 to achieve convergence. Interestingly, this phe-
nomenon attenuates when the flux curve is affected by noise, only requiring a chain of
120 000 samples with a burning period of 30 000 to attain convergence. This is expectable
since the noise-induced lower probability concentration around the exact true solutions
makes it easier for the chain to span from one solution to the symmetric one. The pos-
terior PDF obtained for the TDS experiment EII in both noisy and noiseless scenarios is
depicted in Fig. 3.15
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FIGURE 3.15: Bayesian identification results of the trap parameters θ =
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)
of

experiment EII with noise unpolluted (red) and polluted data (blue).

An extended discussion including a complete description of DRAM algorithm, tech-
nical details of the implemented approach, and further analysis of the obtained posterior
PDFs in experiments EI and EII can be found in paper B.
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3.3 Sparse Polynomial Chaos for Stochastic Kriging

The last case study included in this thesis involves the development of an extension of
Stochastic Kriging (SK) surrogate modelling technique capable of addressing computer
stochastic simulations. Firstly, the importance of stochastic simulators to manage un-
certainty present in engineering problems is discussed. The remainder of the section
presents the theoretical principles of SK as a generalisation of Kriging, introduces the
LAR algorithm, and discusses the performance of the proposed approach on some typi-
cal case studies from the SK literature.

3.3.1 Beyond deterministic simulators

Throughout this thesis, a computational model has been consistently treated as a func-
tion M : D ⊂ RM → R mapping some input parameters into a certain QoI to be
determined. This approach, referred to as deterministic, is suitable for a wide range
of problems where systems or processes are assumed to be predictable and devoid of
inherent randomness. However, such a course of action is inappropriate for facing real-
world problems characterised by intrinsic or non-parameterisable random behaviour,
for which the adoption of stochastic simulators becomes necessary for proper modelling.
A stochastic simulator incorporates an intrinsic variance or uncertainty in its predic-
tions. Thus, while a deterministic simulator always produces the same prediction for
a fixed input, in stochastic models each simulation run may produce different outputs
as a result of its inherent randomness. Such models have gained significant popular-
ity with manifold applications in diverse fields such as epidemiology [4, 138], materials
science [139, 140], or reliability analysis [141], enabling researchers to make robust pre-
dictions to assist decision-making for complex systems.

Despite the introduction of numerous surrogate modelling techniques in the litera-
ture over the past few years to replace intensive numerical models, their success mostly
limits to deterministic simulators, while the consideration of stochasticity remains an
open research topic. In this light, Stochastic Kriging (SK) proposed by Ankenman et
al. [42] has gained significant recognition as a general metamodelling tool for repre-
senting stochastic response surfaces (see for example [142, 143]). Defined as an exten-
sion of Kriging, SK accounts for heteroscedastic noise in the response by estimating the
sample variance at each point of the ED using multiple runs of the simulator for each
specific input. Consequently, one of the primary challenges often encountered in SK is
the requirement of a significant number of replications at each ED point to accurately es-
timate the sample variance [144], which often leads to serious computational demands.
For this reason, most research within SK realm has been directed towards alleviating
that limitation through the optimising the ED sampling process [145–147]. Secondly,
many works [148, 149] have focused on improving the computational efficiency of the
approach proposed by Ankenman. Nevertheless, there are some aspects of SK that re-
main not fully addressed in the literature. Notably, while most applications of SK in the
literature are limited to the use of constant trend models (Ordinary Kriging), the use of
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more advanced models as Universal SK has remained largely unexplored. The higher
complexity of UK compared to OK might suggest that it would be expected to provide
more accurate estimates. However, in most instances, the opposite phenomenon holds.
It has been reported by many authors that a trend misspecification may UK not to im-
prove the accuracy in its estimates [150] or even worsen its performance [151]. This lim-
itation can be attributed to the fact that the estimation of additional parameters within
SK framework can potentially induce over-fitting problems [152]. Therefore, to harness
the advantages of UK while mitigating its potential drawbacks, it is crucial to choose a
minimal trend basis that effectively captures the complexity of the response surface. Mo-
tivated by these considerations, paper C discusses an optimal choice of the trend model
for SK metamodelling based on the principles of PCK method presented in Section 2.3.1.
In particular, the proposed metamodel involves a Universal SK model with an adaptive
sparse PCE model as the trend term.

3.3.2 Kriging vs SK

For a better understanding of the conceptual differences between Kriging and SK ap-
proaches, the M/M/1 queue problem is presented below as a first case study. A M/M/1
queue is a simple yet powerful model employed to analyse the behaviour of a wide range
of real-world queuing systems, from call centres to manufacturing lines [153]. The model
represents a system where there is a single server and a line of entities to be served (e.g.,
packets, customers, etc.). In this context, entities arrive randomly at a certain rate, called
arrival rate, and wait in a queue until the server becomes available. The waiting time is
determined by the aforementioned arrival rate and by the service rate, which refer to the
time it takes for the server to process an entity and complete its service, respectively. The
example under consideration consists of the simulation of an M/M/1 queue where the
service rate is fixed at one and the arrival rate ranges from 0.3 to 0.9. The response surface
y represents the expected waiting time as a function of the arrival rate x. The accuracy
of the simulation at each design point is determined by its time run-length T, that is, the
period of time over which the behaviour of the system is observed and analysed. The
M/M/1 model is one of the most studied examples in the SK literature [145, 154, 155].
It is particularly notable for its distinct and progressively increasing intrinsic variance
across the parameter space. This characteristic naturally provides a formidable yet sim-
ple example to understand the potential benefits of the proposed approach. Despite the
stochastic nature of the model, analytical expressions for the response surface and its
intrinsic variance are known [145, 154]:

y(x) =
1

1 − x
, V(x) =

2x (1 + x)
T (1 − x)4 . (3.11)

Fig. 3.16 depicts a comparison between the deterministic PCK approach introduced
in Section 2.3.1 and the LAR-SK proposed in paper C. To address this problem, 30 simu-
lations of the M/M/1 queue with T = 2000 have been considered. As can be observed,
their outcomes reveal a significant instability in the region x > 0.7. Focusing in Fig. 3.16
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(a), the PCK model struggles to cope with significant amounts of noise from stochas-
tic simulation as a consequence of the interpolating nature of Kriging metamodels dis-
cussed in Section 2.3. In contrast, a more suitable fit provided by the proposed LAR-SK
model is shown in Fig. 3.16 (b). SK models filter out uncertainty by balancing interpo-
lation and regression. Simplifying, in those regions where the intrinsic variance due to
the stochastic nature of the simulation is small compared to the changes in the response
surface produced by the modification of the input parameters, SK behaves like Kriging.
Conversely, when the intrinsic variance is the cause of most of the changes in the re-
sponse surface, SK behaves more like a regression model [151]. This phenomenon is key
in explaining the flexibility and ability of SK to address a wide range of problems.
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FIGURE 3.16: Surrogate modelling of M/M/1 queue comparison (runlength = 2000): PCK (a) vs LAR-SK
(b).

The theoretical basis of an SK model is similar to that of Kriging. Firstly, in order to
account for intrinsic uncertainty, Ankenman et al. [42] proposed to run multiple simula-
tions at the same training point, so that the ED must be redefined as ED =

{(
xi, ni

)}k
i=1,

with ni ∈ N being the number of replications at the design point xi. Then, analogously
to Eq. 2.19, the output of the l-th simulation replication at xi, i = 1, . . . , k can be modelled
as:

MSK
l (xi) = T (xi) +Z(xi, ω) + ε l(xi), l = 1, . . . , ni. (3.12)

Note that the terms Z
(
xi, ω

)
and ε l

(
xi) in Eq. (3.12) represent the model extrinsic un-

certainty and the intrinsic uncertainty for the l-th replication, respectively. It can be proved
(see [42]) that the intrinsic uncertainty can be characterised by the k × k covariance ma-
trix Σε = (Σε)ij = Cov

(
ε̄
(
xi) , ε̄

(
xj)), with ε

(
xi) = 1

ni
∑ni

l=1 ε l
(
xi) for all xi ∈ ED.

Assuming the matrix Σε is known, the calibration of a SK model involves maximising
the likelihood function [42]:

L
(

β, σ2, θ;M
)
=

1√
|C| (2π)k

exp
(
−1

2
(
M− Fβ

)T
C−1 (M− Fβ

))
(3.13)

where C = ΣZ + Σε and M denotes the vector formed by the averages of all the sim-
ulations performed at each design point, that is, M =

[
M
(
x1) , . . . ,M

(
xk)]T

, with
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M
(
xi) = 1

ni
∑ni

l=1 Ml(xi) .
It is important to highlight that, when Σε = 0, the optimisation problem stated in

Eq. (3.13) can be simplified to the optimisation of the hyperparameters θ given by Eq.
(2.25), and then obtaining the optimal estimates for β and σ through Eqs. (2.23) and
(2.24). However, such a simplification is not possible within the SK framework and
all parameters require to be optimised simultaneously. As a result, fitting an SK meta-
model becomes significantly more challenging when the trend term is composed of a
large number of functions. This fact reinforces the necessity to look for a minimal basis
when implementing the SK method.

After conducting the parameter estimation following Eq. (3.13), the derivation of the
SK predictor follows a similar rationale to that outlined in Section 2.3 for deterministic
Kriging. Specifically, the mean and variance of the SK predictor M̂SK(x) are given by
[145]:

E[M̂SK(x)] = f(x)Tβ + c(x)TC−1(y − Fβ) (3.14)

Var[M̂SK(x)] = σ2 − c(x)TC−1c(x) + uT
c (x)(F

TC−1F)−1uc(x) (3.15)

where c(x) = σ2r(x) and uc(x) = FTC−1c(x)− f(x).
For the above discussion, it has been assumed that the matrix Σε is known. However,

this is not often the case. In practice, Σε should be estimated and then incorporated into
Eq. (3.13). For this purpose it is common to consider that, for each xi ∈ ED, ε l(xi),
l = 1, 2, ..., ni are i.i.d. Gaussians with zero mean and variance V(xi), and independent
as well from εh(xj) for all h and j ̸= i. Since the quantities V(xi) are not observable, they
will be estimated by: V̂(xi) = 1

ni−1 ∑ni
l=1

(
Ml

(
xi)−M(xi)

)2
[42]. As a result, the matrix

Σ̂ε approximating Σε will be the diagonal matrix Σ̂ε = diag{V̂(x1)/n1, ..., V̂(xk)/nk}.
It has been reported (see [42]) that this approach does not introduce biases in the SK
prediction.

3.3.3 LAR-PCE SK

The LAR-PCE SK developed paper C is introduced in this section. For this purpose,
the adaptive Least Angle Regression (LAR) algorithm for the determination of a sparse
polynomial basis is firstly discussed. For the rest of the section, A will denote a pre-
selected multi-indices set by means of Eq. (2.4).

The LAR algorithm [156] is a method for selecting the subset of input parameters that
are most relevant for predicting a target variable. In the context of PCE metamodelling,
LAR can be employed to identify the most influential input parameters for constructing
a sparse polynomial basis. In particular, LAR provides an efficient procedure to imple-
ment the Least Absolute Shrinkage and Selection Operator (LASSO) method introduced by
Tibshirani [157]. LASSO core insight consists on the imposition of a penalty on the to-
tal magnitude of the coefficients of a regression model, promoting sparse models where
many coefficients are zero. Specifically, LASSO aims to solve the least squares problem
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given by:

min
β∈RP

(
k

∑
i=1

(∥∥∥Ψ(xi)β −M(xi)
∥∥∥

2

)
+ η∥β∥1

)
, η ∈ R, η ≥ 0. (3.16)

Where P denotes the cardinality of the set of predictors A and η is a predetermined
constant: larger values of η lead to sparser models. The computation of the solution
of the optimisation problem (3.16) is a convex quadratic programming problem with
linear inequality constraints, which can be solved very efficiently by means of the LAR
procedure [156].

The key idea behind LAR algorithm consists of building a regression model that in-
corporates, in each iteration, one additional predictor selected from the polynomial ba-
sis given by A. The result of the process will be a set of PCE metamodels of decreasing
sparsity. Finally, the optimal PCE surrogate can be selected by a cross-validation scheme
using Eq. (2.9). Denoting by Aj the set of active basis functions, i.e. the set of polyno-
mials considered in the regression model in the j-th iteration, the LAR algorithm can be
summarily described by the following steps:

1. Set the initial residual r0 equal to the vector of observations y and initialise the
coefficients vector βαj

= 0, j = 1, . . . ,P − 1. Set all the predictors Ψαj standardised
to have mean zero and unit norm.

2. Find the predictor Ψαj most correlated with the current residual rj = y − ΨAj βAj
,

where ΨAj βAj
denotes the predictions of the current model on the ED points.

3. Move βαj
from 0 towards its least-squares coefficient on Ψαj , until another predictor

Ψαs has as much correlation with the current residual rj as Ψαj .

4. Move {βαj
, βαs

} in the direction defined by their joint least squares coefficient of
the current residual on {Ψαj , Ψαs}, until another predictor Ψαt has the same corre-
lation with the current residual.

5. If a non zero coefficient hits zero, discard it from the current metamodel and re-
compute the current joint least-square direction.

6. Continue the process until m= min (P , k − 1) predictors have been added.

Step 3 and 4 involve ’moving’ the active coefficients in the direction of their least
squares value. It corresponds to an updating of model coefficients of the form βAj+1

=

βAj
+ ζ juAj , where βAj

is the vector of coefficients for the set of the active basis functions
Aj at the j-th iteration and ζ j and uAj are referred to as the LAR step and descent direction,
respectively. Both quantities can be derived algebraically, as discussed in [85]. It can be
proved (see [85]) than the procedure described above provides the complete trajectories
of LASSO solution coefficients at once as the tuning parameter η in Eq. (3.16) is increased
from 0 up to a maximum value.
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In light of the above discussion, it is possible to define the LAR-PCE SK predictor as
a particular case of the Eqs. (3.14) and (3.15). Specifically, the the mean and variance of
the proposed optimal LAR-PCE based SK predictor reads:

E[M̂PCE−SK(x)] = Ψ(x)β + c(x)TC−1(y − Ψβ) (3.17)

Var[M̂PCE−SK(x)] = σ2 − c(x)TC−1c(x) + uT
c (x)(Ψ

TC−1Ψ)−1uc(x) (3.18)

where c(x) and uc(x).

3.3.4 Numerical examples

Two numerical examples are presented below in order to illustrate the capabilities of the
proposed LAR-PCE SK approach. The assessment of LAR-PCE SK includes a detailed
comparison against ordinary SK considering different EDs. The purpose of defining
different sampling scenarios is to demonstrate that the proposed LAR-PCE SK method
consistently outperforms ordinary SK, regardless of whether a sparse and deep ED (with
few points but high accuracy) or a denser but shallower ED is chosen. In all the analyses,
the model performance is assessed by means of two error metrics, namely the Empiri-
cal Root Mean Squared Error (ERMSE) and the Normalised Maximum Absolute Error
(NMAE).

The first case study consists of the simulation of an M/M/1 queue described in Sec-
tion 3.3.2. For this analysis, the intrinsic variance is assumed as known following Eq.
(3.11), and therefore just one single simulation is run for each design point. That is, M
is directly taken as

(
M(x1), ...,M

(
xk)) and Σε = diag{V(x1), ..., V(xk)}. Three differ-

ent scenarios with varying number of design points and run-lengths but with constant
computational resources have been considered. The first one consists of 10 equispaced
design points with a run-length of 6000; the second one includes of 30 design points with
a run-length of 2000; and the third scenario encompasses 50 design points with a run-
length of 1200. In the case of LAR-PCE SK, following the recommendations provided in
reference [86], the maximum degree of the polynomials was set at 5, 10 and 16 for the
scenarios one to three, respectively.
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FIGURE 3.17: M/M/1 example. Comparison between the true simulator (a,d) against the predictions by
the proposed LAR-PCE SK (c,f) and Ordinary SK (b,e) under the assumption of known variance in Scenarios
1 (a,b,c) and 2 (d,e,f). Scatter points denote the ED samples, and light blue shaded areas represent the 95%

confidence interval.

Figs. 3.17 (a,d) depict the true response surface described by Eq. (3.11) along with
the analytically computed 95% confidence intervals represented as

(
y(x)± 1.96

√
V(x)

)
for Scenarios 1 and 2, respectively. Similarly, Figs. 3.17 (b,e) and (c,f) illustrate the esti-
mates produced by Ordinary SK and LAR-PCE SK, respectively. It can be observed that
for low values of x, where the intrinsic uncertainty is small, both meta-models present
a similar behaviour. In contrast, for high values of x where both the QoI and the in-
trinsic variance experience a rapid growth, ordinary SK fails to capture the variation
in the response, whereas LAR-PCE SK exhibits a significantly better performance. This
is to be expected since, as reported in [151], Ordinary SK virtually ignores those simu-
lation outputs whose estimated intrinsic variance are large compared to the estimated
extrinsic variance. With the aim of assessing the consistency of the proposed LAR-PCE
SK approach, the results of the fitting of one hundred independent experiments are re-
ported in Fig. 3.18. For this purpose, the metamodel performance is assessed by means
of two error metrics which evaluates respectively the global quality of the meta-model
and the maximum the local error. The first one, referred to as ERMSE, is defined as

ERMSE =

√
∑K

i=1

(
M̂(xi)−M(xi)

)2
. Note that this metric coincides with the numera-

tor of NRMSE described in Table 2.1.
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FIGURE 3.18: Performance analysis of Ordinary SK and LAR-PCE SK in Case Study I in terms of ERMSE
and NMAE error metrics using 100 known intrinsic noise M/M/1 experiments and sampling Scenarios 1

to 3.

It is clear that significant enhancements have been achieved for both ERMSE and
NMAE metrics. These results demonstrate that introducing a proper trend model effec-
tively mitigates some of the drawbacks of ordinary SK. Nevertheless, it should be noted
that, with respect to variance estimation, both approaches similarly fail to capture the
true variability, as can be observed in Fig. 3.17. This issue has been recognised and doc-
umented in the SK literature [148,152]. Although there are methods available to address
this problem (refer e.g. to [152]), they are beyond the scope of the present study, in which
the primary focus is on the importance of properly selecting the trend model in SK.

The second case study examines the Ishigami function, a classical benchmark func-
tion commonly investigated in literature [41]. This function is characterised by its non-
linear and non-monotonic behaviour, making it a challenging test for meta-modelling
techniques. Specifically, the Ishigami function takes as input a three-dimensional vector
x = [x1, x2, x3]

t with each component xi ranging from −π to π, and outputs a scalar
value M (x) given by the non-linear sum of three sinusoidal functions. For the purpose
of this work, a stochastic version of the Ishigami function is defined by incorporating a
normally distributed random noise term ε l (x) with zero mean and standard deviation
proportional to the absolute value of the function. This results in the following stochastic
Ishigami function:

Ml (x1, x2, x3) = sin (x1) + 7 sin2 (x2) + 0.1x4
3 sin (x1) + ε l (x1, x2, x3) ,

ε l ∼ N
(

0,
√∣∣sin (x1) + 7 sin2 (x2) + 0.1x4

3 sin (x1)
∣∣) , x1, x2, x3 ∈ [−π, π] .

(3.19)
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A similar analysis to that conducted for the simulation of the M/M/1 queuing model
has been performed for the stochastic Ishigami function described in Eq. (3.19). Addi-
tionally, with the purpose of stressing the importance of selecting an appropriate sparse
basis of polynomials in the trend term, a full PCE-SK surrogate without LAR has been
also included in the comparison. This model is defined by the inclusion of all poly-
nomials specified by the hyperbolic truncation set defined in Eq. (2.4) up to a certain
degree. In contrast to the M/M/1 case study, in this analysis the intrinsic variance Σε

is supposed to be unknown and it is estimated through a series of replications at each
design point. In particular, a total computational budget C of 2560 replications to be dis-
tributed along the training sites has been considered. Consistently with reference [155],
the number of replications assigned to each design point xi is determined in a single step

as proportional to the model variance following ni =

√
V(xi)

∑k
i=1

√
V(xi)

C. This procedure for

distributing the computational budget has been selected for the sake of simplicity. How-
ever, alternative methods which employ a multi-step approach for this purpose such as
those described in reference [145] may be considered for bypassing this issue.
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FIGURE 3.19: Response surfaces of the Ishigami function (a,e), and predictions by Ordinary SK (b,f), LAR-
PCE SK (c,g) and full PCE-SK (d,h) metamodels with k = 64 design points. The top and bottom row panels

denote the response surfaces obtained for x3 = π and x1 = π/2, respectively.

Analogously to the M/M/1 example, three distinct scenarios with k = 64, k = 128
and k = 256 sampling locations determined by LHS method have been considered. With
respect to the degree of the polynomial basis to be considered, the maximum degree of
the polynomial basis for the full PCE-SK case has been set at 5, 8, and 10 for Scenar-
ios 1, 2, and 3, correspondingly. On the other hand, degrees of 9, 11, and 12 have been
considered in Scenarios 1 to 3, respectively. It is worth noting that, due to the sparse na-
ture of the basis selected by the LAR algorithm, it is possible to consider polynomials of
slightly higher degree for LAR-PCE SK. Finally, a value of 0.8 is specified for the q-norm
for all the considered scenarios. The outcome of an arbitrary replication of Scenario 1 is
depicted in Fig. 3.19. In order to assess the consistency of outperformance of LAR-SK
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model, the results of the comparison between the different approaches discussed across
a macro-replication of one hundred independent experiments are presented in Fig. 3.20.
In view of Fig. 3.20, it can be stated that the presented LAR-PCE approach is able to ap-
proximate complex surfaces more accurately than the classical SK metamodel proposed
in Ref. [42]. Secondly, it is noteworthy that blindly setting an inadequate polynomial
basis as the trend model resulted in notable errors and instability in the results across all
the scenarios, highlighting the critical importance of a proper basis selection.
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FIGURE 3.20: Performance analysis of Ordinary SK, LAR-PCE SK and full PCE SK in terms of ERMS and
NMAE error metrics using 100 experiments of the Ishigami function and sampling Scenarios 1 to 3.
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Chapter 4

Conclusions and future
developments

Accurately modelling the behaviour of real-world systems poses a challenging task, of-
ten requiring extraordinary computational resources. In this light, the key achievement
of this thesis has been the development of a suitable general framework for conduct-
ing efficiently UQ analyses in a wide range of computationally intensive engineering
problems. To this end, the effectiveness of the metamodel-based approach has been
demonstrated in both forward UP contexts and Bayesian analysis for inverse problems.
Furthermore, the development of surrogate models capable of approximating stochastic
response surfaces opens up vast possibilities for future research.

Overall, the main contributions of this thesis have are summarised in the following
points:

• A novel application of a PCE surrogate model to a real engineering problem. In
particular, an UP analysis of a particle-reinforced composite with volume fraction
up to 50%. The presented results have showed their effectiveness to conduct fast
uncertainty propagation analysis of epoxy composites doped with glass particles
but suggest the ability of the proposed methodology to be adapted to a large vari-
ety of composite materials.

• The development of a variation of the PCK technique to deal with ill-conditioned
and highly nonlinear problems. In particular, the ME-PCK based on Sobol indices
provides computational time savings of several orders of magnitude in both surro-
gate model construction and evaluation. This computational efficiency facilitates
the agile execution of MCMC algorithms for Bayesian parameter inference, being
especially relevant in multimodal problems requiring long chains to converge to
the posterior distribution. The capabilities of the proposed approach have been
applied to a challenging engineering problem, the characterisation of hydrogen
flow curves as a function of temperature resulting from TDS experiments.

• Fill a literature gap within the realm of stochastic surrogate models. The develop-
ment and application of surrogate models to stochastic simulators is a topic with
great potential in the field of uncertainty propagation. The results presented in
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section 3.3 demonstrate that the inclusion of suitable trend models has the poten-
tial to greatly increase the accuracy of SK metamodels without compromising its
computational efficiency. For this purpose, the LAR algorithm is crucial to avoid
overfitting problems.

• The recent advancements mentioned above have resulted in numerous publica-
tions in high-impact journals, which can be found as appendices of this report.

Despite the aforementioned achievements, further exploration on surrogate models
and their applications to Bayesian inference is necessary. A future research field involves
exploring the potential of the evidence term in Equation 2.30 for Bayesian model selec-
tion. The ratio of evidences from two competing statistical models, known as the Bayes
factor, can be utilised to quantify the support for one model over the other. However, in
problems of moderate or large dimensionality, numerical integration becomes extremely
expensive for the computation of model evidence. In this line, the Nested Sampling (NS)
algorithm is a method for approximating multidimensional integrals with allow to ad-
dress the problem. NS allows for the estimation of Bayesian evidence by transforming
the multi-dimensional evidence integral into an easy one-dimensional problem which
can be solved by simple methods such as the trapezium rule. Although the algorithm
is widely used in cosmology and particle physics [97], its application in other fields is
still relatively unexplored. In this line, promising developments are expected within the
realm of Structural Health Monitoring (SHM). For instance, once the presence of dam-
age has been detected in a structure, a common approach consists of proposing a FE
model and finding the optimal parameters of the model. Instead, it is more effective to
consider a family of competing models representing the different damage mechanisms
that a structure may experience. Thus, the challenge of identifying the model that most
accurately represents the effects induced by damage naturally arises. The NS algorithm
would thus provide an efficient tool for tackling this problem. It is important to note
that surrogate models are crucial in the described approach: NS requires to evaluate
thousands of times the likelihood of each of the proposed models in order to compute
the model evidence. Such a process is infeasible to carry out directly due to the enormous
computational burden of solving a FE model.

