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Abstract 
The management of water consumption in healthcare centres can have positive impacts on both 

the environmental performance and profitability of health systems. Computational tools assist in 
the decision-making process of managing the operation and maintenance of healthcare centres. 
This research aimed to integrate the empirical knowledge of experts in Healthcare Engineering 

and the historical data from 66 healthcare centres in a Fuzzy Cognitive Map. The outputs of the 
predictive model included water consumption, water cost, and CO2 emissions in healthcare facilities, 
along with eleven variables to discover the causes and consequences of water consumption in 

healthcare centres. A healthcare centre with about 12 350 users, located in a city that experiences 
an average of 1100 heating degree days, whose facilities be moderately energy-efficient contributing 
over 50% with renewable energies is expected to consume 8.4 dam3 of water with 32.1 k€ of cost, 

and contribute realising 30.8 ton CO2eq emissions. The use of Fuzzy Cognitive Maps for prediction 
can provide a high level of effectiveness in identifying the factors that contribute to water consumption 
and in designing key performance indicators to manage the environmental performance of healthcare 

buildings. This tool is extremely effective in enhancing the performance of the management division 
of health systems. 
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1 Introduction 

Water management in healthcare centres is a complex issue 
that entails the supply, treatment for human consumption, 
distribution to users and to equipment, and disposal of water 
to be safely discharged into the public water distribution 
system. Water is a scarce resource whose reserves are being 
bargained by today’s excessive consumption (Deng et al. 
2022). So, several challenges must be addressed by Health 
Systems managers in order to enhance water management 
performance in healthcare facilities. A comprehensive 
approach that sheds light on the causes and consequences 
of water consumption and its economic and environmental 
effects will be crucial in addressing this issue. 

For medical care and support activities carried out in 
hospitals to be conducted properly, large quantities of water 

are required. Water consumption in a healthcare centre is 
used for toilets, domestic hot water (DHW), laundry, irrigation 
of green areas, therapy pools, kitchens, cleaning, cooling 
towers, laboratories, sterilization, and air conditioning, inter 
alia (WHO 2017). 

In Spanish hospitals, between 196–263 m3 per bed 
(Garcia-Sanz-Calcedo et al. 2017) and 54 m3 per worker 
(González et al. 2016), are consumed annually, as well as  
4 m3 per surgery, 0.7 m3 per hospitalisation, and 0.4 m3 per 
emergency (Gómez-Chaparro et al. 2018). Batista et al. 
(2020) provided a systematic review of indicators to assess 
water consumption in hospitals around the world. They 
concluded that the services offered in each hospital, the 
intensity of care activity and the application of best practices 
infer variations across investigations. Different applications 
which use water in a hospital complicate its monitoring and  
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control. This, and the lack of homogeneity in the indicators 
paves the way for exploring generalist models for predicting 
water consumption in healthcare facilities. 

González et al. (2016) designed and validated indicators 
of water consumption with respect to functional parameters 
in hospitals in Spain. González et al. (2018) extended the 
scope of their earlier research on cold water for human 
consumption (CWHC) in hospitals in Germany. In both 
studies, they proposed a series of measurements to mitigate 
water consumption and quantified the energy and CO2 
emissions savings that these would entail. 

García-Sanz-Calcedo et al. (2017) further developed their 
analysis in such a way that they obtained mathematical 
models to relate CWHC and DHW by using functional 
parameters of hospitals: number of beds and roof area. 
Gómez-Chaparro et al. (2018) extended the scope of 
regression models to relate CWHC to the medical activity 
carried out in a hospital. Zhou et al. (2014) developed a grey 
generalized forecasting model to predict water consumption 
for the hospitals in Wuhan City, using aggregate consumption 
data and making their prediction independent of both 
functional and operating parameters of hospitals. 

Besides the above, also efficiency measures in grey water 
reuse, the attitude of the employees and the social awareness 
of the users have been shown to have a strong positive 
impact on the proper management of water consumption 
(D’Alessandro et al. 2016). However, these qualitative 
factors have not yet been considered in current models for 
predicting water consumption. 

Until now, mathematical regression models have been 
developed to establish a direct relationship between functional 
parameters or medical activity as input variables and predicted 
water consumption in healthcare centres as output variables. 
The complexity of how a healthcare centre functions 
means that many factors might influence energy and water 
consumption (Batista et al. 2020). Although the degree of 
explanation of these models is adequate, it is possible to 
improve their predictions by incorporating intermediate 
factors, such as the efficiency of the distribution system, 
level of environmental awareness, etc., instead of imposing 
a direct mathematical relationship between consumption 
and functional parameters and/or health service activity. A 
broader range of possibilities to predict water consumption 
will be discovered, taking into account factors as yet not 
considered, such as degree of environmental awareness, 
efficiency of the water distribution system, contribution of 
renewable energy (RE), building occupancy level, etc. 

The experts at the managerial level have in-depth 
knowledge based on their professional experience that create 
models with excellent predictive power about the outcome 
of a phenomenon, like the consumption of healthcare 
centres supplies, based on qualitative criteria. Therefore, a 

group of experts claim to provide adequate rules governing 
the interrelationships between the factors that influence a 
phenomenon, like water consumption, so that advancing 
this set of rules will lead to a proper prediction of that 
phenomenon under study (Bradley et al. 2006). 