Another gap in the literature that is expected to be filled in the near future is the ap-
propriate selection of user-selected kriging parameters. Given that in engineering prac-
tice the majority of metamodel development time is dedicated to evaluating the forward
model, ensuring correct design is key for metamodel performance. Many studies com-
paring metamodelling techniques have been carried out in the last two decades. Never-
theless, existing research on how to properly fit a Kriging model is scarce. As explained
in Section 2.3, in order to develop a Kriging surrogate, users must specify a sampling pro-
cedure, a trend, an autocorrelation function, and an algorithm for estimating the model’s
hyperparameters. Any misspecification can result in a substantial decrease in accuracy,
implying the need for a larger sample and, consequently, more computational resources.
To address this challenge, a comprehensive benchmark of analytical functions collected
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from the metamodelling literature has been constructed. The referred benchmark en-
compasses linear and non-linear problems spanning a large range of dimensionalities.
Preliminary results suggest that Kriging models are very sensitive to the choice of cor-
relation model, with Matérn functions providing the most robust results when the re-
sponse surface is unknown. In a similar vein, the adoption of an appropriate sampling
procedure is also of major importance. It was observed that for small ED sizes LHS pro-
duces better surrogates. However, as the sample size increases, MIPT sampling results
in more robust and accurate fits. A possible explanation for this phenomenon is that for
small EDs, MIPT method locates a large number of samples close to the boundaries of
the parameter space, resulting in less accurate metamodels. This behaviour would be
more intense in high dimensional problems than in low dimensional ones.
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A B S T R A C T

This paper proposes the use of adaptive polynomial chaos expansion (PCE) for uncertainty propagation analysis
of the numerical homogenization of polymer composites doped with random dispersions of spherical inclusions.
The developed PCE acts as a surrogate model bypassing the computationally intense numerical homogenization
of the elastic properties of 2D/3D representative volume elements (RVEs) loaded with moderate to high filler
contents. Numerical results and discussion are presented to assess the accuracy and computational efficiency
of 2D and 3D homogenization meta-models. The ability of the developed approaches to perform uncertainty
propagation analyses with minimum computational effort represents the main contribution of this work, which
holds vast potential for the stochastic design of macroscopic composite structural elements.

1. Introduction

The development of composite materials constitutes an issue of
great interest since the 1960s due to their numerous applications in
Science and Engineering [1]. Predicting the effective mechanical prop-
erties of composite materials is often a challenging problem, involving
complex microstructures with multi-scale and highly heterogeneous
properties. To address this issue, a large variety of different homog-
enization methods have been proposed in the literature [2]. These
range from analytical mean-field homogenization approaches [3,4]
to numerical techniques using finite element modelling (FEM) [5],
boundary elements methods (BEM) [6–8], atomistic-based continuum
mechanics [9], molecular dynamics simulations (MDS) [10], Virtual
FEM (VEM) [11–13] and Fast Fourier Transform techniques [14], just
to mention a few. Numerical methods are particularly popular ow-
ing to their ability to represent the exact geometry of complex mi-
crostructures [15], keeping minimal the number of assumptions and
simplifications of the underlying microstructure [5]. Nonetheless, these
approaches suffer from large computational demands due to the ele-
vated mesh densities usually required to discretize RVEs. This repre-
sents a major limitation in various applications where numerous model
evaluations are required, namely optimization, inverse calibration, un-
certainty propagation or reliability analyses.

∗ Corresponding author.
E-mail address: jcgarcia@unex.es (J.C. García-Merino).

The simplest numerical homogenization approach consists in the
use of periodic unit cells [16] containing a canonical arrangement
of particles which are assumed to replicate periodically throughout
the composite material. However, most composite materials present a
certain degree of randomness in the dispersion of the doping fillers.
The problem of the determination of the effective behaviour of random
composite materials has been extensively treated in the literature.
Theoretical approaches span from classical bounds for two-phase com-
posites [17] to analytical [18,19] or numerical [20,21] homogenization
techniques. Moreover, considerable research efforts have been exerted
toward the definition of accurate RVEs for heterogeneous materials
through the analysis of convergence rates in computational homoge-
nization approaches (see e.g. [22,23]). In general, algorithms for the
generation of random microstructures can be firstly classified according
to the dimensions of the RVE, namely 2D or 3D. Two-dimensional
models represent a cost-efficient approach particularly well-suited for
composite materials with uni-axial symmetry such as fully aligned
fibre-reinforced composites [24]. Nonetheless, many composite mate-
rials present complex microstructures that can hardly be represented
by 2D models, being imperative to implement more computationally
intense 3D RVEs [25]. In this regard, several works in the litera-
ture have reported about the applicability and limitations of two-
and three-dimensional RVEs. It is worth noting the work by Nil and

https://doi.org/10.1016/j.compstruct.2022.116130
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co-authors [26] who presented a comparison between 3D and 2D
homogenized RVEs of meso-scale concrete. Their results showed that
the effective diffusivity of the 3D model is about 1.4 times that of the 2D
model. The effects of aggregate/void areas on the homogenized elastic
and tensile fracture behaviours of concrete using 2D and 3D RVEs was
also investigated by Hua et al. [27]. In that work, a 3D model was con-
structed from 2D images by a bottom-up stacking algorithm, therefore
the resultant 3D model is strongly correlated to the 2D. In Ref. [28],
the stresses of 2D and 3D RVEs of porous polymer material were
investigated and compared. Those authors concluded that if 2D model
reliably represents the 3D geometry, then the deformation behaviour
can be analysed using the 2D RVE as the difference between stresses
red obtained by the 2D and 3D RVEs do not exceed 10%. On the other
hand, algorithms are also often classified according to the procedure
used to define the filler distribution, namely dynamic (i), constructive
(ii), non-sequential (iii), and discrete element simulations (iv). Dynamic
algorithms are often considerably time consuming, since they need to
update the position and interactions of the particles. Popular dynamic
approaches are the movement and mechanical contraction or growth
algorithms [29,30]. While easily implementable, the convergence rate
of these algorithms for moderate to large filler contents is very limited,
being hard to achieve filler contents above 30%. On the other hand,
constructive algorithms have lower computational burden since the
position of the particles are sequentially defined. Among this class
of algorithms, one of the most intuitive is the Random Sequential
Algorithm [31] (RSA), in which the location of any particle is randomly
defined and accepted if it does not overlap with any of the previously
located ones. Nonetheless, one of the major drawbacks of RSA regards
the limited filler volume fractions that can be achieved, which usually
limits to about 30% in 3D geometries [32]. Alternatively, constructive
algorithms using dropping and rolling rules allows to evaluate the elas-
tic properties of highly loaded composite materials. These algorithms
simulate the process of spheres dropping into a dimension-specified
cell when subjected to a gravitational field [33], allowing one to
achieve high filler concentrations with limited computational costs.
Non-sequential algorithms simulate a very dense distribution of large
overlapping spheres that can move to reduce the degree of overlap-
ping [34]. Finally, discrete element methods simulate filler packing as
a dynamic process where inter-particle forces are explicitly accounted
for [35].

While numerical homogenization methods provide a faithful repre-
sentation of microstructural composites, their inherent computational
demands limit their applicability in resource-intensive applications
such as optimization or probabilistic design. In this light, recent de-
velopments in the realm of surrogate modelling have opened vast new
possibilities to overcome such limitations. Roughly speaking, meta-
models or surrogate models represent computationally lighter repre-
sentations of parent models [36,37]. Once constructed, a surrogate
model may be considered as a black-box representation of the original
model, in many applications with computational costs several orders of
magnitude lower. Despite their obvious potential, only a few research
works in the literature report about the use of surrogate models for fast
homogenization of composite structures. A noteworthy contribution
was done by Dey and co-authors [38], who proposed a fuzzy member-
ship function to identify parameter uncertainties in the characteristics
analysis of noise in laminated composites. Peng et al. [39] proposed
an uncertainty analysis method for composite laminated plates using
PCE under insufficient input data related to uncertain design param-
eters. To that aim, the parameters space was divided according to
the observation significance level of the variables. PCE methods are
particularly well-suited for uncertainty propagation analysis since the
expansion functions are intrinsically defined in stochastic terms [40–
42]. In addition, PCE offers a direct framework for Global Sensitivity
Analysis [43], allowing to compute Sobol’s indices with the relative
importance of the input random variables with no additional function
evaluations [43]. Furthermore, PCE methods represent a non-intrusive

technique, which results particularly useful when the parent model is
defined through commercial software where access to the core scripts
is not granted. In this line, Tha et al. [36] developed a stochastic multi-
scale model for the uncertainty quantification of carbon fibre reinforced
composites. In that work, red a PCE model was trained using data sets
constructed by Monte Carlo simulations of a numerical homogenization
model covering the design space of the parameters and the so called
quantities of interest (QoIs), i.e. the corresponding model evaluations
on the experimental design (ED).

In light of the discussion above, this work proposes a computation-
ally efficient surrogate model based on adaptive PCE for fast evaluation
and uncertainty propagation analysis of the elastic properties of com-
posite materials obtained by 2D/3D numerical homogenization. To
minimize the computational cost and maximize the robustness of the
meta-model, adaptive sparse expansions are implemented based on the
Least Angle Regression (LAR) algorithm [44]. This technique automat-
ically identifies the optimal order of the polynomials in the PCE by a
model selection technique for sparse linear models. This work focuses
on the elastic properties of epoxy doped with glass fibre spherical in-
clusions, although the presented approach is general for any composite
material. The training datasets are generated using 2D and 3D RVEs
discretized by FEM with periodic boundary conditions. The location of
the particles are defined using dropping and rolling rules, which allows
to obtain filler volume fractions up to 50%. Once constructed, the
surrogate models are used to assess the effects of uncertainties in the
properties of the micro-constituents on the overall elastic properties of
the composite. Finally, numerical results and discussion are presented
to appraise the uncertainty propagation effects in 2D and 3D RVEs.

The remainder of this work is organized as follows. Section 2
presents the mathematical formulation of the elastic homogenization
of composite materials, including the theoretical fundamentals of the
random packing of particles. Section 3 outlines the theoretical formula-
tion of PCE, and Section 4 presents the proposed surrogate model-based
uncertainty propagation analysis of composite materials. Section 5
presents the numerical results and discussion and, finally, Section 6
concludes the paper.

2. Statement of the problem

Working in Cartesian coordinates and denoting 𝐱 = (𝑥, 𝑦, 𝑧), we
restrict our attention in this work to a two-phase composite occupying
a domain 𝛺 ⊂ R3. Within this domain, 𝛺1 is identified as the inclusion
phase or filler (glass particles) embedded into the host phase or matrix
(epoxy) 𝛺0, with respective boundaries 𝛤1, 𝛤0, and satisfying 𝛺 =
𝛺1 ∪𝛺0, 𝛺1 ∩𝛺0 = ∅. The volume fractions 𝜉1 and 𝜉0 of the inclusions
and matrix phases, respectively, are defined as:

𝜉𝑠 =
|𝛺𝑠|
|𝛺| = 1

|𝛺| ∫𝛺 𝜒𝑠(𝐱)d𝐱, 𝑠 = 0, 1 subject to 𝜉1 + 𝜉0 = 1, (1)

where | ⋅ | relates the volume of the constituent phases, and 𝜒𝑠(𝐱) is
the characteristic function taking a value of one when 𝐱 ∈ 𝛺𝑠 and
zero otherwise. The governing equations of the elastic response of the
body to a certain boundary force field 𝐭, a imposed displacement field
at the boundary �̄�, and a volume force field 𝐠 is given by an elliptic
steady-state problem:

⎧⎪⎨⎪⎩

−div [𝐂(𝐱)𝜺(𝐱)] = 𝐠 in 𝛺
𝐮(𝐱) = �̄� on 𝛤0
𝐂(𝐱)𝜺(𝐱) ⋅ 𝐧 = 𝐭 on 𝛤1

(2)

where 𝐮(𝐱) is the displacement field, 𝛤0∪𝛤1 = 𝛤 with 𝛤0∩𝛤1 = ∅, and 𝐧
the outer unit normal to the domain boundary 𝛤 . The strain tensor 𝜺(𝐱)
is a fourth-order tensor, whose components in Mandel–Voigt notation
can be derived from the displacement field 𝐮(𝐱) as:

𝜀𝑖𝑗 =
1
2

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)
, (3)
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Fig. 1. Outline of the dropping and rolling algorithm for 2D RVEs.

and it is related to the stress tensor by the generalized Hooke’s law
𝝈(𝐱) = 𝐂(𝐱)𝜺(𝐱). The stiffness tensor 𝐂(𝐱) of a material point 𝐱 is given
by:

𝐂(𝐱) =
{
𝐂0 if 𝐱 ∈ 𝛺0
𝐂1 if 𝐱 ∈ 𝛺1

(4)

with 𝐂1 and 𝐂0 the elastic tensors of the filler and the matrix, re-
spectively. Extracting the exact solution of the displacement field from
Eq. (2) is a challenging task, and closed-form solutions can only be
found for simplified or ideal composite microstructures. Nevertheless,
in practical applications, it is usual to characterize the macroscopic
effective properties of the composite, represented by a fourth order
elastic tensor 𝐂∗ satisfying the homogenized problem of Eq. (2) given
by:

⎧⎪⎨⎪⎩

−div [𝐂∗𝜺(𝐱)] = 𝐠 in 𝛺
𝐮(𝐱) = �̄� on 𝛤0
𝐂∗𝜺 ⋅ 𝐧 = 𝐭 on 𝛤1

(5)

A variety of techniques have been proposed in the literature to
solve the homogenization problem in Eq. (5), being numerical ho-
mogenization techniques particularly popular owing to their ability
to faithfully represent the microstructure of the composite. These ap-
proaches are based on the definition of a RVE containing a sufficient
number of inclusions to statistically represent the composite as a whole.
Then, the RVE is subjected to a series of virtual tests by imposing
certain boundary conditions on its external faces. The most commonly
adopted approaches are Dirichlet (imposed displacements), Neumann
(imposed forces), and periodic boundary conditions. In this work, pe-
riodic boundary conditions are adopted due to their recognized higher
accuracy for low-to medium-scale RVEs [45], thereby geometrical pe-
riodicity will be imposed on the RVE. Let us focus in this work on
spherical inclusions of radius 𝑟, and cubic (square) RVEs of edge length
𝐿. In order to reach high filler volume fractions, the dropping and
rolling rules are considered in this work. This algorithm describes an
iterative process where inclusions are sequentially introduced in a RVE
under a gravitational field, and rigid contacts and sliding with pre-
existing particles define the stacking process [33]. The filler volume
fraction is controlled via the inter-particle parameter 𝑒 describing the
minimal distance between particles. In a 2D context, the algorithm is
organized into four main steps as sketched in Fig. 1:

1. Considering gravity along the 𝑦-axis, generate the coordinate
centre (𝑥, 𝑦) of a particle, where 𝑥 is randomly chosen and 𝑦

is located above the top face of the RVE. Then, the particle
is moved sequentially with linear trajectory of decreasing 𝑦
(Fig. 1(a)).

2. If the particle contacts the floor of the box, it is assumed that
it reaches its final position, and we return to Step 1 (Fig. 1 (a),
(d)).

3. Otherwise, rolling rules minimizing the sphere gravity potential
are applied. This means that the generated sphere rolls down
over its contacting particle/particles until it reaches a stable
position (with the minimum gravity potential) or the floor (Fig. 1
(b), (c)).

4. Then, return to Step 1 and repeat the process until the RVE is
filled with particles.

In the 3D framework the process is similar, but in the rolling
step different possibilities must be taken into account, depending on
whether the falling particle comes into contact with one, two or three
spheres [46]. In the first case, the sphere rolls in the same way as in
the two-dimensional case. In the second case, the particle rolls in the
direction defined by the plane normal to the vector joining the centres
of the contact spheres. In the last one, the incoming sphere moves on
the two spheres on which it rolls down most steeply until it reaches
a stable position. Additionally, to impose periodic boundary conditions
as explained hereafter, the geometric periodicity of the RVE is imposed.
To do so, two different approaches are commonly adopted in the
literature either inclusions are allowed or not to cut the boundaries of
the RVE. The second approach is adopted in this work since, while the
implementation becomes more involved, the resulting RVEs are more
realistic. To this aim, any particle that intersects any of the vertical
walls or corners of the RVE is replicated at the opposite wall or corner
(see Figs. 1(d) and 2). Such a process can be described in the more
complex case of 3D RVEs by the following procedure:

1. Consider a particle in stable position with centre’s coordinates
(𝑥, 𝑦, 𝑧). This centre is allowed to partially fall outside of the RVE.

2. Check if the particle intersects any of the surfaces of the cell.
If so, symmetric particles-one, three or seven, depending if the
original one cuts one, two or three cell faces, respectively-are
generated in order to impose periodicity (see Fig. 1(d)).

3. Check if any of the generated particles in the previous step
overlap the previous existing ones. If this is not the case, the
proposal particle is accepted, otherwise return to Step 1.

4. Repeat until the desired filler volume fraction is achieved.
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Fig. 2. (a) Example of a periodic 200 μm edge 2D RVE matrix doped with 𝜉1 ≈ 50% of glass particles with radius 10 μm. (b) RVE doped with 𝜉1 ≈ 50% volume fraction of glass
microspheres with radius 20 μm. (c) Example of a 3D RVE generated particle distribution by means of the rolling and dropping procedure with 𝜉1 ≈ 50%.

Fig. 3. Relationship between the filler volume fraction 𝜉1 and the ratio between the inter-particle distance parameter 𝑒 and the radius of the particles 𝑟 for 2D and 3D RVEs.

For the 2D specimen 𝛺 ⊂ R2, a completely analogous procedure
can be implemented. In either case, the final filler volume fraction 𝜉1
is directly determined by the inter-particle distance parameter 𝑒 and
the diameter of the particles. In order to provide a simple expression
for the relationship between the ratio 𝑒∕𝑟 and the resulting volume
fraction 𝜉1, a Monte Carlo analysis with 300 different geometries has
been conducted in a RVE with 𝐿 = 300 μm with four different particles’
radii 𝑟, namely 𝑟 = 7.5, 10, 15, and 25 μm for 2D case and 𝑟 = 10, 15, 25,
and 50 μm for 3D. Fig. 3 shows the obtained volume fractions versus
the ratio 𝑒∕𝑟. It is noted in this figure that a common trend is found for
all the cases thanks to the non-dimensionalization of the results. Only
some instabilities are observed for large particle sizes. In this light, new
expressions for the filler volume fraction are obtained by curve fitting
of the results in Fig. 3 as 𝜉1 = 3.2 (𝑒∕𝑟)−2 and 𝜉1 = 4.5 (𝑒∕𝑟)−3 for 2D and
3D RVEs, respectively. Note that the implemented algorithm achieves
filler volume fractions up to 50%.

Once the RVE is defined, its effective elastic properties are obtained
in this work by applying periodic boundary conditions as anticipated
above. The enforcement of geometrical periodicity implies that the
composite material can be conceived as the periodic replication of the
RVE (Fig. 4(a)). The general periodic boundary conditions on the cell
faces of a RVE are given by [47]:

𝑢𝑖 = �̂�𝑖𝑗𝑥𝑗 + 𝑣𝑖, (6)

where �̂�𝑖𝑗 denote the volume average strains, and 𝑣𝑖 represents the
local periodic part of the displacement components 𝑢𝑖 on the boundary
surfaces. The latter displacement components are generally unknown
and depend upon the applied loading. Indices 𝑖 and 𝑗 denote the global
Cartesian directions. In the case of square RVEs like the ones used

in this work and sketched in Fig. 4(a), Eq. (6) takes a more explicit
expression. Consider the notation of the cell surfaces 𝐴−∕𝐴+, 𝐵−∕𝐵+,
and 𝐶−∕𝐶+ shown in Fig. 4(a).

Then, the displacements on a pair of opposite boundary cells (with
their normal along the 𝑥𝑗 axis) read:

𝑢𝐾+
𝑖 = �̂�𝑖𝑗𝑥

𝐾+
𝑗 + 𝑣𝐾+

𝑖 , 𝑢𝐾−
𝑖 = �̂�𝑖𝑗𝑥

𝐾−
𝑗 + 𝑣𝐾−

𝑖 , (7)

where indexes 𝐾+ and 𝐾− indicate the displacements along the posi-
tive and negative 𝑥𝑗 directions, respectively. Local fluctuations 𝑣𝐾−

𝑖 and
𝑣𝐾+
𝑖 must be identical on every two opposing faces to comply with the

periodicity of the RVE. Therefore, the local displacement components
can be dropped from the formulation by the difference between the
expressions in Eq. (7), leading to:

𝑢𝐾+
𝑖 − 𝑢𝐾−

𝑖 = �̂�𝑖𝑗
(
𝑥𝐾+
𝑗 − 𝑥𝐾−

𝑗

)
. (8)

Therefore, the RVE can be subjected to a desired strain state by
imposing proper displacements on its boundary surfaces. Then, the
volume average stresses �̂�𝑖𝑗 and strains �̂�𝑖𝑗 in the RVE can be computed
as:

�̂�𝑖𝑗 =
1 ∫ 𝜀𝑖𝑗d , �̂�𝑖𝑗 =

1 ∫ 𝜎𝑖𝑗d , (9)

with  being the volume of the RVE. Then, the 𝑖𝑗-th component of the
elastic tensor can be directly estimated as 𝐂∗

𝑖𝑗 = �̂�𝑖𝑗∕�̂�𝑖𝑗 .

3. Adaptive PCE surrogate modelling

Denote by ∗, with ∗= 2𝐷, 3𝐷, the numerical homogenization
models of representative 2D/3D RVEs. Assuming the microstructural
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Fig. 4. (a) Representation of a periodic composite and definition of the RVE. (b) Periodic boundary conditions for a pair of nodes located on the opposite surfaces A− and A+.

properties of interest as independent random variables arranged in
a vector 𝐗 = (𝑋1, 𝑋2,… , 𝑋𝑀 ), ∗ maps a 𝑀-dimensional input
parameter space to a 1-dimensional output space ∗ ∶ R𝑀 → R. Due
to the presence of uncertainties in the input vector, 𝐗 is considered a
random variable with known probability distribution. Then, a surrogate
model ̂∗ aims to emulate the original homogenization model ∗, but
at a lower computational cost. The general procedure to construct a
surrogate model can be summarized in the following steps:

1. Sample two independent input data sets: the training set (TS)
𝑇 and the validation set (VS) 𝑉 covering the parameter design
space:

𝑇 =
{
𝐗(1),… ,𝐗(𝑁)} ⊂ R𝑀×𝑁 , 𝑉 =

{
𝐗(1),… ,𝐗(𝐾)} ⊂ R𝑀×𝐾 .

(10)

2. Evaluate model ∗ on set 𝑇 .
3. Solve an optimization problem to identify the parameters of the

surrogate model.
4. Assess the metamodel’s accuracy by evaluating ∗ and ̂∗ on

set 𝑉 .

In this study, PCE is adopted for its convenience to represent
stochastic magnitudes of interest. In particular, PCE is used to represent
the effective elastic properties 𝑦 obtained by numerical homogenization
through an expansion onto an orthogonal multivariable polynomial
basis [16] as:

𝑦 = ∗ (𝐗) =
∑
𝛼∈N𝑀

𝑎𝛼𝜳 𝛼(𝐗), 𝜶 = (𝛼1,… , 𝛼𝑀 ), 𝛼𝑖 ∈ N, (11)

where:

• 𝜳𝜶(𝐗) =
∏𝑀

𝑖=1 𝜓
(𝑖)
𝛼𝑖 (𝑋𝑖) are multivariate polynomials.

• 𝜓 (𝑖)
𝛼𝑖 are orthogonal polynomials depending on the stochastic na-

ture of the input variables 𝐗. In this work, Legendre and Hermite
polynomials will be used to represent uniform and Gaussian
distributions.

Although expression (11) can be proved exact for an infinite num-
ber of polynomials, in practice only a finite number of terms in∑
𝛼∈N𝑀 𝑎𝛼𝜳 𝛼(𝐗) can be computed. As a consequence, different strate-

gies can be taken into account to truncate the polynomial series. The
simplest one consists in selecting all the polynomials whose total degree
|𝜶| = ∑𝑀

𝑖=1 𝛼𝑖 belongs to the set:

𝑀,𝑝 =
{
𝜶 ∈ N𝑀 ∶ 0 ≤ |𝜶| ≤ 𝑝

}
, (12)

where the cardinality of 𝑀,𝑝 is equal to:
(
𝑀 + 𝑝
𝑝

)
= (𝑀 + 𝑝)!

𝑀!𝑝!
. (13)

Nonetheless, when 𝑀 and 𝑝 are large enough, this procedure of
polynomial selection may lead to computing a large number of coeffi-
cients and the subsequent computational burden. As an alternative, an
hyperbolic truncation scheme can be employed. This approach consists
in selecting all multi-indices with 𝑞-norm [48]

‖𝜶‖𝑞 =
( 𝑀∑
𝑖=1

𝛼𝑞𝑖

) 1
𝑞

,

less or equal to 𝑝, i.e.:

𝑀,𝑝,𝑞 =
{
𝜶 ∈ N𝑀 ∶ ‖𝜶‖𝑞 ≤ 𝑝

}
. (14)

This strategy has been proved efficient due to the fact that high
interaction terms often have coefficients close to zero. Nonetheless, al-
though substantial cost reductions can be achieved using the hyperbolic
truncation scheme, the number of coefficients in the expansion may
still be considerable. A better cost-efficient solution can be obtained
by using the adaptive LAR algorithm [49]. LAR constructs a set of
expansions incorporating an increasing number of basis polynomials
𝜳𝜶 , from 1 to  = card

(𝑀,𝑝,𝑞). Then, the resulting sequence of
index sets is used to construct different expansions and the best meta-
model is selected by a cross validation procedure. Finally, the expansion
coefficients 𝒂 = {𝒂𝜶 , 𝜶 ∈ 𝑀,𝑝 ⊂ N𝑀} are obtained by minimizing
the expectation of the least squares errors:

�̂� = arg min
𝑎∈RP

1
𝑁

𝑀∑
𝑖=1

[∗(𝐗(𝑖)) −
∑
𝜶∈

𝒂𝜶𝜳𝜶(𝐗(𝑖))
]2
, (15)

where 𝐗(𝑖) ∈ 𝑇 , 𝑖 = 1,… , 𝑁 . Once Eq. (15) has been solved, the
resulting PCE surrogate model can be written as follows:

𝑦 = ∗ (𝐗) ≈ ̂∗(𝐗) =
∑
𝜶∈

�̂�𝜶𝜳𝜶(𝐗). (16)

4. Surrogate model-based uncertainty propagation analysis of
composite materials

The main contribution of this section regards the application of the
previously introduced surrogate modelling approach to the analysis of
the propagation of uncertainties in the material parameters through
the homogenization of both 2D/3D composites with high filler volume
fraction. The general methodology is sketched in Fig. 5 and includes
five main steps, namely (i) geometry construction using the dropping
and rolling method, (ii) design of proper RVEs, (iii) construction of the
metamodels, (iv) validation and (v) uncertainty propagation analysis.

In a first step, general 2D/3D quadratic and cubic models allowing
particle intersection with the cell boundaries (Fig. 2) are implemented.
For the construction and homogenization of the microstructure, a com-
bination of scripts generated in MATLAB environment [50] and the
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Fig. 5. Flowchart of the proposed meta-model approach to perform uncertainty propagation analysis in 2D/3D homogenization.

Fig. 6. (a) Matrix and (b) meshed matrix of an example of a periodic 200 μm edge 2D RVE of epoxy doped with 𝜉1 ≈ 20% volume fraction of spherical particles. (c) RVE with a
length side of 200 μm doped with 𝜉1 ≈ 15% volume fraction of glass microspheres (d) and corresponding FEM mesh (90 443 nodes).

commercial FEM tool ANSYS is used [51]. Specifically, the adopted
methodology for defining the geometry of cubic RVEs involves the steps
previously given in Section 2. Once the geometry is constructed, it
is discretized in ANSYS using plane-strain 8-nodes quadratic elements
(PLANE 183) for 2D RVEs, while 4-nodes linear tetrahedral solid ele-
ments (SOLID 285) are used for 3D RVEs. Two samples of the generated
RVEs are shown in Fig. 6 (a), (c) along with their corresponding meshes
in Fig. 6 (b), (d). Once constructed, the numerical homogenization
model is used to draw the samples of the training and validation sets
for the construction of the surrogate model.

To assess the precision of the developed surrogate models, both local
and global error metrics are considered. These include the coefficient of
determination 𝑅2 and the Normalized Average Absolute Error (NAAE)
for the global accuracy and the Normalized Maximum Absolute Error
(NMAE) for the local case, are reported in Table 1, where �̄� denotes
the arithmetic mean of the validation output set. These global metrics

are evaluated over two data sets
{
𝑦(1) = (𝐗(1)),… , 𝑦(𝐾) = (𝐗(𝐾))

}
and

{
�̂�(1) = ̂∗(𝐗(1)),… , �̂�(𝐾) = ̂∗(𝐗(𝐾))

}
obtained, respectively, by

the evaluation of the numerical homogenization models and their
corresponding meta-models over the VS with 𝐾 realizations.

Once constructed, PCE sensitivity analysis (SA) is used to investigate
the contribution (relative importance) of each random input parameter
of the mathematical model  to its stochastic response. The non-
linearity of the proposed model implies that not only the variables
individually affect the response, but also the interactions between them.
Therefore, the joint-effect of parameter variation must be also quanti-
fied. Sobol’ indices [43] represent a global SA method as they provide
the sensitivity of the predictions of the surrogate model to variations
in the selected input variables. The Sobol’ index 𝑆𝒖 associated to the
subset 𝒖 = {𝑖1,… , 𝑖𝑀} ⊂ {1,… ,𝑀} is defined as the ratio between the
contribution to the model variance given by the interaction among the
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Table 1
Error metrics for the accuracy assessment of surrogate models over a validation set of size 𝐾.
Coefficient of Determination (𝑅2) Normalized average absolute error (NAAE) Normalized maximum absolute error (NMAE)

𝑅2 = 1 −
∑𝐾
𝑖=1

(
�̂�(𝑖) − 𝑦(𝑖)

)2
∑𝐾
𝑖=1

(
�̄� − 𝑦(𝑖)

)2 NAAE =
∑𝐾
𝑖=1 |�̂�(𝑖) − 𝑦(𝑖)|

𝐾
√

1
𝑘−1

∑𝐾
𝑖=1

(
�̄� − 𝑦(𝑖)

)2 NMAE =
max𝐾𝑖=1 |�̂�(𝑖) − 𝑦(𝑖)|

𝐾
√

1
𝑘−1

∑𝐾
𝑖=1

(
�̄� − 𝑦(𝑖)

)2

Table 2
Mechanical properties of the constituent phases of epoxy doped with glass fibre
micro-spheres [52].

Epoxy polymer Glass fibre particles

Young’s Modulus [GPa] 3.0 76.0
Poisson’s ratio [–] 0.4 0.23
Radius [μm] – 8–20

components of 𝒖 and the total variance. Thanks to the orthogonality of
the PCE, it can be written as:

𝑆𝒖 =

( ∑
𝜶∈𝒖

𝒂2𝜶

)/( ∑
𝜶∈

𝒂2𝜶

)
, 𝒖 = {𝜶 ∈  ∶ 𝛼𝑘 ≠ 0 when 𝑘 ∈ 𝒖}.

(17)

5. Numerical results and discussion

This section presents the numerical results and discussion obtained
by applying the previously introduced methodology for the uncertainty
propagation analysis of epoxy composites doped with glass fibre spher-
ical particles with a wide range of filler concentrations (from 0% up
to 50%). The presented results are organized as follows: Section 5.1
presents preliminary convergence analyses conducted to identity the
minimum RVE’s sizes and mesh densities. Section 5.2 reports the con-
struction of the surrogate models and their quality assessment. Finally,
Section 5.3 reports the surrogate model-based uncertainty propagation
analyses by introducing uncertainties in the elastic properties of the
micro-constituents. In the following analyses, the material properties of
epoxy and glass spheres are taken from Ref. [52] as listed in Table 2.

5.1. Convergence analysis of the RVEs’ sizes and mesh density

To guarantee that a RVE statistically represents the composite ma-
terial, its dimension and the number of embedded particles must be
carefully selected. In addition, since the microstructure is then dis-
cretized using FEM, another important aspect to determine regards
the mesh density. In general, the dimensions of the RVE and its mesh
density must be chosen as a trade-off between representativity and
computational cost. Firstly, the discretization of the RVEs is selected
fine enough to ensure that the homogenized constitutive tensor 𝐂∗ is
mesh independent. On the other hand, the dimensions of the RVE are
selected according to the degree of isotropy of the obtained constitutive
tensor. Given that both matrix phase and reinforcing particles are
isotropic, spherical, and randomly dispersed, the resulting effective
constitutive tensor must also present isotropic symmetry. In this light,
Fig. 7 reports the convergence analysis of two 2D meshes with edge
lengths of 120 μm and 240 μm. In both cases, a filler volume fraction of
20% has been selected. In this figure, the effective Young’s moduli 𝐸𝑥,
𝐸𝑦 are presented versus the total number of nodes in the mesh (𝑥𝑦𝑧 ref-
erence frame indicated in Fig. 6). Five different meshes with increasing
densities have been considered, including 2116, 7592, 11 555, 22 304,
43 776 nodes for the 120 × 120 μm RVE and 15 086, 27 515, 43 388,
83 531, 111512 for the 240 × 240 μm one. It is noted in this figure
that convergence is approximately achieved between the third and
the fourth discretization densities (22 000–83 500 nodes, mean element
edge size 1.32% the RVE size). Therefore, the forth mesh density is
selected as a conservative solution. These analyses were also conducted

for 3D RVEs, achieving similar conclusions (mean element edge size
1.11% the RVE size).

Once the mesh density has been defined, the size of the RVEs is
selected by convergence analysis of the isotropy degree of the effective
constitutive tensor. To do so, five geometries with different RVE sizes
have been studied, namely 80, 120, 160, 200 and 240 μm (80, 120, 160
and 200 μm in 3D) have been studied. The convergence analysis of the
effective Young’s moduli 𝐸𝑖 obtained for 2D and 3D RVEs are shown
in Figs. 8 and 9, respectively. Moreover, the evolution of the mean
Poisson’s ratios

{
𝜈𝑥𝑦

}
and

{
𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧

}
obtained by 2D and 3D RVEs

are also reported in Fig. 10(a) and (b), respectively. In the ideal case of
perfect isotropy, ratios 𝐸𝑖∕𝐸𝑗 should be exactly equal to 1. Therefore,
following Figs. 8 (a) and 9 (a,b,c), it can be concluded that convergence
is approximately achieved for RVEs with an edge length of 240 μm in
2D and 200 μm in 3D. In these cases, it is noted that the ratios between
the elastic moduli are very close to 1.

The previous analyses are further investigated in Fig. 11, which
reports the mean values of the main components of the effective
constitutive tensor 𝐂∗ obtained for five realizations of the RVEs with
increasing sizes. In light with the previous analyses, it is observed in
this figure that the composites exhibit a higher degree of isotropy as
the RVE size increases. For instance, note in Fig. 11 (a) and (c) that
the components 𝐶𝑖𝑖 (diagonal terms of the constitutive tensor) tend
to a common value as expected for isotropic materials. The residual
anisotropy in the effective constitutive tensor is eliminated hereafter
through integration over all possible orientations in the Euler space,
also referred to as the orientational average. To do so, tensor 𝐂∗ is
rotated to any orientation in the Euler space as 𝐶𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑝𝑎𝑗𝑞𝑎𝑘𝑟𝑎𝑙𝑠𝐶∗

𝑝𝑞𝑟𝑠,
where 𝒂 is the transformation matrix consisting of 𝜃, 𝜙, and 𝜓 rotation
angles. Then, the orientational average of 𝐂∗ can be obtained as [53]:

⟨𝐂∗⟩ = 1
4𝜋2 ∫

2𝜋

0 ∫
2𝜋

0 ∫
𝜋∕2

0
𝐂∗(𝜃, 𝜙, 𝜓) sin 𝜃 d𝜃 d𝜙d𝜓. (18)

On this basis, the effective elastic modulus 𝐸 and Poisson’s ratio 𝜈
can be obtained from the compliance tensor 𝐒 = (𝐂∗)−1 in Mandel–Voigt
notation as

𝐸 = 1
𝑆11

, 𝜈 = −𝐸𝑆12. (19)

5.2. Surrogate model construction. Accuracy, sensitivity analysis and com-
putational efficiency

Following the theoretical framework introduced in Section 3, to
approximate the 2D/3D homogenized Young’s moduli, two PCE sur-
rogate models ̂2𝐷 and ̂3𝐷 have been constructed taking 𝑝 = 0.95 in
Eq. (14) and model orders between 1 and 4. To this purpose, 50 training
points and 25 independent validation points have been considered by
means of the Latin Hypercube Sampling (LHS) [54] procedure. Five
input variables have been included in both models, namely the Young’s
moduli and Poisson’s ratios of the matrix and the inclusions, as well
as the filler volume fraction. Uncertainties in the elastic properties of
the constituents are assumed normally distributed with mean values
from Table 2 and standard deviations corresponding to 1/30 of mean
values (corresponding deviations of up to ±10% of them). On the other
hand, the filler volume fraction is assumed uniformly distributed within
the range from 0 to 50%. The selected probability distributions are
collected in Table 3.

The performance assessment of the developed surrogate models
through the error metrics from Table 1 as well as the computational
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Fig. 7. Convergence analysis of the mesh density for a 2D RVE of dimensions 120 × 120 μm (a) and 240 × 240 μm (b) doped with 20% volume fraction of spherical particles with
radius 8 μm.

Fig. 8. Analysis of the isotropy of the composite (a) and evolution of the elastic Young’s moduli 𝐸𝑥, 𝐸𝑦 with error bars denoting the standard deviation (b) against the length
side of the 2D RVE. (Filler volume fraction 𝜉1 = 20%).

Table 3
Statistical distributions of the material parameters.

Variable Notation Distribution

Young’s modulus of epoxy matrix [GPa] 𝐸0 Gaussian  (3, 0.1)
Poisson’s ratio of epoxy matrix [–] 𝜈0 Gaussian  (0.4, 0.0133)
Young’s modulus of glass reinforcement [GPa] 𝐸1 Gaussian  (76, 2.5333)
Poisson’s ratio of glass reinforcement [–] 𝜈1 Gaussian  (0.23, 0.0076)
Volume fraction of inclusions [–] 𝜉1 Uniform  (0, 0.5)

Table 4
Surrogate model accuracy.

𝑅2 NAAE (10−2) NMAE (10−2)

̂2𝐷 0.9939 5.34 0.84
̂3𝐷 0.9993 2.15 0.40

time savings are reported in Table 4. It can noted in this table that
the surrogate models ̂2𝐷 and ̂3𝐷 faithfully reflect the behaviour
of the corresponding parent models 2𝐷 and 3𝐷. This coincides
with Fig. 12 which shows a comparison between them and the forward

Table 5
Sobol’ indices.

𝑆𝜉1 𝑆𝐸0
𝑆𝜈0 𝑆𝐸1

𝑆𝜈1
̂2𝐷 0.9913 0.0075 0.0031 1.7021𝐸−5 0
̂3𝐷 0.9831 0.0086 0.0130 0 0

FEM over the 25 samples of the validation set. The low scatters of the
points around the diagonal lines and the coefficients of determination
(very close to 1) corroborate that the surrogate models are formed with
accuracy. With respect to the computational times, it is important to
remark that, while the numerical homogenization models 3𝐷 and
2𝐷 take around 6 h and several minutes, respectively, the evaluation
of the respective meta-models (̂3𝐷, ̂2𝐷) takes less than 1 millisec-
ond (99.7% reduction). Based on the metrics in Table 4 and the fact
that 2D and 3D models provide similar results for moderate volume
fractions, 2D approximations may be adopted in these cases for fast
evaluations with reasonably good accuracy. Finally, Table 5 reports
the Sobol’ indices of the constructed expansions. As it is expected, the
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Fig. 9. Analysis of the isotropy of the composite in terms of the ratio between the Young moduli (a) 𝐸𝑥∕𝐸𝑦, (b) 𝐸𝑧∕𝐸𝑥, (c) 𝐸𝑧∕𝐸𝑦 and (d) evolution of the mean Young’s moduli
𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧 against the length side of the 3D RVE for a volume fraction 𝜉1 = 0.2 (error bars in (d) denote standard deviation).

Fig. 10. Convergence analysis of the mean effective Poisson’s ratios
{
𝜈𝑥𝑦

}
and

{
𝜈𝑥𝑦 , 𝜈𝑥𝑧 , 𝜈𝑦𝑧

}
obtained by 2D (a) and 3D RVEs (b) against the RVE size for a filler volume fraction

of 𝜉1 = 0.2. Error bars stand for standard deviations.

homogenization results are particularly sensitive to the filler’s volume
fraction contribution followed by the properties of the matrix.

5.3. Uncertainty propagation analyses. Comparison between the 2D and 3D
surrogate approximations

The accuracy and computational efficiency of the developed sur-
rogate models are leveraged herein to analyse the propagation of un-
certainties in the microstructural properties of epoxy/glass composites
upon the effective elastic properties. Firstly, uncertainty propagation
analyses are conducted by considering isolated uncertainties in every
of the considered microstructural parameters. In each analysis, 25 000
Monte Carlo individuals are drawn by sampling from the statistical dis-
tribution of the parameter under analysis as reported in Table 3, while
the remaining parameters are fixed to their mean values. It is important
to remark that the simulations took less than 1 s, while conducting such
analyses using the numerical homogenization model would be simply
infeasible. Once the Monte Carlo samples are obtained, the statistical

distributions of the effective elastic properties are estimated in frequen-
tist terms. Following this, Fig. 13 represents the probability distribution
functions (PDFs) of the considered parameters in the expansions for
the 2D/3D surrogate models. In both 2D and 3D scenarios, Fig. 13
shows that for low filler volume fractions, uncertainties in 𝐸0 dominate
the uncertainty of the effective Young’s modulus. Nonetheless, almost
no effect is observed for variations in the elastic modulus of the glass
inclusions and the remaining parameters. It is also noted that for higher
filler volume fractions, some influence is found due to uncertainty in
the Poisson’s ratio of the host matrix.

Finally, Fig. 14 presents the statistical probability distribution func-
tions (PDFs) of the effective elastic moduli of 2D/3D glass fibre/epoxy
composites when considering simultaneous uncertainty in all the con-
sidered microstructural parameters. The analyses are conducted for two
filler volume fractions, namely 15% and 45%. It is shown in this figure
that, for the filler volume fraction of 15%, the mean values of the elastic
moduli predicted by the 2D and the 3D models are almost identical.
However, as the volume fraction increases, increasing differences arise.
For example, it is noted in Fig. 14 that for a filler volume fraction of
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Fig. 11. Convergence analysis of the mean effective constitutive tensor components
{
𝐶𝑖𝑗

}
by 2D (a,b) and 3D RVEs (c,d,e) against the RVE size for a filler volume fraction of

𝜉1 = 0.2. Error bars stand for standard deviations.

Fig. 12. Comparison of the numerical estimates by FEM and the predictions of the PCE surrogate models in terms of the elastic moduli in (a) 2D and (b) 3D cases.

45%, the mean values of the Young’s moduli predicted by the 2D and
the 3D model are around 7.807 GPa and 8.459 GPa, respectively.

In order to provide further insight into the uncertainty propagation
characteristics of the elastic moduli of glass fibre/epoxy composites,
Fig. 15 reports a scatter plot of the Monte Carlo samples of the effective
elastic modulus for filler volume fractions up to 50%. In this figure, the
95% confidence levels are indicated with red dashed lines. In order to
validate the numerical predictions, the experimental characterization
data reported by Smith in Ref. [55] for the same composite material

investigated herein are included in the figure. It can be seen that the 3D
model fits the data slightly better, especially in the high volume fraction
region. Interestingly, it is noted that the uncertainty in the Young’s
modulus increases for larger filler contents (higher that 25%) in the
2D case, while the uncertainty in the elastic modulus when considering
3D RVEs remains almost constant. This fact evidences the limitations
related to the use of simplified 2D RVEs to reproduce the randomness
in the three-dimensional distribution of particle-reinforced composites
doped at moderate to high filler volume fractions.
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Fig. 13. PDFs of elastic properties of 2D and 3D composites made of epoxy doped with 15% and 45% of glass fibre inclusions considering uncertainties in the matrix Young’s
modulus (a), in the matrix Poisson’s ratio (b), in the glass reinforcement Young’s modulus (c) and in the glass reinforcement Poisson’s modulus (d).

Fig. 14. PDFs of the Young’s modulus of epoxy doped with 15% and 45% glass particles considering 2D (blue lines) and 3D (red lines) RVEs for simultaneous uncertainties in all
the parameters.

6. Conclusions

This work has investigated the surrogate modelling of 2D/3D highly
computationally demanding numerical homogenization problems of
glass particles-reinforced epoxy composites. To this aim, PCE meta-
modelling technique has been employed to bypass such computational

intensive approaches and so perform uncertainty propagation analy-
ses. Specifically, PCE-based uncertainty quantification analyses of the
Young’s modulus of epoxy/glass composites have been conducted for
filler volume fractions up to 50%, using both 2D and 3D models. The
statistical distributions of the micromechanical parameters of inter-
est have been predefined, namely the filler volume fraction, Young’s
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Fig. 15. Comparison between the stochastic prediction of the Young’s moduli of epoxy/glass fibre versus the filler volume fraction 𝜉1 in the 2D (a) and 3D (b) cases. The 95%
confidence levels are indicated with red dashed lines. Experimental data retrieved from Ref. [55].

modulus and the Poisson’s ratio of the composite phases. Then, the
design space has been sampled by means of Latin Hypercube Sampling
in order to construct the PCE surrogate model. Finally, direct Monte
Carlo simulations over the parameter space have been performed. The
numerical results and discussion have proved the appropriateness of
the developed schemes to conduct efficient uncertainty propagation
analyses of the homogenization parameters. The key conclusions of this
research include:

• Optimal PCE surrogate models have been developed to approx-
imate both 2D/3D homogenization of epoxy composites doped
with up to 50% volume fraction of glass filler particles using the
dropping and rolling rules. Relationships between the minimal
inter-particle distance and the filler volume fraction has been
proposed for 2D and 3D RVEs, which represents a useful tool for
the algorithm implementation.

• PCE meta-models have been defined through preliminary para-
metric analyses accounting for prediction accuracy and computa-
tional cost. To this aim, a set of local and global error metrics has
been presented.

• The computing advantages of the developed meta-models have
proved crucial to perform computationally intensive applications.
Specifically, the presented results have showed their effective-
ness to conduct fast uncertainty propagation analysis of epoxy
composites doped with glass particles.

• The numerical results and discussion have evidenced the potential
of the proposed approach for stochastic design and material selec-
tion applications. These open great opportunities for applications
in material model design.

• For low and moderate filler volume fractions, it has been observed
that both 2D and 3D models provide similar results, being the
dispersion slightly higher when the 2D model is employed. On the
other hand, for higher filler volume fractions, the discrepancies
between the two models increase.

• In terms of sensitivity analysis, Sobol’ indices of both models show
that for a fixed volume fraction, uncertainties in the matrix prop-
erties dominate the uncertainty of the whole composite. Thus,
following the above statement, for lower filler volume fractions,
the material properties of the reinforcement can be set to their
mean values and the homogenization could be done using the 2D
surrogate model without major changes in the final result.

The presented numerical results and discussion suggest the ability of
the proposed methodology to be adapted to a large variety of composite
materials. In this light, future developments regard the extension of
the presented formulation to other composites with more complex

microstructures, multi-physics homogenization problems (e.g. piezo-
electric materials), as well as the explicit modelling of the variability
in the effective properties due to the randomness of the microstructure
by developing a stochastic version of the presented surrogate model.
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a b s t r a c t 

This paper presents a surrogate modelling technique based on domain partitioning for 

Bayesian parameter inference of highly nonlinear engineering models. In order to alle- 

viate the computational burden typically involved in Bayesian inference applications, a 

multielement Polynomial Chaos Expansion based Kriging metamodel is proposed. The de- 

veloped surrogate model combines in a piecewise function an array of local Polynomial 

Chaos based Kriging metamodels constructed on a finite set of non-overlapping subdo- 

mains of the stochastic input space. Therewith, the presence of non-smoothness in the 

response of the forward model (e.g. nonlinearities and sparseness) can be reproduced by 

the proposed metamodel with minimum computational costs owing to its local adaptation 

capabilities. The model parameter inference is conducted through a Markov chain Monte 

Carlo approach comprising adaptive exploration and delayed rejection. The efficiency and 

accuracy of the proposed approach are validated through two case studies, including an 

analytical benchmark and a numerical case study. The latter relates the partial differential 

equation governing the hydrogen diffusion phenomenon of metallic materials in Thermal 

Desorption Spectroscopy tests. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The widespread use of high performance computing (HPC) technologies has enabled the increasingly frequent adoption of 

computationally intensive numerical models in a myriad of disciplines in academia and industry. Such high fidelity models 

allow conducting virtual testing of engineering systems, avoiding the technical limitations and minimizing the costs associ- 

ated with traditional experimental testing. Nevertheless, formidable challenges still arise when implementing these models 

into computationally demanding studies such as optimization [1] , sensitivity analysis [2] , model identification and calibra- 

tion [3] , reliability analysis [4] , or robust design [5] . As a solution, a variety of surrogate models or metamodels have been 

proposed in the literature in recent years. Nevertheless, despite the considerable advances in the field, there remain open 

research challenges for their extensive use such as handling highly nonlinear model responses, limited training datasets and, 
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in general, the online implementation of surrogate models to enable decision-making in engineering systems [6,7] . In partic- 

ular, the development of real time surrogate model-based parameter estimation approaches draws high interest in frontier 

research fields such as digital twins development [8] and smart maintenance of engineering systems [9] . 

In their broadest sense, surrogate models are computationally light black box representations of resource-intensive mod- 

els. Surrogate modelling methods can be generally classified into three categories [10] : (i) projection-based methods or 

reduced-order models (ROMs) [11] ; (ii) multi-fidelity methods [12] ; and (iii) data-driven or responsive surface methods 

(RSMs). Projection-based techniques project the governing equations of the original model onto a low-dimensional sub- 

space. Hence, although ROMs have the advantage of retaining the physics underlying the model, these are limited to situa- 

tions where access to the governing equations is granted, which is not the case in many practical applications when using 

commercial software. Multi-fidelity methods are built by simplifying the underlying physics or reducing the numerical res- 

olution. These methods may also render some difficulties, being highly case-dependent and requiring specialized expertise 

to find a suitable trade-off between prediction accuracy and computational burden. Such difficulties have fostered rapid de- 

velopments of RSMs in recent years as a non-intrusive technique with great flexibility in a wide range of applications. The 

key advantage of these methods relies in the fact that the forward model does not need to be modified and, therefore, it 

can be essentially treated as a black box [13] . Among the broad variety of RSMs available in the literature, some of the 

most popular ones are Kriging [14] , radial basis functions (RBF) [15] , support vector regression (SVR) [16] , artificial neural 

networks (ANN) [17] , Gaussian process (GP) regression [18] , polynomial chaos expansions (PCE) [2] and Polynomial Chaos 

Expansion based Kriging (PCK) [19] . These models are trained by exploiting a set of realizations of parameters of interest of 

the model, called the experimental design (ED), and the corresponding model evaluations, also called quantities of interest 

(QoI). Therefore, the accuracy of data-driven surrogate models is highly determined by the dimensions of the design space 

and the number and distribution of the training samples in the ED [20] . In engineering practice, obtaining the ED constitutes 

the most time-consuming part since it requires the evaluation of the computationally intensive forward model at each sam- 

ple point. Choosing high quality EDs is thus critical to achieve high accuracy in the surrogate model construction with the 

least possible number of training samples. Sampling approaches can generally be divided into static (one-shot) and sequen- 

tial methods. One-shot sampling generates the training sample points in one single step, and common approaches include 

fractional designs and orthogonal arrays [21] . While these techniques offer easy implementation and minimal computational 

cost, the determination of the optimal sample size may be troublesome when the behaviour of the forward model is un- 

known. To minimize such difficulties, a number of sequential sampling strategies have been introduced, including adaptive 

and space-filling sequential methods [22] . On one hand, space-filling sequential designs such as Latin Hypercube Sampling 

(LHS), Sobol, Hammersley and Halton sampling [23] generate samples iteratively to attain good coverage of the parametric 

domain. On the other hand, adaptive sampling techniques iteratively draw new samples in regions of the parametric space 

with large prediction errors, enabling to account for local refinements in the ED (refer to references [22,24] for a thorough 

state-of-the-art review). 

A second major challenge of non-intrusive surrogate models regards the difficulties involved in the fitting of non-smooth 

models exhibiting unsteadiness, sparseness or large perturbations. In these cases, adaptive solutions accommodating lo- 

cal relevant refinements of the response surface are required. A large volume of research has been conducted in the last 

decade to address this issue, giving origin to a number of advanced surrogate modelling techniques such as multi-resolution 

generalized PCE [25] , domain partitioning [26] , sparse grid collocation [27] , Voronoi tesselations [28] , local search at trust 

regions [29] , clustering-based partitioning [30] , ensembles of surrogate models [31] , multi-element generalized polynomial 

chaos (ME-gPC) method [27] and multi-element probabilistic collocation methods (ME-PCM) [32] . In this light, different 

partitioning techniques can be found in the literature in the context of the pure GPs [33,34] , PCE [35] , and PCE-based map- 

ping of likelihood functions in parameter inference applications [25,36] . In those works, different domain partition criteria 

were proposed based on dissimilarity measurements between regions [34] , data density [33] , or maximum residual differ- 

ences [35,36] . In general, these approaches usually generate series of subdomains where the non-smooth response surface 

can be assumed locally smooth, thus enabling the definition of local surrogate models contributing to the global response 

in a piecewise fashion. 

The development of cost-efficient surrogate models opens vast new opportunities for real-time parameter estimation 

applications. Probabilistic Bayesian approaches are particularly attractive owing to their ability to assess the effects of un- 

certainties on the model parameters and the derived response predictions, as well as their robustness to noise pollution 

and efficiency to deal with ill-conditioning and ill-posedness. Such excellent features have fostered their implementation 

in multiple fields such as structural identification [37] , geotechnical problems [38] , material characterization [39] , and bio- 

engineering [40] , just to mention a few. In general, Bayesian parameter estimation approaches exploit experimental data 

to infer the posterior probability distribution functions (PDFs) of certain unknown model parameters through the Bayes’ 

theorem. Nonetheless, the direct evaluation of the posterior PDFs requires solving the possibly high-dimensional integral 

related to the evidence of the model. Therefore, except for some trivial cases, posterior PDFs often need to be approximated 

numerically. Markov chain methods constitute the most widespread set of techniques to extract series of samples to esti- 

mate the posterior PDFs, allowing to sample from a large class of high-dimensional distributions. Popular procedures for 

Markov chain Monte Carlo (MCMC) sampling are the Metropolis-Hastings [41] and Gibbs algorithms [42] . The basic idea 

of these techniques is to construct a Markov chain with a stationary distribution resembling the posterior distribution, in 

such a way that a sample of the joint PDF of the model parameters can be obtained by collecting the states of the chain. 

These methods guarantee asymptotic convergence to the exact PDF, although a considerably large number of iterations are 
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typically required to achieve convergence, which compromises the computational efficiency of the inference [43] . To alle- 

viate the computational burden in classical MCMC techniques, a variety of more efficient sampling algorithms have been 

proposed in recent years, including Sequential Monte Carlo (SMC) [44] , Transitional MCMC [45] , and Bayesian broad learn- 

ing [46] . Notwithstanding these advances, their elevated computational cost remains a critical limitation when high-fidelity 

models are considered in the inference problem. Herein is where surrogate models offer an efficient solution to conduct 

cost-efficient Bayesian inference while retaining the accuracy of high-fidelity models. The enormous potentials of this ap- 

proach are evidenced by the increasing number of research studies reported in recent years. It is worth noting the work by 

Schneider et al. [47] who proposed a Bayesian procedure using rational PCE metamodels of the response of dynamic systems 

in the frequency domain, and demonstrated its effectiveness for the identification of a cross-laminated timber plate. Xing 

et al. [48] developed an additive GP model for multi-fidelity surrogate modelling inserted into a non-parametric Bayesian 

approach with a closed-form solution for the predictive posterior PDF. The accuracy and flexibility of their approach were 

validated with several benchmark problems, including the identification of a solid oxide fuel cell model and an elbow-shape 

pipe under turbulent mixing flow conditions. Ierimonti and co-authors [49] proposed a Kriging-based conjugate Bayesian 

identification methodology for online damage identification of an instrumented monumental building, the Consoli Palace 

in Gubbio (Italy). Del Val et al. [50] implemented an MCMC approach to infer the catalytic recombination parameters of 

reusable thermal protection materials exploiting plasma wind tunnel measurements. Interestingly, instead of bypassing a 

high-fidelity model, those authors approximated the likelihood function in the Bayesian inference using a GP surrogate 

model to accelerate the parameters estimation. 

In light of the literature review above, it is apparent that the fields of surrogate modelling and its applications for fast 

parameter estimation have experienced considerable advances in recent years. Nonetheless, light metamodels capable of by- 

passing highly nonlinear models for online parameter estimation are yet to be fully developed. In this context, the present 

work presents a novel multielement surrogate model extending the PCK model proposed in Schobi et al. [19] for online 

Bayesian parameter inference of non-smooth models exhibiting highly nonlinear spatial variability. To do so, a simple but 

efficient and flexible regular block partitioning approach is adopted. On this basis, the space domain is partitioned into 

distinct subregions with splitting directions defined after a preliminary sensitivity analysis. The algorithm prioritizes the 

partition of those variables providing highest sensitivities in terms of the Sobol indices, which can be readily extracted from 

the coefficients of a global PCE [51] . Regarding the construction of the local PCK surrogate models, the optimal order of the 

polynomials in the PCE is automatically identified by a model selection technique for sparse linear models, the least-angle 

regression (LAR) algorithm set out by Efron et al. [52] . Then, the optimal PCE is inserted into a Kriging predictor as the trend 

term, while the stochastic term is fitted through a genetic algorithm (GA) global optimization approach. The global model 

response is obtained by combining the local surrogate models in a piecewise fashion. In order to minimize the computa- 

tional burden in the construction of the surrogate models, the ED is obtained with the adaptive Monte Carlo-Intersite-proj-th 

(MIPT) approach [22] . Finally, the surrogate model is used for Bayesian parameter estimation using a cost-efficient adaptive 

MCMC with delayed rejection (DRAM) algorithm developed by Haario et al. [53] . The effectiveness of the proposed approach 

is validated through two benchmark case studies: (i) an analytical benchmark; (ii) and a partial differential equation (PDE) 

for thermal desorption spectroscopy (TDS) experiments of hydrogen in metals. The latter represents a formidable example 

of a model exhibiting a non-smooth behaviour in the shape of nonlinearities and unsteadiness. The presented results and 

discussion demonstrate the robustness of the proposed approach to the presence of measurement noise and multimodal- 

ity in the posterior distributions. Overall, the developed surrogate model assisted Bayesian inference approach represents 

a comprehensive solution for fast parameter inference of computationally intensive mathematical models, offering wide 

applicability across disciplines such as the identification of structural systems, geotechnical problems, Bioengineering, or 

Astrophysics, among others. 

The remainder of this paper is organized as follows. Section 2 outlines the theoretical formulation of the proposed ap- 

proach. Section 3 presents the numerical results and discussion. In particular, two case studies are investigated, namely 

a benchmark analytical model and a numerical model of the TDS analysis of hydrogen desorption in metals. Finally, 

Section 4 discusses the contributions of this work and presents the main concluding remarks. 

2. Theoretical formulation 

The main purpose of this section is to present the theoretical fundamentals of the proposed surrogate model-based 

Bayesian inference approach. The general methodology is sketched in Fig. 1 and comprises four main steps, namely (i) 

domain partitioning; (ii) construction of the local surrogate models; (iii) surrogate models assemblage; and (iv) validation. 

2.1. Surrogate modelling: polynomial chaos expansion based Kriging 

Let (�, �, μ) be a probability space, with � ⊂ R 

M denoting the event space equipped with a σ -algebra � of subsets of 

� and a probability measure μ such that μ( �) = 1 . Let M : � ⊂ R 

M → R be a computational model mapping a vector of 

input variables x = [ x 1 , . . . , x M 

] 
T into the output variable or quantity of interest y ∈ R . The goal of surrogate modelling is to 

approximate the forward model M , which is typically computationally intensive, by a computationally inexpensive function 

ˆ M . In this paper, PCK metamodels combining PCE and Kriging are adopted. In this light, PCE is used to approximate the 

global behaviour of the computational model M while the Kriging metamodel captures its local behaviour. 
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Fig. 1. Flowchart of the proposed PCK metamodel to perform Bayesian Inference. 

2.1.1. Polynomial chaos expansion 

Assume that the input vector x ∈ � is constituted by M independent random variables components { x i } M 

i =1 
with probabil- 

ity density functions μX i 
. Then, PCE represents the output response y ∈ R as the infinite expansion of M over an orthonor- 

mal basis of multivariate polynomials �α as: 

y = M ( x ) = 

∑ 

α∈ N M 
a α�α( x ) , (1) 

where a α, α = (α1 , . . . , αM 

) , αi ∈ N are the coefficients of the expansion. Orthonormal basis families associated with a variety 

of standard distributions can be found in reference [54] . Multivariate polynomials �α can be expressed in terms of a family 

of univariate polynomials 

{ 
ψ 

(i ) 
j 

, j ∈ N 

} 
as �α( x ) = 

∏ M 

i =1 ψ 

(i ) 
αi 

(x i ) . Polynomials ψ 

(i ) 
j 

are also orthonormal with respect to the 

marginal distribution, that is: 

E 

[
ψ 

(i ) 
j 

(x i ) , ψ 

(i ) 
k 

(x i ) 
]

= 

∫ 
ψ 

(i ) 
j 

(u ) ψ 

(i ) 
k 

(u ) μx i (u ) d u = δ j,k , (2) 

with δ j,k being the Dirac Delta function. Random variable x induces the probability measure μx on 

(
R 

M , B 

(
R 

M 

))
, with B ( R ) 

denoting the Borel σ -algebra μx (B ) = μ{ ω ∈ � : x (ω) ∈ B } , B ∈ B. The PDF of x is given by the probability measure μx as 

μx ( u ) = μ( x ≤ u ) , u ∈ R 

M . Note that, since the components of x are independent, the joint probability function μx ( u ) is 

given by the product of the marginal PDFs of x i , i.e. μx ( u ) = 

∏ M 

i =1 μx i ( u i ) , u = (u 1 , . . . , u M 

) ∈ R 

M . Therefore, Eq. (2) can be 

written in a more compact form as: 

E 

[
�α( x ) , �β( x ) 

]
= 

∫ 
�α( u )�α( u ) μx ( u ) d u = δα, β, α, β ∈ N 

M . (3) 

Although the expression in Eq. (1) is exact for an infinite number of terms, in practice only a finite number can be 

computed and a certain truncation scheme needs to be adopted. One of the simplest approach consists in selecting all the 
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polynomials whose total degree | α| = 

M ∑ 

i =1 

αi belongs to the set: 

A 

M,p = 

{
α ∈ N 

M : 0 ≤ | α| ≤ p 
}
, with card A 

M,p = 

(
M + p 

p 

)
= 

( M + p ) ! 

M! p! 
. (4) 

For high-dimensional and non-linear problems, this truncation procedure usually leads to large numbers of polynomial 

coefficients and considerable computational burdens. Nevertheless, it is often observed in many practical applications that 

coefficients corresponding to high interaction terms between the input variables are close to zero, a phenomenon that 

is also known as the sparsity-of-effect principle [51] . To alleviate this, an hyperbolic truncation scheme can be adopted. 

This approach selects all multi-indices with q -norm ‖ α‖ q = 

( 

M ∑ 

i =1 

αq 
i 

) 

1 
q 

less than or equal to a certain model order p, 

i.e. A 

M,p,q = 

{
α ∈ N 

M : ‖ α‖ q ≤ p 
}

. Note that the expansion tends to only maintain univariate polynomials as the q -norm 

decreases, thus achieving a reduction in the computational cost of the metamodel. Nonetheless, the number of terms may 

remain elevated since the potential sparseness in the coefficients is not being actually assessed. Following the work by Blat- 

man and Sudret [51] , the LAR algorithm [52] is adopted to further reduce the number of polynomial coefficients. In the 

context of PCE, LAR constructs a set of expansions incorporating an increasing number of basis polynomials �α, from 1 to 

P = card 

(
A 

M,p,q 
)
. The resulting sequence of index sets is used to construct a family of expansions with decreasing sparse- 

ness. Finally, a cross-validation procedure can be implemented to select the best metamodel among the obtained family of 

expansions. In particular, the Bayesian Information Criterion (BIC) is adopted in this work. Once the optimal index set is se- 

lected, the expansion coefficients a = { a α, α ∈ A 

M,p ⊂ N 

M } are obtained by minimizing the expectation of the least squared 

error: 

a = arg min 

a ∈ R P 
E 

⎡ ⎣ 

( 

M ( x ) −
∑ 

α∈ A 

M,p,q 

a α�α( x ) 

) 2 
⎤ ⎦ . (5) 

In practice, Eq. (5) is calibrated on a set of N realizations 
 = 

{
x (1) , . . . , x (N) 

}
of the input variable x forming the ED. In 

order to obtain a representative ED, the adaptive MIPT sampling method [22] is adopted in this work. Then, the expectation 

operator in Eq. (5) is replaced by its discretized version using the ED realizations as follows: 

a = arg min 

a ∈ R P 
1 

N 

N ∑ 

i =1 

( 

M 

(
x 

(i ) 
)

−
∑ 

α∈ A 

M,p,q 

a α�α

(
x 

(i ) 
)) 2 

. (6) 

Denoting the realizations of the output variable y by y = { y (1) = M ( x (1) ) , . . . , y (N) = M ( x (N) ) } T , the solution of the opti- 

mization problem in Eq. (6) reads: 

ˆ a = 

(
�T �

)−1 
�T 

y , � = ( �i j ) = 

[
ψ j ( x 

(i ) ) 
] j=1 , ... ,P 

i =1 , ... ,N 
, (7) 

where � denotes the information matrix calculated from the evaluation of the basis polynomials on 
. For the least-square 

minimization problem in Eq. (6) to be well posed, the size of the ED is usually selected according to the heuristic rule 

N ≈ 2 · P or 3 · P [51] . Once Eq. (6) has been solved, the predictions of the PCE surrogate model can be obtained as: 

ˆ y = 

ˆ M PCE ( x ) = 

∑ 

α∈A 

ˆ a α�α( x ) . (8) 

2.1.2. Polynomial chaos expansion based Kriging (PCK) 

The Kriging method assumes that the response of a computational model M ( x ) is modelled by the sum of a stochastic 

random process Z( x ) and a regression model T ( x ) , also called trend, in the form Fuhg et al. [22] : 

ˆ M ( x ) = T ( x ) + Z( x ) . (9) 

The stochastic component in Eq. (9) is fully determined by the covariance function [55] : 

Cov 
(
Z ( x ) , Z 

(
x 

′ )) = E 

[
Z ( x ) Z ( x 

′ ) 
]

= σ 2 R 

(∣∣x − x 

′ ∣∣; θ), (10) 

with σ 2 being the process variance, and R 
(∣∣x − x ′ 

∣∣; θ) an auto-correlation function [56] between two input sample points 

x and x ’ that depends on certain hyper-parameters θ to be computed. In this work, the Gaussian correlation function is 

adopted as: 

R 

(
x , x 

′ , θ
)

= 

M ∏ 

� =1 

exp 

[ 
−θ� 

(
x � − x ′ � 

)2 
] 

. (11) 
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The trend term of the Kriging model in Eq. (9) interpolates the forward model evaluations at the ED, while the local 

variability is captured by the stochastic process. Depending on the form of the trend, three different versions of Kriging are 

typically referred to in the literature [22] , including simple, ordinary and universal Kriging, which respectively correspond to 

polynomials of degrees 0, 1 and N. In this work, with the aim of combining the excellent global approximation capabilities 

of the PCE previously introduced in Section 2.1.1 , the sparse PC expansion obtained by LAR is introduced in the shape of the 

trend term in Eq. (9) . The resulting PCK metamodel reads: 

ˆ M PCK ( x ) = 

ˆ M PCE ( x ) + Z( x ) = 

∑ 

α∈ A 

ˆ a α�α( x ) + Z( x ) . (12) 

The construction of the PCK metamodel in Eq. (12) consists in two steps. Firstly, the optimal set of orthonormal poly- 

nomials �α (for α ∈ A the truncation set) is obtained by LAR as indicated in Section 2.1.1 . Secondly, the calculation of 

hyperparameters ˆ θ and the polynomial coefficients and the process variance { a ( ̂ θ) , σ 2 ( ̂ θ) } are obtained. The optimal cor- 

relation parameters ˆ θ can be determined by the Maximum-Likelihood-Estimation (ML) through the following minimization 

problem [57] : 

ˆ θ = arg min θ

[ 
1 

N 

( y − �a ) 
T 
R 

−1 
( y − �a ) ( det R ) 

1 /N 
] 
. (13) 

In order to solve the optimization problem in Eq. (13) , local optimization algorithms such as gradient-based methods 

are often used. Nonetheless, a major drawback of these techniques relates the troublesome identification of global max- 

ima/minima, being possible to get stuck in local maxima/minima. To avoid this, a global genetic algorithm optimization 

procedure is used in this work. Since the correlation matrix is symmetric and positive definite, its inverse in Eq. (13) is 

computed by Cholesky decomposition. Then, once ˆ θ is computed, the polynomial coefficients and the process variance 

{ a ( ̂ θ) , σ 2 ( ̂ θ) } are calculated using the Empirical Best Linear Unbiased Estimator (BLUE) as [58] : 

a 

(
ˆ θ
)

= 

(
�T 

R 

−1 �
)−1 

�T 
R 

−1 y , σ 2 
(

ˆ θ
)

= 

1 

N 

( y − �a ) 
T 
R 

−1 
( y − �a ) , (14) 

where R i j = R 

(∣∣x (i ) − x ( j) 
∣∣; ˆ θ
)

is the correlation matrix and �i j = ψ j 

(
x (i ) 
)

the information matrix evaluated at all the sam- 

ples of the ED. 

Effective explorative sampling 

With the aim of generating representative EDs, the MIPT algorithm is adopted as a computationally efficient and easily 

implementable adaptive sampling technique. The main advantage of this technique compared to space-filling techniques 

such as LHS regards its ability to avoid local clustering of points which may consequently lead to numerical instabilities 

in the inverse of the Kriging correlation matrix in Eq. (14) . This exploration distance-based sampling method iteratively 

augments the ED by adding new sampling points with maximum distance with respect to the data population in the ED 

among a large set of N c random Monte-Carlo candidates. Specifically, among the candidates set C = { ξ(1) 
, ξ

(2) 
, . . . , ξ

(N c ) } , a 
new sample x (N+1) is chosen by solving the following optimization problem: 

x 

(N+1) = arg max ξ∗ ∈ C 

(
min 

x (i ) , i =1 , ... ,N 

∥∥ξ∗ − x 

(i ) 
∥∥

2 

)
, (15) 

with ‖ ·‖ 2 the euclidean norm, i.e. ‖ x ‖ 2 = 

(∑ M 

i =1 x 
2 
i 

)1 / 2 
. 

2.1.3. Multi-element surrogate model approach 

The previously presented PCK metamodel suffers from low convergence rates when the forward model M exhibits non- 

smoothness [59] . Thus, considerably large ED sizes are often required to achieve accurate predictions. This aspect under- 

mines the computational efficiency of the PCE-based Kriging model, which is dominated by the O(N 

3 ) complexity of the 

Kriging predictor. In turn, this implies long construction times or even memory overflow issues when solving the opti- 

mization problem in Eq. (13) . Moreover, the larger the size of the ED, the slower the evaluation of the corresponding 

metamodel, which reduces or vanishes the advantages of the surrogate approach. To address this issue, a multi-element 

PCK model inspired by the ME-gPC method by Wan and Karniadakis [60] is proposed in this work. This approach consists 

in the partitioning of the random input space into a finite set of non-overlapping subdomains, the construction of a local 

PCK surrogate model in each one following the formulation in Section 2.1.2 and, finally, assembling them into a piecewise 

function to obtain a global metamodel, as sketched in Fig. 1 . 

To systematize the partition of the domain, a simple but efficient regular block partitioning approach has been adopted. 

To do so, the domain partitions are conducted one variable at a time based on a preliminary sensitivity analysis. To this aim, 

the algorithm prioritizes the partition of those variables providing highest sensitivities in terms of the Sobol indices, which 

can be readily extracted from the coefficients of a global PCE [51] . In this way, priority in the partitioning is given to the 

direction of those parameters with highest sensitivity, i.e., those with the greatest effect on the variability of the quantity 

of interest y . Over a set a surrogate models considering an increasing number of domain partitions, the optimal number of 
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Table 1 

Error metrics for the accuracy assessment of surrogate models over a validation set (VS) of size K

(Ref. [61] ). 

Normalized mean-square error (NRMSE) Normalized average absolute error (NAAE) 

NRMSE = 

K ∑ 

i =1 

(
ˆ υ(i ) − υ(i ) 

)2 
/ K ∑ 

i =1 

(
ϒ̄ − υ(i ) 

)2 
NAAE = ( Kσϒ ) 

−1 
K ∑ 

i =1 

∣∣ ˆ υ(i ) − υ(i ) 
∣∣

Coefficient of Determination ( R 2 ) Normalized maximum absolute error (NMAE) 

R 2 = σ 2 

ϒ ˆ ϒ

/ 

σ 2 
ϒ
σ 2 

ˆ ϒ
NMAE = ( Kσϒ ) 

−1 max K 
i =1 

∣∣ ˆ υ(i ) − υ(i ) 
∣∣

partitions is determined in terms of the quality metrics reported hereafter in Table 1 . In general, for the random variable 

x : � → D x ⊂ R 

M , a decomposition is defined as: 

D x = 

⋃ 

j∈J 
D j , D j ∩ D j ′ = ∅ , if j � = j ′ , (16) 

where χD j : � → R denotes the indicator random variable: 

χD j ( x ) = 

{
1 if x ∈ D j 

0 otherwise 
. 

In this way, the global model is defined in a piecewise fashion as: 

ˆ M PCK ( x ) = 

∑ 

j∈J 
χD j ( x ) ˆ M 

j ( x ) . (17) 

As aforementioned, the number of partitions in this work is defined after a parametric analysis. Nevertheless, the pre- 

vious formulation may be readily automated as follows. The splitting criterion of the domain is determined by a certain 

user-defined accuracy goal and a minimum number of samples N per region. Afterwards, the splitting process is performed 

iteratively from a PCK model built over the full parameter space �. In case the target accuracy has not been reached, the 

space is split into two regions and the ED is enriched in each of these subdomains by the MIPT algorithm until there are N 

samples in each one. Note that, given the sequential nature of MIPT, the information of the previously extracted samples is 

not lost. If the accuracy goal is not reached yet, a new division of the space and a new enrichment of the ED are performed. 

2.1.4. Surrogate model accuracy. Complexity analysis of the algorithm 

To evaluate accuracy of the developed metamodel, both local and global error metrics are considered. These metrics are 

computed by considering a validation set (VS) 
 = { ξ(1) 
, . . . , ξ

(K) } , K ∈ N , of the parameters space (independent of the ED). 

Denote by ϒ = { υ(1) = M ( ξ
(1) 

) , . . . , υ(K) = M ( ξ
(K) 

) } and 

ˆ ϒ = { ̂  υ(1) = 

ˆ M PCK ( ξ
(1) 

) , . . . , ˆ υ(K) = 

ˆ M PCK ( ξ
(K) 

) } the outputs of 

the VS estimated by the forward model and the metamodel, respectively. Then, the accuracy of the surrogate model can be 

assessed by using the error metrics like those collected in Table 1 . In this table, ϒ̄ and σϒ = 

√ (∑ K 
i =1 

(
ϒ̄ − υ(i ) 

)2 
)
/ ( K − 1 ) 

denote the arithmetic mean and the quasi standard deviation of ϒ, respectively. Term σ
ϒ ˆ ϒ

represents the covariance of 

( ϒ, ˆ ϒ) , and σ 2 
ϒ

and σ 2 
ˆ ϒ

indicate the variance of ϒ and ˆ ϒ, respectively. Note that the error metric NMAE in Table 1 provides 

a local estimation of accuracy, while NRMSE, NAAE, and R 2 represent global accuracy measures. 

In addition to the error metrics shown in Table 1 , and to verify the whole rate of convergence of the proposed model to 

the unknown function on untried points, we are interested in bounding the maximum PCK-predictive error over the domain 

D x ⊂ R 

M : 

sup 

x ∈D x 
|M ( x ) − ˆ M PCK ( x ) | , (18) 

where 

ˆ M PCK ( x ) = 

∑ 

j∈J 
χD j ( x ) ˆ M 

j 
PCK 

( x ) = 

∑ 

j∈J 
χD j ( x ) 

[
r j 

T 
( x ) R 

j −1 
y −
(
� j T 

R 

j −1 
r j ( x ) − � j ( x ) 

)T (
� j T 

R 

j −1 
� j 
)−1 

� j T 
R 

j −1 
y 

]
, 

is the best linear unbiased predictor (BLUP) of the model M response at any untried point x ∈ D x , with r j ( x ) = [ R j (| x −
x (1) | ) , . . . R j (| x − x (N j ) | )] T the vector of correlations between the design sites 
 j = 

{ 
x (1) , . . . , x (N j ) 

} 
⊂ D j and x , and R j the 

selected correlation function particularized in the j th subregion. Note that the uniform bound in Eq. (18) covers the worst 

case for the prediction error of the PCK model. 
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It has been reported in the literature [62,63] that the prediction error of the universal Kriging converges to zero under 

uniform metric. Adapting Theorem 2 in Wang et al. [63] to the multielement PCE-Kriging model proposed in this work, the 

prediction error can be stated to satisfy: 

E 

[
sup 

x ∈ D x 
|M (x ) − ˆ M PCK (x ) | 

]
≤

J · max 
j∈J 

E 

[
sup 

x ∈ D j 
|M (x ) − ˆ M PCK (x ) | 

]
= O 

(
J P 
 j 

(
P 

j A + log 
1 
2 P −1 


 j 

))
, 

(19) 

where J is the number of subdomains, P 

j = card 

(
A 

M,p,q 
)
, and A is a constant depending on the eigenvalues of � j . Term 

P 
 j 
( x ) denotes the power function given by P 2 


 j 
( x ) := 1 − r j 

T 
( x ) R 

j −1 
r j ( x ) , and P 
 := sup x ∈D x P 
 j 

( x ) is the supremum of 

the pointwise predictive standard deviation. It is thus reasonable to look for EDs minimizing P 
 j 
. Note that the rate of 

convergence in Eq. (19) is a deterministic function dependent on the experimental design 
 j and decreasing with P 
 j 
. In 

fact, when N j = card ( 
 j ) increases, P 
 j 
tends to zero and so does the multielement PCK prediction error under the uniform 

metric in Eq. (19) . 

On the other hand, the algorithm for finding an optimizer of Eq. (13) is an iterative process involving the calculation 

of the inverse and determinant of a large N × N covariance matrix R i j = R 

(∣∣x (i ) − x ( j) 
∣∣; ˆ θ
)

. Thus, the computational effort 

to obtain the solution may become impractical for large numbers N of training data points in 
. Note that the PCK model 

requires O(N 

3 ) operations and has a memory complexity of the order of N 

2 [34] . In this light, the splitting technique 

presented in Section 2.1.3 leads to substantial reductions in the computational effort. Specifically, taking N j = card (
 j ) , 

with N j  N, J  N j , the algorithm effort and the memory storage reduces to J · O(N 

3 
j 
) ∼ O(N 

3 
j 
)  O(N 

3 ) and J · O(N 

2 
j 
) ∼

O(N 

2 
j 
)  O(N 

2 ) , respectively. On the other hand, the optimal order of the polynomials in the PCE is automatically identified 

by the LAR algorithm. It is reported in reference [52] that the LAR algorithm with M variables requires O(M 

3 + N j M 

2 ) 

computations in any subdomain D j . Therefore, in our case where M  N j , it follows that M 

3 < N j M 

2 and, thus, O(N j M 

2 ) ∼
O(N j ) . Hence, the computational complexity of PCE when inserted as the trend term is marginal with respect to the overall 

construction of the Kriging model, thereby we can deduce that the efficiency of the proposed PCE-Kriging metamodel is 

O(N 

3 
j 
)  O(N 

3 ) . 

2.2. Bayesian parameter inference via MCMC 

In the Bayesian inference framework, model parameters θ are conceived as a random variable with a certain posterior 

PDF π described by Bayes’ theorem: 

π
(
θ| y ) = 

p 
(
y | θ)p (θ)

p ( y ) 
, p ( y ) = 

∫ 
�

p 
(
y | θ)p (θ)d θ, (20) 

where p( y | θ) = L ( θ) denotes the likelihood function, p( θ) the prior distribution of the model parameters, and p( y |M ) a 

normalizing constant, also called evidence. In the context of this work, y and θ represent a set of n experimental observa- 

tions and the model parameters of the metamodel to be calibrated, respectively. Errors ε between the experiment and the 

predictions of the surrogate model are assumed to be normally distributed with zero mean and standard deviation σε , that 

is y = 

̂ M ( θ) + ε with ε ∼ N (0 , σε I ) . Then, the likelihood function L ( θ) can be expressed as: 

L ( θ) = 

exp 

( 

− 1 

2 σ 2 
ε 

n ∑ 

i =1 

| y i − ̂ M ( θ) | 2 
) 

√ 

2 πσε 

. (21) 

Obtaining π from Eq. (20) in analytical closed-form is infeasible in most practical applications, being MCMC methods the 

most popular approach to numerically characterize the PDF of the model parameters. This approach allows one to draw sam- 

ples from π without computing the model evidence, which is independent from the model parameters θ. In this work, the 

DRAM algorithm developed by Haario et al. [53] is implemented. This approach combines delayed rejection (DR) [64] and 

adaptive Metropolis (AM) [65] , which enhances the sampling efficiency of the sampling and enables the identification of 

multi-modal PDFs. Given a set of observed data samples in vector d , the working principle of the DRAM approach can be 

outlined as follows: 

1. Initialize the parameter set θc = θ0 and the number T of desired samples. Set an initial point from the parameter space 

and the covariance of the proposal distribution �p = �0 . The proposal distribution is chosen as a multivariate Gaussian 

distribution with mean θc and covariance matrix �p . Select the initial non-adaptation period n o and set i = 1 . 

2. Propose a new parameter value θp, 1 by sampling from a proposal PDF S 1 ( θ, θc ) . Accept θp, 1 with probability: 

α1 

(
θc , θp, 1 

)
= min 

( 

1 , 
p 
(

d | θp, 1 

)
S 1 ( θp, 1 , θc ) 

p 
(

d | θc 

)
S 1 ( θc , θp, 1 ) 

) 

, (22) 
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and go to step (4). If rejected, propose a second stage move in step (3). 

3. Propose a second stage move θp, 2 sampling from S 2 ( θ, θp, 1 , θc ) . This second stage proposal depends not only on the 

current position of the chain but also on the candidate that has just been proposed and rejected. Accept or reject θp, 2 

by setting: 

θi = 

{
θp, 2 , with probability α2 

(
θc , θp, 1 , θp, 2 

)
, 

θc , with probability 1 − α2 

(
θc , θp, 1 , θp, 2 

)
, 

(23) 

with 

α2 

(
θc , θp, 1 , θp, 2 

)
= min 

{ 

1 , 
p 
(

d | θp, 2 

)
S 1 
(
θp, 2 , θp, 1 

)
S 2 
(
θp, 2 , θp, 1 , θc 

)[
1 − α1 

(
θp, 2 , θp, 1 

)]
p 
(

d | θc 

)
S 1 
(
θc , θp, 1 

)
S 2 
(
θc , θp, 1 , θp, 1 

)[
1 − α1 

(
θc , θp, 1 

)] } 

. (24) 

4. Update the covariance matrix �p as: 

�p = 

{
�0 i ≤ n 0 

s d cov 
(
θ1 , . . . , θi 

)
i > n 0 

(25) 

with s d a scaling parameter. Following [66] , s d = 2 . 4 2 /d with d being the number of fitting parameters is recommended 

as a good default value in most applications. 

5. Go to step 2, until the desired number of samples T are obtained. 

3. Numerical results and discussion 

This section presents two application case studies to demonstrate the effectiveness of the proposed surrogate model- 

based Bayesian parameter estimation. These include a two-dimensional benchmark function and the PDE for TDS testing 

of hydrogen desorption in metals. The previous formulation has been implemented in Matlab environment, and all the 

numerical tests have carried out in a computer Intel(R) Core(TM) i9-10900X CPU @ 3.70 GHz with 64 GB of RAM memory. 

In the remainder of this section, for simplicity in the notation, the predictions of the PCK metamodels ˆ M PCK are noted as 
ˆ M . A q -norm value of 0.95 and Legendre polynomials of orders ranging from 2 to 6 are selected to build the PCEs in all 

the analyses hereafter. For the generation of the EDs, the number of random Monte Carlo candidate samples in the MIPT 

algorithm introduced in Section 2.1.2 is set to 25,0 0 0. 

3.1. Two-dimensional Drop-Wave function 

This first case study investigates the Drop-Wave function, also known as the Salomon’s function [67] , given by f : D x = 

[ −10 , 10] 2 ∈ R 

2 → R : 

f (x 1 , x 2 ) = 1 − cos 

(
2 π
√ 

x 2 
1 

+ x 2 
2 

)
+ 0 . 1 

√ 

x 2 
1 

+ x 2 
2 
. (26) 

This function is commonly used for benchmarking optimization algorithms. Owing to its highly non-linear character, the 

Drop-Wave function represents an ideal case study to validate the proposed multi-element PCK metamodel. Note that the 

surrogate modelling of this function using conventional techniques is extremely challenging given its fast-varying gradi- 

ents and irregular response as observed in Fig. 2 (a). Following Section 2.1.3 , four experimental design sets ED i ⊂ D x , 

i = 1 , . . . , 4 containing 360, 720, 1440 and 2880 samples have been defined. In addition, three different number of do- 

main partition schemes P 

j , j = 1 , . . . , 3 , have been considered. These include P 

1 = [ −10 , 10 ] 
2 
, P 

2 = ( [ −10 , 0 ) ∪ [ 0 , 10 ] ) 2 , 

and P 

3 = 

([
−10 , −10 

3 

)
∪ 

[−10 
3 , 10 

3 

)
∪ 

[
10 
3 , 10 

])2 
, leading to a total of two, four and nine sub-domains, respectively. The num- 

ber of samples has been chosen with the aim of obtaining a wide range of errors to correctly identify the convergence of 

the prediction error. For instance, if one takes the R 2 error metric, note that the constructed metamodels exhibit a wide 

range of R 2 values from 0.011 to 0.999. Additionally, the predictions by a previously reported multielement approach, the 

Stochastic Spectral Embedding (SSE) model proposed by Sudret and Marelli [35] , are also presented as a reference solution. 

The SSE model is a PCE-based technique consisting of constructing a sequence of residual spectral expansions of the target 

model in subdomains of the input space. The implementation included in the UQLab software [68] has been used to carry 

out the analyses. Four different surrogate models have been built, one for each considered ED. As parameters, a q -norm 

value of 0.95, polynomials ranging from degree 2 to 10, and a minimum size of points per region equal to the size(ED)/120 

have been selected. To sample the ED, the sequential experimental design based on the LHS implemented in UQLab has 

been chosen. 

Hence, a total of sixteen surrogate models have been constructed. For ease in the discussion, the PCK surrogate models 

are specified with sub- and super-indexes denoting the size of the ED and the number of partitions, respectively, as reported 

in Table 2 . All the surrogate models have been validated using a reasonabily large VS of 20,0 0 0 samples, and the accuracy 

of the models has been evaluated through the accuracy metrics reported in Table 3 . The computational times involved in 

the construction t c of the surrogate models, as well as their evaluation times t e and t e (VS) for a single point and the full VS 
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Fig. 2. Exact response surface of the Drop-Wave function (a), and predictions by surrogate models ˆ M 

3 
1 (b), ˆ M 

1 
4 (c), ˆ M 

2 
4 (d), ˆ M 

3 
3 (e) and ˆ M 

3 
4 (f). 

Table 2 

PCK surrogate-models constructed for the Drop-Wave function considering increasing EDs ( ED i ) with varying num- 

bers of domain partitions ( P j ) (VS of 20,0 0 0 samples). 

No. of sub-domains ED 1 (360 samples) ED 2 (720 samples) ED 3 (1440 samples) ED 4 (2880 samples) 

P 1 (1 partition) ˆ M 

1 
1 

ˆ M 

1 
2 

ˆ M 

1 
3 

ˆ M 

1 
4 

P 2 (4 partitions) ˆ M 

2 
1 

ˆ M 

2 
2 

ˆ M 

2 
3 

ˆ M 

2 
4 

P 3 (9 partitions) ˆ M 

3 
1 

ˆ M 

3 
2 

ˆ M 

3 
3 

ˆ M 

3 
4 

SSE (reference) ˆ M 

SSE 
1 

ˆ M 

SSE 
2 

ˆ M 

SSE 
3 

ˆ M 

SSE 
4 

Fig. 3. Forward model evaluations versus surrogate model predictions for the Drop-Wave function. ˆ M 

1 
3 (a), ˆ M 

1 
4 (b), ˆ M 

3 
4 (c) and ˆ M 

SSE 
4 (d) (VS of 20,0 0 0 

samples). 

have been also computed and collected to compare their effectiveness. The com parison of the exact response surface of the 

Drop-Wave function and the predicted ones by five of the constructed surrogate models is depicted in Fig. 2 . 

Fig. 3 shows the scatter plots of the forward model evaluated on the VS versus four metamodels, ˆ M 

1 
3 

(a), ˆ M 

1 
4 

(b), ˆ M 

3 
4 

(c) and 

ˆ M 

SSE 
4 

(d). The first two metamodels consider the whole design space, while the last two account for partition ap- 

proaches. It is noted in this figure that the best approximations are found for ˆ M 

1 
4 

(no partitions) and 

ˆ M 

3 
4 

(9 partitions with 

EDs of 2880 samples). The predictions by these models exhibit low scatter around the diagonal line (perfect metamodel) 

with coefficients of determination R 2 very close to 1. The limited efficiency of the SSE model in this case study is evidenced 

by the large scatter of its predictions along the diagonal in Fig. 3 (d). Interestingly, note that the predictions by ˆ M 

1 
4 

slightly 
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Table 3 

Accuracy and computational efficiency analysis of proposed surrogate models applied to the Drop- 

Wave function. Terms t c , t e and t e (VS) denote the time of construction, average point evaluation, and 

evaluation on the full validation set, respectively. 

Model NAAE NMAE NRMSE R 2 t c [s] t e [s] t e (VS) [s] 

ˆ M 

1 
1 1.030E + 0 1.736E −4 1.589E + 0 0.024 34.1 5.069E −5 1.013 

ˆ M 

1 
2 8.340E −1 1.001E −4 8.701E −1 0.134 151.3 2.014E −4 4.028 

ˆ M 

1 
3 8.321E −1 8.159E −5 8.627E −1 0.139 661.8 9.301E −4 18.601 

ˆ M 

1 
4 2.876E −3 2.707E −5 2.651E −4 0.999 2905.7 5.078E −3 101.540 

ˆ M 

2 
1 9.162E −1 1.399E −4 12.080E −1 0.043 20.3 6.840E −6 0.138 

ˆ M 

2 
2 8.978E −1 1.412E −4 11.980E −1 0.823 44.4 1.996E −5 0.399 

ˆ M 

2 
3 5.448E −1 1.355E −4 4.974E −1 0.551 131.8 5.656E −5 1.131 

ˆ M 

2 
4 2.256E −2 3.976E −5 2.559E −3 0.997 594.7 2.066E −4 4.132 

ˆ M 

3 
1 8.757E −1 2.044E −4 11.230E −1 0.079 28.9 3.590E −6 0.071 

ˆ M 

3 
2 7.765E −1 1.231E −4 8.622E −1 0.193 41.8 6.875E −6 0.138 

ˆ M 

3 
3 4.404E −1 1.297E −4 3.551E −1 0.645 86.4 1.513E −5 0.303 

ˆ M 

3 
4 4.345E −2 4.667E −5 6.712E −3 0.993 244.7 4.750E −5 0.950 

ˆ M 

SSE 
1 1.249E + 0 6.463E −4 2.684E + 0 0.011 42.9 3.529E −5 0.706 

ˆ M 

SSE 
2 1.191E + 0 1.302E −3 2.733E + 0 0.024 33.9 3.401E −5 0.681 

ˆ M 

SSE 
3 8.838E −1 1.714E −3 1.535E + 0 0.113 30.6 3.266E −5 0.653 

ˆ M 

SSE 
4 6.748E −1 5.694E −4 1.041E + 0 0.298 32.5 3.101E −5 0.620 

Fig. 4. Performance assessment of PCK surrogate models for the Drop-Wave function (VS of 20 0 0 0 samples). 

outperform those obtained with 

ˆ M 

3 
4 
, while higher numbers of partitions do not seem not to systematically improve the 

prediction accuracy. Nevertheless, the computational times involved in the construction and evaluation of ˆ M 

1 
4 

are, respec- 

tively, about 10 and 100 times those required by ˆ M 

3 
4 

(see Table 3 ). It is extracted from this analysis that the selection of the 

optimal surrogate model must be conducted by balancing the computational burden and the fitting accuracy. In this regard, 

Fig. 4 investigates the computational efficiency in terms of t e versus prediction accuracy (NRMSE) for all the considered 

surrogate models. In this figure, it is trivially observed that as the size of the ED increases, both computational time and 

accuracy of the metamodels increase. It is important to highlight that the consideration of higher number of subdomains 

leads to lower evaluation times for all the considered EDs. This is explained by the implementation of the LAR algorithm 

to extract optimal sets of polynomials in the PCE, and in particular, thanks to the reductions in the computational cost 

involved in the construction of the Kriging predictor (see Section 2.1.4 ). When inspected in a partition-wise fashion, the 

forward model exhibits a smoother behaviour, in such a way that the PCE requires less high-order polynomials to reproduce 

its behaviour. This results in more compact expansions, which also decreases the cost in the computation of the correlation 

matrix in the Kriging metamodel. On the other hand, note that the higher the order in the PCE, the larger the number of 

samples that are required in the ED to fit the expansion with accuracy. In this light, to reach a comparable accuracy to the 

one achieved by the Multi-Element PCK ( R 2 > 0 . 99 ) through SSE, it is necessary to increase the degree of the polynomial 

expansion up to 14 and to sample a ED with more than 45,0 0 0 training points. These results strengthen the comparatively 

superior convergence rate of the proposed approach for this class of problems with highly non-linear spatial variability. As 

previously detailed in Section 2.1.4 , the computational complexity of the proposed PCK model is O(N 

3 
j 
) . This is due to the 

Cholesky decomposition of the correlation matrix R in Eq. (13) . Therefore, as the ED increases, the computational cost in- 

volved in the determination of the stochastic hyper-parameters of the Kriging model and its evaluation rises dramatically. 

On the other hand, the dependence of the accuracy of the metamodel with the number of partitions is not so clear. It is 

noted that the accuracy of metamodels trained with a larger number of subdomains is higher compared to those with no 
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Fig. 5. (a) A schematic illustration of initial and boundary conditions in a TDS test. (b) Schematic definition of binding energy in a one-dimensional 

diffusion path. (c) Transient solution curves of the normalised lattice occupancy fraction θL /θ0 
L at different times t along the specimen’s thickness. (d) A 

schematic of typical hydrogen desorption flux versus temperature curves obtained in a TDS test. 

partitions for limited to moderate EDs. Nevertheless, when the size of the ED goes from moderate to large, the accuracy 

diminishes. 

3.2. Thermal desorption spectroscopy (TDS) of hydrogen in metals 

This last section reports the use of the proposed surrogate model for the Bayesian identification of hydrogen desorption 

and trapping characteristics in metallic materials. Hydrogen embrittlement (HE) refers to the loss of ductility and toughness 

of metallic alloys induced by hydrogen atoms deposited at lattice sites and micro-structural defects such as dislocations, 

grain boundaries or vacancies [69,70] . Although this phenomenon has been extensively documented since the 19th century 

[71] , the growing trend towards a hydrogen-based economy as a means of mitigating CO 2 emissions and fossil fuel depen- 

dency has generated unprecedented interest on HE research. Micro-structural defects in metals act as ‘trap’ sites, which 

sequester hydrogen and govern the susceptibility to HE [72,73] . Their characterization is thus of pivotal importance for the 

understanding of HE and the design of HE-resistant alloys, and this is generally achieved using TDS experiments [74] . The 

TDS test involves several stages [75] : charging a sample with hydrogen, heating the sample at a fixed rate, and detecting the 

flux of desorbing hydrogen as a function of temperature by using a mass spectrometer. The hydrogen flow curve of desorb- 

ing hydrogen as a function of temperature defines the TDS spectrum, whose peaks can be associated with the presence of 

diverse micro-structural defects. Nonetheless, the formation of peaks in the TDS spectrum may be induced by the combined 

action of manifold hydrogen traps, being necessary to use simulation models and inverse calibration for their identification. 

Previous investigations on the modelling of the TDS test evidenced the existence of non-smooth relationships between the 

flux curves and the parameters characterizing micro-structural defects (see e.g. [76] ), making this application a formidable 

benchmark case study for the formulation presented in this work. In the remainder of this section, the PDE governing the 

hydrogen diffusion in materials tested by TDS is introduced in Section 3.2.1 . The construction of the surrogate model and its 

performance evaluation is reported in Section 3.2.2 and, finally, Section 3.2.3 presents the Bayesian parameter identification 

results. 

3.2.1. TDS governing diffusion equation 

Consider a one-dimensional specimen of length L as sketched in Fig. 5 (a). The specimen is subjected to increasing tem- 

peratures T , starting from T o and increasing at a constant heating rate φ. Hydrogen atoms occupy normal intersticial lattice 

sites (NILS) and additionally can reside at trapping sites such as interfaces or dislocations. The kinetics of hydrogen trapping 

and detrapping in metals is commonly described with a two-level system as sketched in Fig. 5 (b) for the case of a sin- 

gle trap. The potential landscape in this figure describes the diffusion path of hydrogen in metals, the trap binding energy 

�H being the difference between detrapping and trapping energies. Let us assume that the number of hydrogen traps in 

the specimen amounts to N t . Then, let C L (x, t) and C T,i (x, t) , i = 1 , . . . , N t , denote the hydrogen concentration in the lattice 

and in the i -th trap, respectively, with x ∈ [ −L/ 2 , L/ 2 ] and t respectively denoting space and time. On this basis, the Fickian 

diffusion equation needs to be enriched with source and sink terms as [76] : 

∂C L 
∂t 

+ 

N t ∑ 

i =1 

∂C T,i 

∂t 
= D L 

∂ 2 C L 
∂x 2 

, (27) 

with D L = D o exp ( −Q/RT ) being the lattice diffusion coefficient, which is expressed in terms of the lattice activation 

energy Q , diffusion pre-exponential factor D o , and the universal gas constant R . It is convenient to introduce the lattice and 
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Table 4 

Non-dimensional variables used in the hydrogen diffusion PDE employed for the TDS tests. 

Spatial coordinate x = x/L Lattice activation energy Q = Q/ ( RT o ) 

Time coordinate t = tD o /L 2 Trap binding energy �H i = �H i / ( RT o ) 

Heating rate φ = 

(
φL 2 
)
/ ( T o D o ) Lattice diffusion coefficient D L = D L /D o 

Trap density N i = ( αN T,i ) / ( βN L ) Local equilibrium constant K = exp 

{ 
− �H i 

T 

} 
Temperature T = T /T o Fractional lattice occupancy θ L = θL /θ o 

L 

trap occupancy fractions θL and θT,i 

({
θL , θT,i 

}
∈ [ 0 , 1 ] 

)
, respectively, by rewriting the corresponding concentrations in the 

form C L = θL β N L and C T,i = θT,i α N T,i . Here, β is the number of NILS per unit volume, α is the number of atoms sites per 

trap, N L is the number of lattice atoms per unit volume, and N T,i is the number of trap sites per unit volume. Therefore, 

Eq. (27) can be rewritten as: 

∂θL 

∂t 
+ 

N t ∑ 

i =1 

(
αN T,i 

βN L 

)
∂θT,i 

∂t 
= D L 

∂ 2 θL 

∂x 2 
. (28) 

The PDE in Eq. (28) needs to be complemented with trap kinetic equations. To this aim, the formulations by MacNabb and 

Foster [77] and Oriani [78] are commonly adopted. The latter represents a simplification of the former by assuming that a 

local equilibrium exists between the hydrogen atoms at the lattice sites and the i -th trap such that, for θL  1 , 

θT,i = 

K i θL 

( 1 + K i θL ) 
, (29) 

with K i being the local equilibrium constant for the i -th trap: 

K i = exp 

{
−�H i 

RT 

}
. (30) 

Introducing Eq. (29) into (28) , and following the non-dimensional formulation developed by Raina et al. [76] , the governing 

PDE describing hydrogen diffusion in the TDS test can be recast in a compact form as: 

∂ θ L 

∂ t 

[ 

1 + 

N t ∑ 

i =1 

K i N i (
1 + K i θ

0 
L 
θ L 

)2 

] 

+ 

θ L 

T 
2 

N t ∑ 

i =1 

K i N i �H i φ(
1 + K i θ

0 
L 
θ L 

)2 
= D L 

∂ 2 θ L 

∂ x 2 
, (31) 

with θ0 
L 

being the initial lattice occupancy. The non-dimensional variables employed are listed in Table 4 . 

The initial and boundary conditions of the PDE in Eq. (31) are schematically presented in Fig. 5 (a). At t = 0 , it is as- 

sumed an initial uniform lattice occupancy θ L 

(
x , t = 0 

)
= 1 . Thereafter, the hydrogen lattice occupancy is assumed zero at 

the boundaries, that is θ L 

(
x = ±1 / 2 , t > 0 

)
= 0 . As temperature raises, the lattice occupancy evolves spatially and tempo- 

rally as sketched in Fig. 5 (c), and the flux of hydrogen atoms J(t) diffusing out at boundaries is measured as presented in 

Fig. 5 (d). This flux can be obtained in non-dimensional terms after solving Eq. (31) as [76] : 

J = −D L θ
o 
L 

∂ θ L 

∂ x 
. (32) 

Generally, the magnitudes of Q , D 0 and θ0 
L 

are known, and the heating rate φ is an input to the TDS system. Therefore, 

the TDS spectrum can be used to map the microstructural hydrogen traps, as characterised by their trap densities ( N i ) and 

binding energies ( �H i ) . These can be obtained for a given flux curve J by the inverse calibration of the PDE in Eq. (31) . 

The surrogate modelling of the flux curves obtained after solving Eq. (31) represents a formidable problem due to the 

strong nonlinearities of these curves. Specifically, depending upon the hydrogen trap configuration, several different regimes 

can be observed, as previously discussed by Raina et al . [76] . Specifically, their results for the case of metals containing a 

single trap showed that no peak flux is attained for low trap densities and binding energies. Alternatively, when a peak flux 

is found, those authors identified two distinct regimes (I and II) originated by two types of microstructural defects, referred 

to as shallow and deep traps. Shallow traps are characterized by large trap densities, and give origin to peak fluxes that 

are highly sensitive to both N and �H. On the other hand, deep traps are characterized by low trap densities, resulting in 

peak fluxes that are insensitive to the trap binding energy. The existence of these different regimes turns the construction 

of a surrogate model covering the whole domain of the traps into an notably challenging task. Note that a large number of 

high-order polynomials and a dense ED need to be included in the PCE to accurately represent the whole global behaviour 

of the hydrogen flux. Such large EDs may severely compromise the computational efficiency of the surrogate model since, 

as indicated above, the complexity of the Cholesky decomposition of the correlation matrix R in Eq. (13) is O 

(
N 

3 
)
. The 

metamodeling of TDS experiments thus represents an exceptional case study to justify the use of the domain partitioning 

approach presented in Section 2.1.3 . 
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Table 5 

Accuracy and computational efficiency analysis of PCK metamodels developed for the sur- 

rogate modelling of hydrogen diffusion flux curves obtained by TDS (VS = 36,0 0 0). 

ˆ M 1 ˆ M 2 ˆ M 3 ˆ M 4 

72 subdomains 72 subdomains 108 subdomains 108 subdomains 

ED = 72,0 0 0 ED = 108,0 0 0 ED = 72,036 ED = 108,0 0 0 

t e [ms] 1.97 4.86 0.83 2.02 

NAAE 1.0637E −02 7.540E −03 1.115E −02 7.736E −03 

NMAE 2.517E −05 2.239E −05 2.363E −05 1.656E −05 

NRMSE 9.452E −04 5.259E −04 1.208E −03 5.229E −04 

R 2 0.9991 0.9995 0.9988 0.9995 

3.2.2. Surrogate modelling of TDS flux curves for metals with two traps 

The PDE in Eq. (31) is solved numerically by using the pdepe solver in MATLAB. A space discretization of 201 elements 

along x was found to provide mesh-independent results. To illustrate the behaviour of a ferritic steel sample, representati- 

tive model parameters from reference [76] have been adopted herein, including a lattice activation energy Q = 6 . 7 kJmol −1 , 

diffusion pre-exponential factor D o = 2 × 10 −7 m 

2 s −1 , heating rate φ = 0 . 1 and lattice density N L = 8 . 46 × 10 28 atoms m 

−3 , 

with α = β = 1 . The initial temperature and occupancy fraction are chosen as T o = 293 K and θ0 
L 

= 10 −6 , respectively, and 

the thickness of the specimen is chosen as L = 5 mm. The variation of trap binding energies and trap densities are se- 

lected as the physically meaningful ranges −40 ≤ �H i ≤ −10 and 10 −7 ≤ N i ≤ 10 −2 . In the present study, we limit to the 

modelling of metals with two hydrogen traps, i.e. N t = 2 . Therefore, in the surrogate modelling, temperature and the trap 

densities and binding energies are considered as input variables, which amounts to 5 design variables, i.e. M ( x ) = J with 

x = 

[
T , �H 1 , �H 2 , log ( N 1 ) , log ( N 2 ) 

]T ⊂ R 

5 . 

After some preliminary sensitivity analyses, two partitions of D x have been considered, namely P 

1 , P 

2 . Partition P 

1 has 

been defined by splitting the temperature T and activation energy domains ( �H i , i = 1 , 2 ) in two, while three segments 

were considered for the partition of the domain of the trap densities ( log ( N i ) , i = 1 , 2 ). On the other hand, the partitions 

in P 

2 remain identical except for the temperature domain which is divided in three sub-domains. In order to define the 

optimal surrogate model, EDs of 10 0 0 and 150 0 sampling points per-subdomain have been considered for P 

1 , while EDs of 

667 and 10 0 0 points per sub-domain have been defined for P 

2 . This amounts to four different surrogate models labelled 

with 

ˆ M i , i = 1 , . . . , 4 . In order make a fair comparison between the different proposals, models ˆ M 1 and 

ˆ M 3 are trained with 

EDs of 72,0 0 0 and 72,036 samples respectively, while ˆ M 2 and 

ˆ M 4 are trained with 108,0 0 0 samples. The comparison of the 

metamodels in terms of accuracy and computational efficiency is reported in Table 5 over a VS of 36,0 0 0 samples. Similarly 

to the results in the previous case study, the consideration of domain partitioning leads to considerable computational time 

reductions and moderate reductions in prediction accuracy. Note that the evaluation time of the forward model is about 

280 ms, so all the metamodels achieve reductions between 98.3%–99.7%. The computation time of the metamodel depends 

upon the size of the ED in each region, which explains why models ˆ M 3 and 

ˆ M 2 are the fastest and slowest ones, respec- 

tively. On the other hand, the accuracy of the metamodel increases as so does the size of the ED. Indeed, models ˆ M 2 and 

ˆ M 4 exhibit significantly lower errors compared to models ˆ M 1 and 

ˆ M 3 . Therefore, in view of these results, ˆ M 4 provides a 

good trade-off between computational efficiency and accuracy, and it is selected in the subsequent Bayesian model parame- 

ter inference. To illustrate the effectiveness of the surrogate model in representing the different stages observed in the TDS 

test, Fig. 7 shows the comparison of the forward model and the predictions by ˆ M 4 for a variety of combinations of traps, 

including the case of fluxes without peak, one single peak, and two peaks. It is observed that the proposed PCK model can 

accurately reproduce all the different regimes observable in the TDS test. Only some minor errors are observed in the no flux 

regime, given the imposed limitation on the order of the polynomials in the PCE for the sake of computational efficiency. 

Finally, in order to highlight the superior performance of the proposed multi-element PCK metamodel, Fig. 6 furnishes the 

comparison of the predictions by standard LAR-PCE (trained with 76,0 0 0 samples) and 

ˆ M 4 . These results clearly evidence 

the superior performance of the proposed approach with respect to LAR-PCE, whose predictions versus the forward model 

exhibits a large scatter around the diagonal line with a low coefficient of determination of R 2 = 0 . 46 . 

3.2.3. Bayesian inference of the trapping sites from a TDS experiment 

In this last subsection, the previous surrogate model ˆ M 4 is used to conduct Bayesian parameter inference following 

the MCMC algorithm in Section 2.2 . The trap binding energies and densities of the two trap system are chosen as the 

inference parameters θ = 

(
�H 1 , �H 2 , log ( N 1 ) , log ( N 2 ) 

)
in Eq. (20) . With the purpose of assessing the performance of the 

implemented DRAM MCMC approach to infer the parameters of hydrogen traps covering the two different regions described 

in reference [76] , two different trap configurations are considered to generate synthetic experimental data from the forward 

model. A two-trap system (EI) with properties θ = ( −25 , −35 , −3 , −2 . 5 ) is considered first. The second one (EII) instead is 

defined by θ = ( −15 , −30 , −6 , −3 ) . The flux curves obtained in EI and EII correspond to those previously shown in Fig. 7 (f) 

and (g), respectively. In addition, to evaluate the sensitivity of the model parameter inference to the presence of noise 

pollution in the experiment, a second analysis of the EII experiment was performed after affecting the flux curve with a 

zero-mean Gaussian white noise with a standard deviation equal to 0.4 times the mean value of the unpolluted flux curve 
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Fig. 6. Scatter plots of Hydrogen flux curves obtained by the forward solution of the PDF of the TDS test versus the predictions by standard LAR-PCE (a) 

and by the proposed multi-element PCK metamodel ˆ M 4 (b) (VS of 36,0 0 0 samples). 

Fig. 7. Surrogate modelling of the Hydrogen flux curves obtained by TDS of metals with different values of trap binding energies and concentrations. 

Quantities in parenthesis represent the parameters of the traps 
(
�H 1 , �H 1 , log ( N 1 ) , log ( N 2 ) 

)
. 
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Fig. 8. Markov chains generated by DRAM MCMC of trap parameters �H 1 , �H 2 , log ( N 1 ) , log ( N 2 ) for TDS Experiment EI. 

(note later in Fig. 11 that such a noise level represents a considerably low signal-to-noise ratio). The experiment EI was 

defined to illustrate the potentials of the implemented DRAM MCMC to draw samples from a multi-modal distribution. Note 

that the PDE in Eq. (31) does not differentiate the order of the traps, thereby the problem is ill-posed and the posterior 

distribution is expected to exhibit two modes corresponding to two symmetric solutions. Instead, the experiment EII was 

designed to account for a trap ( �H 1 = −15 , log ( N 1 ) = −6 ) in the regime with no flux as identified by Raina and et al. [76] , 

while the second trap ( �H 2 = −30 , log ( N 2 ) = −3 ) represents a deep trap. Therefore, the PDF in this case should be uni- 

modal. 

In the inference analyses, uninformative uniform priors U(−40 , −10) and U(−7 , −2) are selected for �H i and log ( N i ) 

( i = 1 , 2 ), respectively. A total number of 200 000 samples with a burning time of 50 000 samples were drawn by the 

previously introduced Bayesian inference approach for EI. The sampling of the posterior PDF in Experiment EII was more 

challenging given its uni-modal nature with large regions of low probability, requiring up to 480,0 0 0 samples with a burning 

period of 160,0 0 0 samples to achieve convergence. Interestingly, this phenomenon attenuates when the flux curve is affected 

by noise, only requiring a chain of 120,0 0 0 samples with a burning period of 30,0 0 0 to attain convergence. This is expectable 

since the noise-induced lower probability concentration around the exact true solutions makes it easier for the chain to 

span from one solution to the symmetric one. The initial location state was defined as θ0 = ( −25 , −25 , −4 . 5 , −4 . 5 ) , while 

the prediction error was set to σε = 1 E − 9 and 1 . 6 E − 5 for the noise unpolluted and polluted cases, respectively. After 

some initial calibration by visual inspection of the chain traces, a diagonal covariance matrix with entries equal 
(
0 . 05 · θ0 

)2 
was initially defined for the Gaussian proposal. In the AM step the proposal distribution was scaled by a factor s d = 2 . 4 2 /d

and the non-adaptation period n 0 was set to 500 and 4000 for the EI and EII experiments, respectively. On the other hand, 

in the DR step the proposal is scaled down by a factor of 0.2. 

The Markov chain and the joint posterior PDF obtained for Experiment EI are presented in Figs. 8 and 9 , respectively. 

As anticipated, the problem is ill-posed and there exist two potential solutions, namely θ = ( −25 , −35 , −3 , −2 . 5 ) and θ = 

( −35 , −25 , −2 . 5 , −3 ) . This manifests in the marginal PDFs in Fig. 9 . Specifically, the PDFs corresponding to parameters �H 1 

and �H 2 have two identical modes at −35 and −25 , and parameters log ( N 1 ) and log ( N 2 ) have two modes at −3 and 

−2 . 5 . It is observed in Fig. 9 that, indeed, the implemented DRAM algorithm is capable of exploring the two modes in 

the distribution, without getting stuck around one of them as it is usually the case when implementing standard MCMC 

methods. For validation purposes, the posterior PDF has been also computed by direct integration of the forward solution. 

To do so, the evidence of the model has been computed over a mesh of 60 4 elements. This required forty five hours of 

parallel computation on ten cores, while the MCMC approach only required about four hours on a single core. The Highest 

Density Regions (HDRs) at the 80% and 50% level of both distributions are reported in Table 6 The close fittings between 

the exact marginal PDFs and those predicted by the surrogate model-based Bayesian inference in Fig. 9 demonstrate the 

accuracy of the developed approach, as it is also evident from the computed HDRs in Table 6 . Finally, the Markov chain, and 

the posterior PDF obtained for the TDS experiment EII are reported in Figs. 10 and 11 , respectively, and the posterior HDR 

values are reported in Table 7 . In this case, the PDFs exhibit one single mode as previously anticipated. This corresponds 

to the shallow trap ( �H 1 = −30 , log ( N 1 ) = −3 ), while the trap in the no-flux regime goes unnoticed. From a Bayesian 

perspective, this represents an observability limitation of the experiment, being the model of one single trap more likely to 

represent the material given the experimental evidence. Furthermore, it is noted that the presence of measurement noise 

does not substantially alter the inference outcome. The modes of the posteriors for the trap densities parameters �H 1 and 
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Fig. 9. Bayesian identification results of the trap parameters θ = 

(
�H 1 , �H 2 , log ( N 1 ) , log ( N 2 ) 

)
of TDS Experiment EI. The surface plo t in the top right 

corner corresponds to the marginal PDF over 
(
�H 1 , �H 2 

)
obtained by numerical integration. 

Fig. 10. Markov chains generated by DRAM MCMC of trap parameters �H 1 , �H 2 , log ( N 1 ) , log ( N 2 ) for TDS Experiment EII under noise-free data conditions. 
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Table 6 

HDR at 80% and 50% of the PDFs obtained by direct integration and by MCMC for experiment EI. 

HDR �H 1 �H 2 log ( N 1 ) log ( N 2 ) 

80% HDR (MCMC) ( −38.004, −33.084) ∪ ( −28.931, −22.606) ( −37.833, −32.686) ∪ ( −28.628, −23.134) ( −3.075, −2.418) ( −3.059, −2.736) ∪ ( −2.683, −2.409) 

80% HDR (Analytical) ( −38.515, −32.253) ∪ ( −29.121, −22.729) ( −38.179, −32.247) ∪ ( −29.184, −22.991) ( −3.069, −2.386) ( −3.099, −2.389) 

50% HDR (MCMC) ( −36.726, −33.659) ∪ ( −27.398, −24.842) ( −36.546, −33.280) ∪ ( −27.143, −25.164) ( −2.925, −2.869) ∪ ( −2.653, −2.427) ( −2.898, −2.868) ∪ ( −2.637, −2.416) 

50% HDR (Analytical) ( −36.884, −32.840) ∪ ( −27.295, −24.816) ( −36.680, −32.899) ∪ ( −27.424, −25.208) ( −2.702, −2.406) ( −2.703, −2.399) 

5
2
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Fig. 11. Bayesian identification results of the trap parameters θ = 

(
�H 1 , �H 2 , log ( N 1 ) , log ( N 2 ) 

)
of experiment EII with noise unpolluted (red) and polluted 

data (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 7 

HDR at 80% and 50% of the PDFs obtained from noisy and noise-free data by MCMC for experiment EII. 

HDR �H 1 �H 2 log ( N 1 ) log ( N 2 ) 

80% HDR (noise-free data) ( −39.872, −22.145) ( −34.206, −25.128) ( −5.887, −2.927) ( −5.346, −2.920) 

80% HDR (noisy data) ( −39.970, −26.221) ( −39.314, −24.378) ( −5.410, −2.900) ( −5.733, −2.889) 

50% HDR (noise-free data) ( −31.526, −28.406) ( −30.841, −29.199) ( −3.886, −2.924) ( −3.088, −2.946) 

50% HDR (noisy data) ( −31.534, −28.698) ( −31.576, −28.656) ( −3.307, −2.896) ( −3.286, −2.883) 

�H 2 of the noise-free scenario are −29 . 966 and −30 . 002 , while for the noisy scenario the values −29 . 989 and −29 . 961 

are obtained, which represents a difference of 0.077% and 0.137%, respectively. On the other hand, for parameters log ( N 1 ) 

and log ( N 2 ) the modes of the posteriors in the noise-free case are −3 . 009 and −3 . 016 , whereas in the noisy scenario they 

take values −3 . 017 and −3 . 019 , meaning a difference of 0.266% and 0.010%, respectively. This confirms that the proposed 

approach is robust to the presence of measurement noise. Overall, these results illustrate the potential of the developed 

approach for model selection and information gain analysis of TDS results, which are left for future developments. 
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4. Conclusions 

This work presents the development of a multi-element PCK meta-model for surrogate model-based Bayesian parame- 

ter inference of highly nonlinear engineering models. The proposed metamodel combines adaptive sparse PCE and Kriging 

metamodelling to attain both global and local prediction capabilities. The optimal order of the polynomials in the PCE is 

automatically identified by the LAR algorithm. Then, the optimal PCE is inserted into a Kriging predictor as the trend term, 

while the stochastic term is fitted through GA optimization. With the aim of tackling non-smoothness in the forward model, 

a simple regular block partitioning approach has been implemented. On this basis, the space domain is split into a discrete 

number of subsets where local surrogate models are constructed. Then, the global model response is obtained by combining 

the local metamodels in a piecewise fashion. Finally, the surrogate model is used for Bayesian parameter estimation using 

a cost-efficient DRAM MCMC with DR and AM capabilities. The effectiveness of the proposed approach has been validated 

through two benchmark case studies: (i) the analytical Drop-Wave function; (ii) and a PDE for TDS tests. Key findings and 

contributions of this work include: 

• Optimal surrogate models ought to be defined by preliminary parametric analyses accounting for prediction accuracy 

and computational cost. The latter is particularly critical when performing computationally intense applications such 

as Bayesian parameter estimation. To this aim, this work has presented a set of error metrics and a methodological 

discussion through two validation case studies. 
• The analysis of the Salomon function has shown that the proposed multi-element PCK model with regular block par- 

titioning provides similar accuracy ( R 2 > 0 . 99 , NMAE < 10 −4 ) as the (classical) PCK approach, while achieving 100 and 

10 times shorter evaluation and construction times, respectively. Moreover, the presented results have shown that the 

proposed method outperforms the SSE technique for the analysis of such a highly nonlinear surface, requiring 20 times 

fewer samples to achieve a comparable accuracy. 
• The size of the ED and the number of domain partitions critically determine the computational cost of the developed 

sparse PCE-Kriging metamodel. Specifically, the partition of non-smooth problems into a finite set of sub-domains al- 

lows the sparse adaptive PCE to eliminate a considerable number of high-order components through LAR, so achieving 

important savings in the construction of the Kriging model and the evaluation of the resulting metamodel. 
• The developed surrogate model-based DRAM MCMC approach allows to conduct fast Bayesian parameter inference. In 

particular, the proposed approach has been applied to the identification of micro-structural traps in metallic alloys sub- 

ject to TDS. The hydrogen fluxes obtained in TDS test represent a considerable challenge in surrogate modelling due to 

the presence of diverse regimes depending on the configuration of the hydrogen traps. In terms of R 2 , the proposed ap- 

proach is capable of reproducing more than 99.9% of the hydrogen diffusion TDS model with computational time savings 

of 99.3% with respect to the forward numerical model. 
• The presented analyses evidence the potential of the developed approach for conducting inverse characterisation of 

hydrogen-metal interactions. The accuracy of the proposed PCK surrogate model in conjunction with DRAM MCMC opens 

vast possibilities for future applications in model selection, and information gain analysis of TDS hydrogen desorption 

tests. 

Despite its simplicity, the adopted regular block partitioning model has demonstrated significant performance in terms 

of computational savings. In this respect, future research will involve the development of more efficient partitioning algo- 

rithms that would allow the sampling effort to be localised where the forward model presents greater non-linearities, thus 

achieving similar accuracies with smaller sample sizes. Another interesting goal for future work consists in the development 

of multielement surrogate PCK-based models capable of dealing with discontinuities in the response surface. 
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A B S T R A C T

Surrogate modelling techniques have opened up new possibilities to overcome the limitations
of computationally intensive numerical models in various areas of engineering and science.
However, while fundamental in many engineering applications and decision-making, the
incorporation of uncertainty quantification into meta-models remains a challenging open area
of research. To address this issue, this paper presents a novel stochastic simulation approach
combining sparse polynomial chaos expansion (PCE) and Stochastic Kriging (SK). Specifically,
the proposed approach adopts adaptive sparse PCE as the trend model in SK, achieving both
global and local prediction capabilities and maximizing the role of the stochastic term to con-
duct uncertainty quantification. To maximize the generalization and computational efficiency
of the meta-model, the Least Angle Regression (LAR) algorithm is adopted to automatically
select the optimal polynomial basis in the PCE. The computational effectiveness and accuracy
of the proposed approach are appraised through a comprehensive set of case studies and
different quality metrics. The presented numerical results and discussion demonstrate the
superior performance of the proposed approach compared to the classical ordinary SK model,
offering high flexibility for the characterization of both extrinsic and intrinsic uncertainty for
a wide variety of problems.

1. Introduction

Computer models, commonly referred to as simulators, have become ubiquitous assets in most areas of engineering and science.
In cases where systems or processes are assumed to be predictable and devoid of inherent randomness, a deterministic simulator
can be adopted. Nonetheless, deterministic approaches appear inadequate for facing real-world problems characterized by intrinsic
or non-parameterizable randomness, for which the adoption of stochastic simulators becomes necessary for proper modelling. A
stochastic simulator incorporates randomness or uncertainty in its predictions. Thus, while a deterministic simulator always produces
the same prediction for a fixed input, in stochastic simulators, each simulation run may produce different results as a result of the
inherent randomness in the model. Such models have gained significant popularity with manifold applications in diverse fields
such as epidemiology [1,2], materials science [3,4], or reliability analysis [5], enabling researchers to make robust predictions to
assist decision-making for complex systems. However, for both deterministic and stochastic computationally demanding simulators,
formidable challenges arise when implemented in iterative procedures such as optimization [6], sensitivity analysis [7], parameter
inference [8], or uncertainty propagation [9]. Despite the introduction of numerous surrogate models or meta-models in the literature
over the past few years to replace intensive numerical models and alleviate the computational burden, their success mostly limits
to deterministic simulators, while the consideration of stochasticity remains an open research topic.
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There is a vast literature on the development of surrogate models for deterministic simulators [10,11]. In particular, non-intrusive
models such as polynomial chaos expansion (PCE) [12], radial basis functions [13] or Kriging [14] have received significant attention
from the scientific community due to their effectiveness in addressing resource-intensive simulations. The construction of these
meta-models is usually conducted on the basis of a training dataset, also referred to as the experimental design (ED) [14]. Such a
training dataset contains the evaluations of the forward model, representing the quantity of interest (QoI), for a set of combinations
of the input parameters covering the parameter space. In the context of stochastic simulators, the QoI usually presents a certain
level of uncertainty, stemming from the stochastic nature of the model parameters and/or the presence of epistemic uncertainties
in the model predictions [15]. A first approach to meta-model such processes involves estimating the probability density function
(PDF) of the simulator’s predictions through functional decomposition [16]. Alternatively, Stochastic Kriging (SK) [17] has gained
significant recognition as a general meta-modelling tool for representing stochastic simulation response surfaces. Defined as an
extension of Kriging, SK accounts for heteroscedastic noise in the response by estimating the sample variance at each point of the
ED using multiple runs of the simulator for each specific input. The effectiveness of SK has been demonstrated on a broad range of
applications, including risk and reliability analysis [18,19], industrial welding processes [20], and game theoretic simulations [21],
to mention a few.

One of the primary challenges encountered in SK is the requirement of a significant number of replications at each ED point to
accurately estimate the sample variance [15], which often leads to serious computational demands. One approach to alleviate such a
limitation regards the optimal definition of the ED. In the case of stochastic simulators, sampling efforts are divided into two parts: (i)
sampling new ED locations, and (ii) acquiring additional replications at existing points. In this light, numerous sequential sampling
techniques have been presented (refer to [22,23] for an extensive state-of-the-art review). On the other hand, various extensions
of the classical SK have been proposed in the literature. It is worth noting the work by Binois et al. [24], who proposed modelling
the input-dependent noise as a separate Gaussian process. Additionally, they employed computationally efficient techniques such
as the Woodbury identity to address the challenges encountered in SK for large EDs. In a similar vein, Hao et al. [19] introduced
a Nested SK model, which decouples in an iterative way the response noise parameters from the deterministic Kriging parameters
used for calibrating the meta-model. In a similar context, Cheng et al. [25] proposed a generalized polynomial chaos-stochastic
Kriging (gPCE SK) approach, which combines the benefits of PCE and SK. The gPCE SK method proposed by those authors utilizes
a local PCE surrogate model at each design point, which is calibrated using a small number of simulation runs. By relying on these
local surrogate models, numerous replications can be performed at each training point, significantly reducing the computational
burden involved in the calibration of the SK model. However, it is important to note that this model assumes a distinction between
controllable design variables and non-controllable noise variables, the latter causing the variations between replicates at each fixed
design point. Furthermore, it relies on knowledge of the PDFs of the uncontrollable variables, which may be a strong assumption
in many real-life applications.

In light of the discussion above, it is apparent that the development and application of surrogate modelling approaches for
stochastic simulators have experienced considerable advances in recent years. Nevertheless, there are some aspects of SK that remain
not fully addressed in the literature. Notably, while most applications of SK in the literature are limited to the use of constant trend
models (Ordinary Kriging), the use of more advanced models for Universal SK remains largely unexplored in the literature, to the best
of the author’s knowledge. To address this gap, this paper presents an extension of the deterministic Polynomial-Chaos Kriging (PCK)
method originally presented in [26] for the meta-modelling of stochastic simulators with predictions contaminated by noise. The
PCK meta-model is a powerful technique that combines PCE with Kriging to develop highly efficient surrogate models for complex
systems. Notably, a prior work by the authors [27] demonstrated the ability of PCK meta-modelling to successfully capture the
behaviour of highly non-linear functions. Drawing from this positive outcome, the current study aims to apply the principles of PCK
to the realm of stochastic simulators. Specifically, the proposed meta-model involves a Universal SK model with an adaptive sparse
PCE model as the trend term. The orthonormal polynomial basis of the PCE is optimally selected by a model selection technique
for sparse linear models, the least-angle regression (LAR) algorithm set out by Efron [28]. Afterwards, the adjusted LAR-PC model
is inserted as the trend term in a Universal SK model, and the hyper-parameters of the resulting meta-model are calibrated through
a genetic algorithm (GA) global optimization approach. The effectiveness of the proposed approach is validated through a set of
well-known benchmark case studies in the surrogate modelling literature. The presented results and discussion demonstrate the
potential of the proposed approach and the importance of selecting a suitable trend model in the context of SK.

The remainder of this paper is organized as follows. Section 2 outlines the theoretical formulation of Kriging and SK respectively.
Section 3 provides a concise review of PCE and LAR and illustrates the proposed LAR-PCE SK approach. Section 4 presents the
numerical results and discussion and, finally, Section 5 closes the paper with concluding remarks and potential future developments.

2. Surrogate modelling: Deterministic and Stochastic Kriging

Let (𝛺, , 𝜇) be a probability space, where 𝛺 denotes the event space equipped with a 𝜎-algebra  of subsets of 𝛺 and the
probability measure 𝜇. Given 𝛺 ⊂ R𝑀 as a connected set, let  ∶ 𝛺 ⊂ R𝑀 → R be a computational model mapping an 𝑀-
dimensional vector of input (design) variables 𝒙 =

[
𝑥1,… , 𝑥𝑀

]T into the output variable 𝑦 ∈ R (response surface or QoI). The aim
of a surrogate model is to replace the original model  by an approximated one ∗, whose evaluation needs lower computational
cost. When defined in a non-intrusive framework, the hyper-parameters of ∗ must be calibrated on a basis of a certain training
dataset. Such a training dataset consists in the realization of the forward model  over a set ED =

{
𝒙(1),… ,𝒙(𝑘)

}
of 𝑘 samples

of the input variable 𝒙 covering the design space, often referred to as the experimental design (ED). Note that, when the model is
deterministic, the purpose of the surrogate model is simply to approximate the response surface 𝑦 = (𝒙) ∀𝒙 ∈ 𝛺. Conversely, when
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the model  exhibits a stochastic behaviour and its response is affected by a zero-mean random noise, the goal is to approximate the
mean surface E[(𝛺)] and, possibly, provide a certain characterization of the uncertainty [17]. In this context, Kriging or Gaussian
process meta-modelling has proved to represent a powerful meta-modelling approach commonly used in engineering or geostatistics.
In a deterministic computer experiment, the Kriging model assumes that the model response (𝒙) can be conceived as the sum of
a deterministic and a stochastic model as:

 (𝒙) ≈ 𝐾 (𝒙) =  (𝒙) + (𝒙) , (1)

where  (𝒙) is a zero-mean stochastic process and the trend  (𝒙) = 𝒇 (𝒙)T 𝜷 =
∑𝑠
𝑟=1 𝛽𝑟𝑓𝑟 (𝒙) is a linear regression model with 𝑠

regression coefficients 𝛽𝑟 and user-selected regression functions 𝑓𝑟 (𝒙) (e.g 𝑓𝑟 (𝒙) = 𝒙𝑟). The formulation in Eq. (1) corresponds to the
most general version of Kriging, often referred to as Universal Kriging (UK). Simpler expressions known as Simple Kriging (SK) and
Ordinary Kriging (OK) are deduced when the trend term is assumed to be constant throughout the design space. In SK, it is assumed
that the mean of the variable being predicted is known and constant across the entire area of study, whereas (OK) estimates the
mean based on the available sample data. An interpretation of Eq. (1) is that deviations from the regression model may resemble a
sample path of a properly chosen stochastic process [29]. The stochastic process  (𝒙) is determined by the process variance 𝜎 and an
auto-correlation function R

(
𝒙, 𝒙′

)
= 𝐑

(||𝒙 − 𝒙′|| ;𝜽
)
, which depends on the spatial distance |||𝒙(𝑖) − 𝒙(𝑗)||| and some hyper-parameters

𝜽 to be determined. The auto-correlation function 𝐑 must satisfy 𝐑 (𝟎;𝜽) = 1 and 𝐑
(
𝒙(𝑖) − 𝒙(𝑗);𝜽

)
→ 0 when |||𝒙(𝑖) − 𝒙(𝑗)||| → +∞. Thus, is characterized by the covariance matrix [30,31]:

𝜮 ∶=
{
Cov

( (
𝒙(𝑖)

)
, (

𝒙(𝑗)
))}

𝑖𝑗 = 𝜎2 𝐑
(|||𝒙

(𝑖) − 𝒙(𝑗)||| ;𝜽
)
. (2)

Among the possible choices of the function 𝐑, a common alternative and the one used in the present work is the Gaussian
correlation function 𝐑

(||𝒙 − 𝒙′|| ;𝜽
)
= exp

(
−𝜽 ||𝒙 − 𝒙′||2

)
[29].

The Kriging model is thus fully determined by the hyper-parameters {𝜷,𝜽, 𝜎}, which are usually estimated by maximizing the
likelihood function over the 𝑘 samples of the ED [32]:

 (𝜽, 𝜎,𝜷; 𝐲) = 1√(
2𝜋𝜎2

)𝑘 |𝐑|
exp

[
− 1
2𝜎2

(𝐲 − 𝐅𝜷)T 𝐑−1 (𝐲 − 𝐅𝜷)
]
, (3)

where y =
[
𝑦(1) =  (

𝒙(1)
)
,… , 𝑦(𝑘) =  (

𝒙(𝑘)
)]T and 𝐅𝑖𝑗 = 𝑓𝑗 (𝒙(𝑖)) is referred to as the information matrix. Nevertheless, it is possible

to extract estimates in closed form of the hyper-parameters �̂� and �̂� as functions of the estimates of �̂� by the best linear unbiased
estimator (BLUE) as:

�̂�(�̂�) =
(
𝐅T𝐑−1𝐅

)−1 𝐅T𝐑−1𝐲, �̂�2
(
�̂�
)
= 1
𝑘
(𝐲 − 𝐅𝜷)T 𝐑−1 (𝐲 − 𝐅𝜷) . (4)

Substituting Eq. (4) into (3) and taking logarithm, a simplified optimization problem that depends only on 𝜽 is derived as:

�̂� = arg min
𝜽

[ 1
𝑘
(𝐲 − 𝐅𝜷)T 𝐑−1 (𝐲 − 𝐅𝜷) |𝐑|1∕𝑘

]
. (5)

Therefore, the Kriging mean and mean-squared error (MSE) at any point 𝒙 in the parameter space can be computed as [31]:

̂𝐾 (𝒙) = 𝒇 (𝒙)T�̂� + 𝒓(𝒙)T𝐑−1 (𝒚 − 𝐅�̂�
)
,

M̂SE(𝒙) = 𝜎2
[
1 − 𝒓(𝒙)T𝐑−1𝒓(𝒙) + 𝒖(𝒙)T

(
𝐅T𝐑−1𝐅

)−1 𝒖(𝒙)
]
,

(6)

where 𝒖 (𝒙) = 𝐅T𝐑−1𝒓(𝒙) − 𝒇 (𝒙) and 𝑟𝑖(𝒙) = 𝐑
(|||𝒙 − 𝒙(𝑖)||| ; �̂�

)
, 𝑖 = 1,… , 𝑘.

To accommodate the existence of stochasticity in the response surface model (𝑥), Ankenman et al. [17] proposed Stochastic
Kriging as an extension of the classical Kriging scheme specified in Eq. (1) to define the response surface (𝒙) in stochastic terms.
In this context, several simulation runs in the same design point are performed, so the experimental design must be redefined as
ED =

{(
𝒙(𝑖), 𝑛𝑖

)}𝑘
𝑖=1, where 𝑛𝑖 ∈ N is the number of replications at the design point 𝒙(𝑖). In particular, the output of the 𝑙th simulation

replication at 𝒙(𝑖), 𝑖 = 1,… , 𝑘 is given by:

𝑖
(
𝒙(𝑖)

)
= 𝒇 (𝒙)T𝜷 + (

𝒙(𝑖)
)
+ 𝜀𝑙

(
𝒙(𝑖)

)
, 𝑙 = 1,… , 𝑛𝑖, (7)

where the terms  (
𝒙(𝑖)

)
and 𝜀𝑙

(
𝒙(𝑖)

)
represent the model extrinsic uncertainty and the intrinsic uncertainty for the 𝑙th replication,

respectively. In other words, the changes in the model response are due to the simulator evaluation at different points in the
parameter space, or due to the stochastic nature of the model itself, respectively. Analogously to Eq. (2), the intrinsic uncertainty
can be characterized by the 𝑘 × 𝑘 covariance matrix:

𝜮𝜀 =
{
Cov

(
�̄�
(
𝒙(𝑖)

)
, �̄�

(
𝒙(𝑗)

))}
𝑖𝑗 , 𝜀

(
𝒙(𝑖)

)
= 1
𝑛𝑖

𝑛𝑖∑
𝑙=1

𝜀𝑙
(
𝒙(𝑖)

)
, 𝑖 = 1,… , 𝑘. (8)

In this light, similarly to Kriging, the calibration of the surrogate model involves maximizing a likelihood function, whose expression
is the natural consequence of incorporating the intrinsic uncertainty in the Kriging methodology:

(
𝜷, 𝜎2,𝜽;)

= 1√||𝜮 +𝜮𝜀
|| (2𝜋)𝑘

exp
(
−1
2

( − 𝐅𝜷
)T (

𝜮 +𝜮𝜀
)−1 ( − 𝐅𝜷

))
, (9)
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where

 =
[ (

𝒙(1)
)
,… , (

𝒙(𝑘)
)]T

,  (
𝒙(𝑖)

)
= 1
𝑛𝑖

𝑛𝑖∑
𝑙=1

𝑙(𝒙(𝑖)), (10)

and 𝜮(𝒙, ⋅) represents the 𝑘 × 1 cross-correlation vector
{
Cov

( (𝒙) , (
𝒙(𝑗)

))}𝑘
𝑗=1 between the prediction point 𝒙 and each one of

the ED points. Upon the computation of the SK parameters, the SK predictor along with its associated mean squared error (MSE)
can be derived as follows [33]:

̂𝑆𝐾 (𝒙) = 𝒇 (𝒙)T �̂� +𝜮 (𝒙, ⋅)
[
𝜮 +𝜮𝜀

]−1 ( − 𝐅�̂�
)
,

M̂SE (𝒙) = 𝜮 (𝒙,𝒙) −𝜮 (𝒙, ⋅)T
[
𝜮 +𝜮𝜀

]−1 𝜮 (𝒙, ⋅) + 𝜻T
(
𝐅T [𝜮 +𝜮𝜀

]−1 𝐅
)−1

𝜻 ,
(11)

with 𝜻 = 𝒇 (𝒙) − 𝐅T [𝜮 +𝜮𝜀
]−1 𝜮 (𝒙, ⋅). It is worth mentioning that the last term in Eq. (11) represents the variability inflation of

the SK predictor resulting from the estimation of �̂�. Additionally, it is important to highlight that, in deterministic scenarios where
the intrinsic uncertainty is negligible, 𝜮𝜀 vanishes and Eq. (11) naturally converges to Eq. (6). In other words, SK reduces to the
standard Kriging metamodel when 𝜮𝜀 tends to zero.

3. LAR-PCE based Stochastic Kriging

The higher complexity of UK compared to OK might suggest that it leads to improved estimates. However, as reported in the
literature, a trend misspecification can lead UK not to improve the accuracy in its estimates [34] or even worsen its performance [35].
This limitation can be attributed to the fact that UK involves the estimation of additional parameters (𝜷), which can potentially
induce over-fitting [36]. Therefore, to harness the advantages of UK while mitigating its potential drawbacks, it is crucial to choose a
minimal trend basis that effectively captures the complexity of the response surface. Motivated by these considerations, the objective
of this section is to identify an optimal choice of the trend model 𝒇 in Eq. (7) by combining PCE and LAR. Hereafter, the fundamentals
of PCE and the LAR algorithm are briefly presented, followed by their combination into Universal SK.

3.1. Polynomial-chaos expansion

The PCE model represents the model output response 𝑦 ∈ R as its expansion through a basis of orthonormal multivariate
polynomials 𝛹𝜶 as:

𝑦 =  (𝒙) =
∑

𝜶 ∈N𝑀
𝑎𝜶𝛹𝜶(𝒙), (12)

where 𝑎𝜶 are the coefficients of the expansion, and the multi-dimensional index notation 𝜶 =
[
𝛼1,… , 𝛼𝑀

]T, 𝛼𝑖 ∈ N, has been adopted.
Depending on the nature of the input variables, classical families of orthonormal polynomials 𝛹𝜶 include the Hermite or Legendre
polynomials [37]. Although the expression (12) is exact on deterministic simulators for an infinite number of terms, only a finite
number of terms can be computed in practice. Consequently, different truncation schemes have been proposed in the literature.
One of the simplest approaches consists in selecting the set of all polynomials whose total degree |𝜶| = ∑𝑀

𝑖=1 𝛼𝑖 is up to 𝑝, that is
𝑀,𝑝 = {𝜶 ∈ N𝑀 ∶ 0 ≤ |𝜶| ≤ 𝑝} [38]. This leads to a total number of  terms in the expansion:

 ∶= card
(𝑀,𝑝) =

(
𝑀 + 𝑝
𝑝

)
. (13)

Note however that, for high-dimensional or non-linear problems, this truncation scheme leads to computing a large number of
coefficients. As a solution, a more restrictive hyperbolic truncation scheme was proposed by Blatman and Sudret [12]. Based on the
common observation in practice that coefficients associated with high-order interaction terms are usually close to zero (often referred
to as the sparsity-of-effect principle), this truncation scheme selects all the multi-indices belonging to the set 𝑀,𝑝,𝑞 = {𝜶 ∈ N ∶ 0 ≤
‖𝜶‖𝑞 ≤ 𝑝} with 𝑞-norm ‖𝜶‖𝑞 =

(∑𝑀
𝑖=1

||𝛼𝑖||𝑞
) 1
𝑞 . Note that, as the 𝑞-norm decreases, the number of mixed-order terms in the expansion

also decreases until, ultimately leaving only the univariate polynomials remain.
Once the set of candidate polynomials and an ED of 𝑘 samples are defined, the expansion coefficients 𝒂 =

{
𝒂𝛼 , 𝜶 ∈ 𝑀,𝑝 ⊂ N𝑀

}
are obtained by minimizing the expectation of the least squares residuals:

𝒂 = arg min
𝒂∈R

1
𝑘

𝑘∑
𝑖=1

[
 (

𝒙(𝑖)
)
−

∑
𝜶 ∈𝑀,𝑝

𝒂𝜶𝜳𝜶
(
𝒙(𝑖)

)]2

. (14)

Collecting the realizations of the QoI in the ED in vector form as y =
[
𝑦(1) = (𝒙(1)),… , 𝑦(𝑘) = (𝒙(𝑘))

]T, the solution of the
optimization problem (14) is given by:

�̂� =
(
𝜳T𝜳

)−1 𝜳T𝒚, 𝜳 =
(
𝛹𝑖𝑗

)
=
[
𝛹𝜶𝑗

(
𝒙(𝑖)

)] 𝑗=1,…,
𝑖=1,…, 𝑘

, (15)
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where the information matrix 𝜳 contains the evaluation of the basis polynomials on the ED. Once Eq. (14) has been solved, the
estimates by the resulting PCE surrogate model read:

𝑃𝐶 (𝒙) =
∑

𝜶 ∈𝑀,𝑝

�̂�𝜶𝜳𝜶(𝒙). (16)

The quality of the resulting expansion is typically assessed through cross-validation. Among the different metrics available in the
literature, the leave-one-out (LOO) error 𝜖𝐿𝑂𝑂 is particularly interesting since it can be estimated in closed form for linear models.
In the case of the PCE model as given in Eq. (16), 𝜖𝐿𝑂𝑂 can be expressed as follows:

𝜖𝐿𝑂𝑂 =

𝑘∑
𝑖=1

( (
𝒙(𝑖)

)
−𝑃𝐶 (𝒙(𝑖))

1 − ℎ𝑖

)2

𝑘∑
𝑖=1

( (
𝒙(𝑖)

)
− �̂�𝒚

)2
, (17)

where ℎ𝑖 is the 𝑖th component of the vector 𝐡 = diag
{
𝜳
(
𝜳T𝜳

)−1 𝜳T
}

and �̂�𝒚 = 1
𝑘
∑𝑘
𝑖=1  (

𝒙(𝑖)
)
.

3.2. Least angle regression (LAR)

The LAR algorithm is a model selection approach [28] that provides a very efficient procedure to implement the Least Absolute
Shrinkage and Selection Operator (LASSO) method introduced by Tibshirani [39]. LASSO is a procedure for shrinking some regression
coefficients to zero in a regression model by adding a restriction or penalty term to the least squares problem as:

min
𝜷 ∈ IR

(‖𝜳 (𝒙) 𝜷 − (𝒙)‖2 + 𝜂‖𝜷‖1
)
, 𝜂 ∈ IR, 𝜂 ≥ 0. (18)

The norm ‖⋅‖1 adds a penalty equal to the absolute value of the magnitude of the coefficients. In other words, it limits the size
of the coefficients leading to sparse models, i.e. models with few coefficients. The computation of the solution of the optimization
problem in Eq. (18) is a convex quadratic programming problem with linear inequality constraints, which can be solved very
efficiently by means of the LAR algorithm [28]. It is based on a variable selection procedure called Incremental Forward Stepwise
Regression [40] that builds the model sequentially, adding one basis polynomial function 𝛹𝜶𝑖 at a time to the set 𝑖 of active basis
functions, i.e. the set of predictors most correlated with the current residual 𝑟𝑖 = 𝑦−𝜳𝑖

𝜷𝑖
at the 𝑖th iteration. The LAR algorithm

can be summarily described by the following steps:

1. Set the vector residuals 𝑟0 = 𝑦 and initialize the coefficients vector 𝜷𝜶𝑖 = 0, 𝑖 = 1,… , − 1. Set all the predictors 𝛹𝜶𝑖
standardized to have mean zero and unit norm.

2. Find the predictor 𝛹𝜶𝑖 most correlated with the current residual 𝑟𝑖 = 𝑦 − 𝜳𝑖
𝜷𝑖

(with 𝜷𝑖
the vector of coefficients for the

set of the active basis functions 𝑖 at the 𝑖th iteration).
3. Move 𝜷𝜶𝑖 from 𝟎 towards its least-squares coefficient on 𝛹𝜶𝑖 , until another predictor 𝛹𝜶𝑗 has as much correlation with the

current residual 𝑟𝑖 as 𝛹𝜶𝑖 .
4. Move {𝜷𝜶𝑖 , 𝜷𝜶𝑗 } in the direction defined by their joint least squares coefficient of the current residual on {𝛹𝜶𝑖 , 𝛹𝜶𝑗 }, until

another predictor 𝛹𝜶𝑙 has the same correlation with the current residual.
5. Continue the process until 𝑚 = min ( , 𝑘 − 1) predictors have been added.

Steps 3 and 4 update the set of active coefficients towards their least-square value in the form 𝜷𝑖+1
= 𝜷𝑖

+ 𝜁𝑖𝒖𝑖
. The factor

𝜁𝑖 is the smallest positive scalar such that some new index 𝑗 joins the active set 𝑖+1 = 𝑖 ∪ {𝑗}, and the vector 𝒖𝑖
is known as

the descent direction (refer to [28] for further details). The name least angle arises from a geometric interpretation of this process,
whereby 𝒖𝑖

provides the smallest (and equal) angle with each of the predictors in 𝑖. Using the LAR scheme, a collection of 𝑚
PCE meta-models of decreasing sparsity is extracted. Then, the optimal meta-model can be selected by a cross-validation scheme,
to which the LOO error from Eq. (17) has been adopted in this work. Typically, the optimal model maximizing prediction accuracy
and minimizing overfitting presents a cardinality, i.e. the number of active basis functions, lower that the cardinality  of the whole
candidate basis. It is known that LAR only requires (3+𝑘2) computations [28]. Therefore, when  ≪ 𝑘, it follows that 3 < 𝑘2

and (𝑘2) ∼ (𝑘). Thus, the computational complexity added by the PCE model when inserted as the trend term in the SK model
is marginal with respect to the optimization problem related to the determination of the hyper-parameters in Eq. (5), which is
(𝑘3).
3.3. LAR-PCE Stochastic Kriging

This section presents the proposed PCE SK surrogate modelling approach, synthetically described in Fig. 1. One of the most
remarkable features of the proposed model regards the automatic optimal definition of the trend model 𝒇 for Universal SK. This
is achieved by the PCE meta-model introduced in Eq. (16) using the hyperbolic truncation and the LAR algorithm overviewed in
Sections 3.1 and 3.2, respectively. Note that the resulting approach provides a trend model with high flexibility in virtue of the
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Fig. 1. Flowchart of the proposed PCE SK surrogate modelling approach for stochastic simulators.

LAR algorithm, in such a way that the terms in the PCE expansion are automatically tuned depending on the specific problem at
hand. For the development of the proposed meta-model, once the optimal set 𝜳 is identified, a universal SK surrogate model is fitted
(see Eq. (9)) through a GA global optimization approach to avoid stagnation in local extrema. Then, the prediction of the response
surface and the associated MSE are extracted from Eqs. (25) and (26) respectively.

Under the common assumption in the literature that
{
𝜀𝑙
(
𝒙(𝑖)

)}𝑛𝑖
𝑙=1 are i.i.d. and independent of the random field  [17,25,41],

the proposed optimal LAR-PCE based SK predictor reads:

̂𝑃𝐶𝐸𝑆𝐾 (𝒙) = 𝜳 (𝒙) 𝜷 +𝜮 (𝒙, ⋅)T
[
𝜮 +𝜮𝜀

]−1 ( − 𝜳𝜷
)
, (19)

and the corresponding optimal MSE reads

MSE
(̂𝑃𝐶𝐸𝑆𝐾) = 𝜮 (𝒙,𝒙) −𝜮 (𝒙, ⋅)T

[
𝜮 +𝜮𝜀

]−1 𝜮 (𝒙, ⋅) . (20)

It is straightforward to check that the estimator proposed above is the best linear estimator of the form ̂𝑃𝐶𝐸𝑆𝐾 (𝒙) =
𝜆0 (𝒙) + 𝝀T (𝒙), where 𝜆0 and 𝝀 are weights depending on 𝒙 and chosen in the sense of minimizing the MSE. Moreover, the
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estimator is unbiased. This can be deduced by following the general reasoning given in [42] as follows:

MSE = E
[(𝐾 (𝒙) − ̂𝑃𝐶𝐸𝑆𝐾 (𝒙)

)2] = E
[(

𝜳 (𝒙) 𝜷 + (𝒙) − 𝜆0 (𝒙) − 𝝀T (𝒙) ± 𝝀T (𝒙)𝜳𝜷
)2

]

=
(
𝜳 (𝒙) 𝜷 − 𝜆0 (𝒙) − 𝝀T (𝒙)𝜳𝜷

)2 + Var
( (𝒙) − 𝝀T (𝒙) + 𝝀T (𝒙)𝜳𝜷

)
+ E

[( (𝒙) − 𝝀T (𝒙) + 𝝀T (𝒙)𝜳𝜷
)]2

=
(
𝜳 (𝒙) 𝜷 − 𝜆0 (𝒙) − 𝝀T (𝒙)𝜳𝜷

)2 + 𝛴 (𝒙,𝒙) +
𝑘∑

𝑖,𝑗=1
𝜆𝑖 (𝒙) 𝜆𝑗 (𝒙) Cov

( (
𝒙(𝑖)

)
, (

𝒙(𝑗)
))

+
𝑘∑

𝑖,𝑗=1
𝜆𝑖 (𝒙) 𝜆𝑗 (𝒙) Cov

(
𝜀
(
𝒙(𝑖)

)
, 𝜀

(
𝒙(𝑗)

))

−2
𝑘∑
𝑖=1

𝜆𝑖 (𝒙) 𝜆𝑗 (𝒙) Cov
( (

𝒙(𝑖)
)
, (𝒙)

)
− 2

𝑘∑
𝑖=1

𝜆𝑖 (𝒙) 𝜆𝑗 (𝒙) Cov
( (

𝒙(𝑖)
)
, 𝜀

(
𝒙(𝑖)

))
=

=
(
𝜳 (𝒙) 𝜷 − 𝜆0 (𝒙) − 𝝀T (𝒙)𝜳𝜷

)2 + 𝛴 (𝒙,𝒙) + 𝝀T (𝒙)
[
𝛴 + 𝛴𝜀

]
𝝀 (𝒙) − 2𝝀T (𝒙)𝛴(𝒙, ⋅),

where 𝜆𝑖 (𝒙) denotes the 𝑖th component of 𝝀 (𝒙). Minimizing the MSE with respect to 𝜆0 and 𝝀, i.e. taking 𝜕MSE∕𝜕𝜆0 = 𝜕MSE∕𝜕𝝀 = 0,
extract the solutions 𝜆0 (𝒙) = 𝛹 (𝒙) 𝜷 − 𝝀T (𝒙)𝜳𝜷 and 𝝀 (𝒙) =

[
𝛴 + 𝛴𝜀

]−1 𝛴 (𝒙, ⋅) can be readily extracted. With these weights, the
optimal linear estimator and MSE are directly given by Eqs. (19) and (20), respectively. Furthermore, following that  is a zero-mean
stochastic process, i.e. E [ (𝒙)] = 0, and E

[ − 𝜳𝜷
]
= 0, it follows that:

E
[̂𝑃𝐶𝐸𝑆𝐾 (𝒙) −𝐾 (𝒙)

]
= 𝜳 (𝒙) 𝜷 + 𝛴 (𝒙, ⋅)T

[
𝛴 + 𝛴𝜀

]−1 E
[ − 𝜳𝜷

]
− 𝜳 (𝒙) 𝜷 − E [ (𝒙)] = 0, (21)

and, therefore, it is extracted that ̂𝑃𝐶𝐸𝑆𝐾 (𝒙) is an unbiased estimation for 𝐾 (𝒙). The estimation of the hyper-parameters of
the proposed LAR-PCE SK surrogate model requires maximizing the likelihood function described in Eq. (9), where the information
matrix 𝐅 is simply replaced by the optimal trend matrix 𝜳 . However, some considerations must be made. Firstly, note that the
covariance matrix of the noise in the response surface (intrinsic bias between the surrogate model and the true simulator’s response),
𝛴𝜀, in Eq. (9) is unknown in general. Nonetheless, 𝜀 is commonly assumed in practice to be normally distributed, so one can write:

{
𝜀𝑙
(
𝒙(𝑖)

)}𝑛𝑖
𝑙=1 ∼  (

0, 𝑉𝑖
)
, with 𝑉𝑖 estimated as 𝑉𝑖 =

1
𝑛𝑖 − 1

𝑛𝑖∑
𝑙=1

(𝑙
(
𝒙(𝑖)

)
−𝑙

(
𝒙(𝑖)

))2
, (22)

leading to a positive definite diagonal covariance matrix 𝛴𝜀 (see Theorem 1 in [17]). Secondly, it should be noted that, when
calibrating a Kriging meta-model for deterministic simulators, Eq. (3) can be simplified as a function of 𝜽 by leveraging on the BLUE,
while in SK this fact is no longer valid. Instead, 𝜷 must be first approximated as �̂� in Eq. (15). This entails limited computational
overhead because the trend term has been optimally adjusted beforehand by LAR-PCE. Then, the extrinsic variance 𝜎2 needs to be
simultaneously optimized with the hyper-parameters 𝜽 as:

�̂�, �̂�2 = arg max
𝜽, 𝜎2

log
( (

𝜷, 𝜎2,𝜽
))
. (23)

Finally, and based on Eq. (23), the optimal estimate for 𝜷 as a function of �̂� and �̂�2 can be written similarly to Eq. (4) as:

�̂�
(
�̂�, �̂�2, 𝜀

)
=
[
𝜳T (�̂� + �̂�𝜀

)−1 𝜳
]−1

𝜳T (�̂� + �̂�𝜀
)−1 . (24)

Once the optimal parameters have been derived, the optimal predictor can be re-written as:

̂𝑃𝐶𝐸𝑆𝐾 (𝒙) = 𝜳 (𝒙) �̂� + �̂� (𝒙, ⋅)T
[
�̂� + �̂�𝜀

]−1 ( − 𝜳�̂�
)
. (25)

with the MSE estimator

M̂SE (𝒙) = �̂� (𝒙,𝒙) − �̂� (𝒙, ⋅)T
[
�̂� + �̂�𝜀

]−1 �̂� (𝒙, ⋅) + 𝜸T
(
𝜳T [�̂� + �̂�𝜀

]−1 𝜳
)−1

𝜸, (26)

and 𝜸 = 𝒇 (𝒙)−𝜳T [�̂� + �̂�𝜀
]−1 �̂� (𝒙, ⋅). The expression (26) follows from the development in [42] for standard Kriging by replacing

the covariance matrix of the random field by �̂� + �̂�𝜀.
Let us lastly focus on the common assumption of the stochastic process  following a Gaussian distribution. In this case, when

considering an ED of 𝑘 samples, the hypotheses in Eq. (2) imply that
( (𝒙) ,  (

𝒙(1)
)
,… ,  (

𝒙(𝑘)
))

∼ 𝑘+1 (𝝁,𝜮) follow a
multivariate Gaussian distribution with mean vector and covariance matrix given by:

𝝁 = ( (𝒙) ,𝜳 (𝒙) 𝜷) ∈ IR𝑘+1 and 𝜮 =
(

𝜎2 𝜮(𝒙, ⋅)T
𝜮(𝒙, ⋅) 𝜮 +𝜮𝜀

)
∈ IR(𝑘+1) × (𝑘+1), (27)

and Eq. (19) coincides with the conditional mean of  (𝒙) given , i.e. E
[ (𝒙)|]

(see [30]).
To conclude, the quality of the proposed metamodel must be assessed. In practical contexts where the computational burden is

high, cross-validation techniques are popular approaches for evaluation the accuracy of stochastic simulators (refer to reference [43]
for an extensive discussion). Nevertheless, in this work, to conduct a robust assessment of the proposed PCE SK metamodel, its
accuracy has been evaluated on the basis of a dense validation set VS ∶= {𝒙(1),… ,𝒙(𝐾)}, with 𝐾 ≫ 𝑘, covering the parameter space,
and using diverse quality metrics reported hereafter.
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4. Numerical results and discussion

This section presents an extensive numerical assessment of the proposed LAR-PCE SK meta-model. The evaluation includes a
detailed comparison against ordinary SK through various well-known benchmark examples from the literature. These presented
numerical studies cover both single (Section 4.1) and multi-dimensional functions (Sections 4.2 and 4.3) contaminated by noise.
For each case study, given a fixed computational budget, several sampling strategies to obtain the ED are discussed. These approaches
range from (i) using a low number of sampling points with many replications to represent the uncertainty to (ii) strategies with
numerous sampling points with less budget devoted to the characterization of the uncertainty. Additionally, intermediate strategies
that fall between these two extremes are also explored. The purpose of defining different sampling scenarios is to demonstrate that
the proposed LAR-PCE SK method consistently outperforms ordinary SK, regardless of whether a sparse and deep ED (with few
points but high accuracy) or a denser but shallower ED is chosen. The computational effort allocated at each point is proportional
to its corresponding noise variance in every instance. In all the analyses, the model performance is assessed by means of two error
metrics, namely the Empirical Root Mean Squared Error (ERMSE) and the Normalized Maximum Absolute Error (NMAE) over a
large VS given by:

ERMSE =

√√√√ 1
𝐾

𝐾∑
𝑖=1

(̂ (
𝒙(𝑖)

)
− (

𝒙(𝑖)
))2

, NMAE = max
1≤𝑖≤𝐾

|||̂
(
𝒙(𝑖)

)
− (

𝒙(𝑖)
)|||

𝐾𝜎𝑉 𝑆
, 𝑥(𝑖) ∈ 𝑉 𝑆, (28)

where:

𝜎𝑉 𝑆 =

√√√√ 1
𝐾

𝐾∑
𝑖=1

( (
𝒙(𝑖)

)
− (

𝒙(𝑖)
))2

. (29)

Note that the ERMSE metric evaluates the global quality of the meta-model, while the NMAE metric is an indicator of the local
error.

4.1. Case study I: M/M/1 queue

The M/M/1 queue model is a simple yet powerful model used to analyse the behaviour of a wide range of real-world queuing
systems [44], from call centres to manufacturing lines. The model represents a system where there is a single server and a line of
entities to be served (e.g., packets, customers, etc.). In this system, entities arrive randomly at a certain rate, called arrival rate,
and wait in a queue until the server becomes available. The waiting time is determined by the arrival rate and by the service rate,
which refer to the time it takes for the server to process an entity and complete its service, respectively.

The present case study consists of the simulation of an M/M/1 queue where the service rate is fixed at one and the arrival
rate ranges from 0.3 to 0.9. The response surface 𝑦 represents the expected waiting time as a function of the arrival rate 𝑥. The
accuracy of the simulation at each design point is determined by its time run-length 𝑇 , that is, the period of time over which the
system’s behaviour is observed and analysed. This system is one of the most studied examples in the SK literature [17,33,45]. It
is particularly notable for its distinct and progressively increasing intrinsic variance across the parameter space. This characteristic
naturally provides a formidable yet simple example to understand the potential benefits of the proposed approach. Despite the
stochastic nature of the model, analytical expressions for the response surface and its intrinsic variance are known [17,33]:

𝑦(𝑥) = 1
1 − 𝑥

, 𝑉 (𝑥) = 2𝑥 (1 + 𝑥)
𝑇 (1 − 𝑥)4

. (30)

In the following, we introduce two variations of the experiment. In the first one in Section 4.1.1, the intrinsic variance is assumed
as known following Eq. (30), and one single simulation is run for each design point. In the second variation in Section 4.1.2, the
intrinsic variance of the simulator is estimated by performing multiple replications at each of the ED points. For both cases, the
results obtained by the classical Ordinary SK are compared with those obtained by the proposed LAR-PCE SK approach.

4.1.1. Known intrinsic noise
For this first numerical investigation, we will consider the intrinsic variance as 𝛴𝜀 = diag

(
𝑉
(
𝒙(𝑖)

))𝑘
𝑖=1. Additionally,  is directly

taken as
( (

𝑥(𝑖)
))𝑘
𝑖=1 since one single replication at each design point is considered in this first numerical study. It is important to

note that, although this situation may not reflect the complexity of most real-world applications, it serves as a useful analysis to shed
light on the characteristics of the proposed LAR-PCE SK approach. Three different scenarios with varying number of design points
and run-lengths but with constant computational resources have been considered. The first one involves 10 equispaced design points
with a run-length of 6000; the second one consists of 30 design points with a run-length of 2000; and the third scenario encompasses
50 design points with a run-length of 1200. In the case of LAR-PCE SK, following the recommendations provided in Ref. [46], the
maximum degree of the polynomials is considered as 5, 10 and 16 for the scenarios one to three, respectively. It is worth noting that,
given the one-dimensional nature of the problem, the LAR algorithm simply selects the optimal degree for the uni-variate regression
model.

Fig. 2 (a,d) depict the true response surface along with the analytically computed 95% confidence intervals represented
as

(
𝑦(𝑥) ± 𝑧𝛼

√
𝑉 (𝑥)

)
for Scenarios 1 and 2, respectively. Similarly, Fig. 2 (b,e) and (c,f) illustrate the estimates produced by

Ordinary SK and LAR-PCE SK, respectively. Estimated 95% confidence intervals in Fig. 2 (b,e) and (c,f) have been computed as
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Fig. 2. Case Study I: M/M/1 example. Comparison between the true simulator (a,d) against the predictions by the proposed LAR-PCE SK (c,f) and Ordinary SK
(b,e) under the assumption of known variance (one replication per ED sample) in Scenarios 1 (a,b,c) (10 ED samples and run-length = 6000) and 2 (d,e,f) (30
ED samples and run-length = 2000). Scatter points denote the ED samples, and light blue shaded areas represent the 95% confidence interval.

Table 1
Summary of the accuracy in the estimates of the M/M/1 model with known intrinsic noise variance by ordinary
SK and LAR-PCE SK adopting sampling scenarios 1 to 3.

SK LAR-PCE SK

Mean ERMSE Mean NMAE Mean ERMSE Mean NMAE

Scenario 1 0.787 0.0076 0.516 0.0049
Scenario 2 0.810 0.0079 0.519 0.0052
Scenario 3 0.832 0.0080 0.650 0.0074

(̂𝑆𝐾 ± 𝑧𝛼
√
𝑀𝑆𝐸(𝑥)

)
and

(̂𝑃𝐶𝐸𝑆𝐾 ± 𝑧𝛼
√
𝑀𝑆𝐸(𝑥)

)
, respectively. It can be seen that for low values of 𝑥, where the intrinsic

uncertainty is small, both meta-models exhibit a similar behaviour. In contrast, for high values of 𝑥 where both the QoI and the
intrinsic variance experience a rapid growth, Ordinary SK fails to capture the variation in the response, whereas LAR-PCE SK exhibits
a significantly better performance. This is to be expected since, as reported in [35], Ordinary SK virtually ignores those simulation
outputs whose estimated intrinsic variance are large compared to the estimated extrinsic variance. Thus, these results demonstrate
that introducing a proper trend model effectively mitigates this issue.

To provide a further comparison in performance of LAR-PCE SK with respect to Ordinary SK, the results of the fitting of one
hundred independent experiments are reported in Fig. 3 and Table 1. Significant enhancements have been achieved in terms of
ERMSE, with improvements ranging from 20% to 35% on average. Similarly, the NMAE showed average improvements ranging from
8% to 35%. It is noteworthy that, when considering the median values, the improvements are even more significant, ranging from
28% to 42% for ERMSE and from 28% to 38% for NMAE. Finally, it can be noted in Fig. 2 that, in terms of variance estimation, both
approaches similarly fail to capture the true variability. This issue has been recognized and documented in the SK literature [19,36].
Although there are methods available to address this problem (refer e.g. to [36]), they are beyond the scope of our study, in which
the primary focus is on the evaluation of the importance of properly selecting the trend model in SK.

4.1.2. Unknown intrinsic noise
This section introduces a modified version of the previous investigation, where the intrinsic variance is assumed to be unknown.

Consequently, following Eq. (22), the estimation of the 𝛴𝜀 matrix is carried out through a series of replications at each ED point.
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Fig. 3. Performance analysis of ordinary SK and LAR-PCE SK in case study I in terms of ERMS and NMAE error metrics using 100 known intrinsic noise M/M/1
experiments and sampling Scenarios 1 to 3.

Table 2
Summary of the accuracy in the estimates of the M/M/1 model with unknown intrinsic noise variance by ordinary
SK and LAR-PCE SK adopting sampling scenarios 1 to 3.

SK LAR-PCE SK

Mean ERMSE Mean NMAE Mean ERMSE Mean NMAE

Scenario 1 0.073 5.16E−04 0.067 4.67E−04
Scenario 2 0.107 1.26E−03 0.084 7.53E−04
Scenario 3 0.142 1.80E−03 0.127 1.34E−03

In this particular analysis, a total computational budget 𝐶 of 500 replications to be distributed along the training sites has been
considered. Consistently with Ref. [45], the number of replications assigned to each design point 𝑥𝑖 is determined in a single step as

proportional to the model variance following 𝑛𝑖 =
√
𝑉 (𝒙𝑖)

∑𝑘
𝑖=1

√
𝑉 (𝒙𝑖)

𝐶. It should be noted that the use of the actual variance to determine

the number of replications at each point in our analysis has been chosen for the sake of simplicity. However, alternative methods
which employ a multi-step approach for this purpose such as those described in Ref. [33] may be considered for bypassing this
issue.

The same three scenarios as discussed in Section 4.1.1 have been considered over a macro-replication of one hundred
experiments. The results are summarized in Table 2 and Fig. 4. As in the previous case, a relevant improvement in performance
can be observed in each situation, ranging from 8% to 21% on average with respect to ERMSE, and from 9% to 40% with respect
to NMAE. Considering the median values, similar conclusions to the previous analyses can be extracted, as can be seen in Fig. 4.

4.2. Case study II: two dimensional example

This second case study investigates the egg-box shaped surface suggested in Ref. [45]. The simulation output at a design point
𝒙 =

[
𝑥1, 𝑥2

]T ∈ [−1, 1]2 on the 𝑗th replication is given by:

𝑗
(
𝑥1, 𝑥2

)
= sin

(
9𝑥21

)
+ sin

(
9𝑥22

)
+ 𝜀𝑗

(
𝑥1, 𝑥2

)
, (31)

with 𝜀𝑗 ∼  (
0, 2 + cos

(
𝜋 +

(
𝑥1 + 𝑥2

)
∕2

))
.
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Fig. 4. Performance analysis of ordinary SK and LAR-PCE SK in case study I in terms of ERMS and NMAE error metrics using 100 unknown intrinsic noise
M/M/1 experiments and sampling Scenarios 1 to 3.

Fig. 5. Response surface of the case study II (a), and predictions by SK (b), LAR-PCE SK (c) and full PCE SK (d) surrogate models with 𝑘 = 64 design points.

Likewise in the previous case study, three different scenarios have been considered by varying the number of design points but
keeping a fixed computational budget 𝐶 of 1280 replications to be distributed among them. Specifically, the three different settings
are characterized by an ED size of 𝑘 = 32, 64, and 128 points, respectively. The locations of the design points were determined by
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Fig. 6. Performance analysis of ordinary SK, LAR-PCE SK and full PCE SK in terms of ERMS and NMAE error metrics using 100 experiments of Case Study II
and sampling Scenarios 1 to 3.

adopting the Latin Hypercube Sampling (LHS) algorithm, a commonly used technique for generating diverse and evenly distributed
design points in multi-dimensional space. The number of replications 𝑛𝑖 at each design point has been adjusted proportionally to
its standard deviation as in Section 4.1.2. For each scenario, the performance of Ordinary SK is benchmarked against the proposed
LAR-PCE SK meta-model. Additionally, to stress the importance of choosing an appropriate sparse basis of polynomials in the trend
model, a full PCE SK model without LAR has been also included in the comparison. In this case, the entire polynomial basis is
included up to a certain degree given by the hyperbolic truncation defined in Section 3.1. Regarding the polynomial basis settings,
a 𝑞-norm value of 0.8 has been employed in all cases. With respect to the degree of the polynomial basis to be considered, in
compliance with the recommendations by Sudret [46], the maximum degree of the polynomial basis for the full PCE SK case has
been set at 5, 8, and 10 for Scenarios 1, 2, and 3, correspondingly. On the other hand, due to the sparse nature of the basis selected
by the LAR algorithm, it is possible to consider polynomials of slightly higher degree for LAR-PCE SK. Specifically, degrees of 9, 11,
and 12 have been considered in Scenarios 1 to 3, respectively.

Fig. 5 illustrates the outcomes of an arbitrary replication of Scenario 2. It depicts the true response surface to be approximated
(a), alongside the meta-models constructed using Ordinary SK (b), LAR-PCE SK (c), and full PCE SK (d) with a total of 𝑘 = 64
design points. Fig. 6 and Table 3 present the results of the comparison between the different approaches discussed in the considered
scenarios over a macro-replication of one hundred independent experiments. In terms of performance, LAR-PCE SK consistently
outperforms the other methods, while full PCE SK showed the poorest performance based on both ERMSE and NMAE metrics.
Comparing Ordinary SK with the proposed LAR-PCE SK, average reductions around 50% in ERMSE are found in all the considered
scenarios. With respect to the local accuracy, NMAE enhancements vary from 23% in Scenarios 1 and 2, to 36% in Scenario 3.
Taking into account the median, similar conclusions can be inferred. On the other hand, it is noteworthy that blindly setting an
inadequate polynomial basis as the trend model resulted in notable errors and instability in the results across all the scenarios,
highlighting the crucial importance of a proper basis selection. Remarkably, LAR-PCE SK included a modest number of terms in the
basis with a median of 9, 11, and 14 terms for Scenarios 1 to 3, respectively. In contrast, the complete expansion included 17, 32,
and 49 polynomials in the basis for each respective scenario.

4.3. Case study III: Ishigami function

This last case study investigates the Ishigami function [26], a classical benchmark function widely used in the literature. This
function is characterized by its non-linear and non-monotonic behaviour, making it a challenging test for meta-modelling techniques.
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Table 3
Summary of the accuracy in case study II adopting sampling scenarios 1 to 3.

SK LAR-PCE SK

Mean ERMSE Mean NMAE Mean ERMSE Mean NMAE

Scenario 1 0.782 9.13E−04 0.385 6.98E−04
Scenario 2 0.623 8.32E−04 0.316 6.42E−04
Scenario 3 0.495 7.69E−04 0.228 4.90E−04

Fig. 7. Response surfaces of the Ishigami function (a,e), and predictions by ordinary SK (b,f), LAR-PCE SK (c,g) and full PCE SK (d,h) meta-models with 𝑘 = 64
design points. The top and bottom row panels denote the response surfaces obtained for 𝑥3 = 𝜋 and 𝑥1 = 𝜋∕2, respectively.

The function takes as input a three-dimensional vector 𝒙 =
[
𝑥1, 𝑥2, 𝑥3

]T with each component 𝑥𝑖 ranging from −𝜋 to 𝜋, and outputs
a scalar value 𝑗 (𝒙) given by the non-linear sum of three sinusoidal functions. For the purpose of this work, a stochastic version
of the Ishigami function is defined by incorporating a normally distributed random noise term 𝜀𝑗 (𝒙) with zero mean and standard
deviation proportional to the absolute value of the function. This results in the following stochastic Ishigami function:

𝑗
(
𝑥1, 𝑥2, 𝑥3

)
= sin

(
𝑥1
)
+ 7 sin2

(
𝑥2
)
+ 0.1𝑥43 sin

(
𝑥1
)
+ 𝜀𝑗

(
𝑥1, 𝑥2, 𝑥3

)
, 𝑥1, 𝑥2, 𝑥3 ∈ [−𝜋, 𝜋] ,

𝜀𝑗 ∼ 
(
0,
√|||sin

(
𝑥1
)
+ 7 sin2

(
𝑥2
)
+ 0.1𝑥43 sin

(
𝑥1
)|||
)
.

(32)

The ED has been defined with a total computational budget of 𝐶 = 2560. Three distinct scenarios considering different ED sizes
have been investigated: 𝑘 = 64 (Scenario 1), 𝑘 = 128 (Scenario 2), and 𝑘 = 256 (Scenario 3). The allocation of replications has
been defined proportionally to the standard deviation, as outlined in Section 4.2. On this basis, Ordinary SK, LAR-PCE SK, and
full-PCE SK meta-models have been constructed and compared in terms of accuracy. The calibrations for Scenarios 1 to 3 have been
performed with different maximum degrees for the polynomial basis. Specifically, the full-PCE SK meta-models have been calibrated
with maximum degrees of 4, 6, and 7, respectively. On the other hand, the LAR-PCE SK meta-models have been calibrated with
slightly higher maximum degrees of 6, 8, and 9 for Scenarios 1 to 3, respectively. Additionally, a value of 0.8 is specified for the
𝑞-norm for all the considered scenarios.

Fig. 7 shows an arbitrary replication of Scenario 1 (𝑘 = 64 design points), displaying the true response surface (a) and the
predictions of the meta-models constructed using SK (b), LAR-PCE SK (c), and full PCE SK (d). The comparison among the different
approaches based on a replication of 100 independent experiments is presented in Fig. 8 and Table 4. It can be observed that LAR-
PCE SK consistently outperforms the other methods in terms of both global (ERMSE) and local (NMAE) accuracy. In this case study,
similarly to Case Study II, full PCE SK exhibits the poorest performance. Nonetheless, in this particular case study, the difference
between full PCE SK and Ordinary SK is not as pronounced. Instead, when comparing SK with the proposed LAR-PCE SK, significant
enhancements are noticeable in terms of ERMSE, with average improvements ranging from 35% in Scenario 1 to 74% in Scenario
3. Similar enhancements are also observed when considering the NMAE metric or the improvement in median terms. Lastly, it is
worth mentioning the sparsity of the polynomial bases used in the trend model. While the full-PCE expansions consist of a larger
number of terms (23, 50, and 68 in Scenarios 1 to 3), the LAR-selected polynomials are significantly more sparse, with only 10, 14,
and 17 terms on average, respectively. This allows capturing the trend without encountering over-fitting issues.
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Fig. 8. Performance analysis of ordinary SK, LAR-PCE SK and full PCE SK in terms of ERMS and NMAE error metrics using 100 experiments of the Ishigami
function and sampling Scenarios 1 to 3.

Table 4
Summary of the accuracy in the estimates of the Ishigami function for sampling scenarios 1 (𝑘 = 64), 2 (𝑘 = 128),
and 3 (𝑘 = 256).

SK LAR-PCE SK

Mean ERMSE Mean NMAE Mean ERMSE Mean NMAE

Scenario 1 2.169 1.77E−03 1.418 1.20E−03
Scenario 2 1.421 1.46E−03 0.772 7.32E−04
Scenario 3 0.983 1.11E−03 0.257 2.92E−04

5. Conclusions

This study has proposed the use of Universal Stochastic Kriging for constructing surrogate models for stochastic simulators.
Specifically, the proposed approach, LAR-PCE SK, adopts adaptive sparse PCE as the trend model in a Universal SK model. With
the aim of minimizing over-fitting, the LAR algorithm is adopted to automatically identify the optimal polynomial basis in the
PCE, providing the resulting model with local/global prediction abilities and high flexibility for a broad variety of problems. Lastly,
the hyper-parameters of the resulting Universal SK model are fitted through a global GA optimization. The effectiveness of the
proposed approach has been validated through three classical benchmark case studies, namely: (i) the M/M/1 queue; (ii) a noisy
eggbox-shaped surface; and (iii) a stochastic version of the Ishigami function. The numerical results and discussion have proved the
appropriateness of the developed scheme to analyse and develop surrogate models in a wide range of situations, mitigating some
of the deficiencies of Ordinary SK when dealing with stochastic processes with high variability. The key findings and contributions
of this work include the following:

• The proposed LAR-PCE SK approach has demonstrated superior performance compared to Ordinary SK across various scenarios,
including both single and multiple dimensions, with known and unknown intrinsic variance. Benefiting from the model
selection capabilities of the LAR algorithm, LAR-PCE SK has shown particularly promising for multidimensional applications.

• Since the computational complexity added by the PCE trend model in Universal SK is marginal, the enhancements in accuracy
by the proposed LAR-PCE SK do not entail significant increases in the computational burden compared to Ordinary SK.

• The analysis of Case Studies II and III has revealed that the consideration of a full PCE as a trend basis leads to unacceptable
results due to over-overfitting. This stresses the need to consider an optimal sparse basis to effectively enhance the performance
of the ordinary SK.
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The presented numerical results and discussion suggest the ability of the proposed methodology to be adapted to a large variety
of problems in science and engineering. In this light, future developments regard the extension of the presented formulation to other
procedures for sparse basis selection. Another interesting objective for future work involves addressing the inherent underestimation
of the variance within the SK methodology. A well-selected trend term could have the potential to improve the ability of the
stochastic component in SK to accurately capture the overall stochastic nature of the model. Thus, developing a strategy to effectively
handle this underestimation could further enhance the performance and robustness of the surrogate modelling approach.
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