A fuzzy inference system such as Fuzzy Cognitive Maps 
(FCMs) can be used as a reasoning engine to project water 
consumption scenarios based on hospital buildings’ operating 
and maintenance conditions (Glykas 2010). FCMs apply 
fuzzy logic to model a reasoning process in a complex 
decision environment (Zimmermann 2001). FCM can 
handle and represent tacit knowledge more effectively than 
other machine learning algorithms such as, artificial neural 
networks, adaptative neuro-FIS, random forest, etc. (Hsieh 
and Tang 1998). FCM can accommodate different levels of 
uncertainty and imprecision in the input data and the 
relationships between variables, which makes them a useful 
tool in domains where there is a high degree of ambiguity 
and uncertainty (Baker et al. 2018). Additionally, FCMs are 
more transparent and interpretable than neural networks, 
which can help in understanding the reasoning behind the 
decision-making process. 

FCM was used by Salmeron and Lopez (2012) to predict 
the impact of maintaining an Enterprise Resource Planning 
software package, by Papageorgiou and Poczęta (2015) to 
propose a predictive model of electricity consumption in a 
house, and by Salmeron et al. (2016) to forecast short-term 
urban water demand. Prediction by a Fuzzy Inference System 
(FIS) was proposed by Papageorgiou et al. (2020) for gas 
demand in Greece, by Jallal et al. (2020) for the energy 
consumption of a public building, and by Al-Shanableh 
and Evcil (2022) and Nie et al. (2022) for the consumption 
in a residential building. Varghese et al. (2022) proposed  
a fuzzy cognitive approach for the prediction of crowd 
behaviour. Han et al. (2020) validated an FCM as a credit 
risk assessment model in lending platforms. Kuang et al. 
(2020) incorporated human decision factors into the 
technical criteria to assist in switched power supply design 
based on FCM. Firmansyah et al. (2019) addressed the 
challenge of clarifying the interrelationships among aspects 
of a smart city with the use of FCMs. 

Concerning health systems, FCMs have been used to 
predict pathologies by capturing the reasoning followed by 
healthcare professionals (Andersson and Silver 2019). Shoaip 
et al. (2021) constructed a decision support system for 
Alzheimer’s diagnosis based on FCM. Specifically, in the 
field of Healthcare Engineering, Martinez de Salazar and 
García Sanz-Calcedo (2019) validated an FCM predicting 
how maintenance operations influence healthcare centres’ 
energy consumption. Dogu et al. (2021) used an FCM  
as support to predict the length of hospital stays for 
selected patients. Additionally, Izadikhah (2022) proposed 
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a stochastic-based FIS to define performance evaluation 
criteria for the quality of services in hospitals. 

However, no state-of-the-art research studies can be 
found which applied FCM to predict the causes and effects 
of water consumption in complex systems such as healthcare 
centres. Mathematical regression models that involve a large 
number of interrelated variables have been applied to the 
question of water consumption in hospitals. Prediction 
through the use of FCM will increase such models’ level of 
explanation of the system, for which reason the present 
research study is novel and fills a gap in knowledge in the 
literature. 

This research aimed to build and validate a computational 
tool for predicting water consumption in healthcare centres, 
along with its associated costs and environmental impact, 
uncovering the underlying causes and effects. This tool 
will be useful to support the operation and maintenance 
management of healthcare centres, as well as improve their 
sustainability and economic efficiency. 

2 Material and methods 

2.1 Overview 

Based on the water consumption history of a representative 
sample of 66 healthcare centres—almost 60%—out of 111 
throughout the region of Extremadura (Spain) (Ministry of 
Health 2021), a panel of five experts assembled relationships 
among the variables that influence the phenomenon of water 
consumption. These causal relationships among variables 
were transferred to an FCM through the adjacency matrix 
that was validated in a controlled experiment. This FCM 
then served to consistently predict water consumption in 
healthcare centres under any working conditions. Figure 1 
shows the general method that we followed in the research. 

More specifically, water consumption data were collected 
from 66 healthcare centres in eight health districts in a 
Spanish region from 2016 to 2020 for 14 variables, resulting 
in a dataset of 4620 records. These buildings had floor areas 
between 425 m2 and 2582 m2 and were built between 1984 
and 2005. The buildings were characterized not only by their 
functional parameters, but also by the severity of weather 
conditions of their location (town’s climate), the amount of 
use and the capacity of care to users, the level of energy and 
maintenance management, and the efficiency of their water 
installations. Therefore, a sufficiently representative sample 
of water consumption in healthcare centres was considered 
for robust water consumption management models. 

The operating parameters for the healthcare facilities 
that will later be selected for inclusion in the FCM were 
provided by the Health System management (users, workers, 
basic care units, support units, and consumption). However,  

 
Fig. 1 The general method proposed for the research 

additional factors will also be taken into account in subsequent 
assessments, but they need to be quantified. The energy 
management level was quantified based on the energy label 
of equipment and the passive elements of each building. 
The level of maintenance management was evaluated using 
the overall equipment effectiveness (OEE) metric, which 
considers the available time, productive time, and working 
time of the water distribution system and its components. 
To assess the efficiency of the water distribution system, a 
volume balance was performed over a one-year period, 
considering the volume of water supplied to the system as 
an input and the desired output (volume of water delivered 
to users and facilities) and undesirable output (volume of 
leaked water) as outputs. Finally, the annual CO2 emissions 
were estimated following The Greenhouse Gas Protocol 
accounting framework (WBCSD and WRI 2011). Specifically, 
the GHG emissions inventory was limited to Scope 1, which 
measures the emissions derived exclusively from the primary 
energy consumption for the operation of the healthcare centre. 
As all buildings have a heat pump for air-conditioning, 
annual CO2 emissions were estimated using the Spanish energy 
consumption conversion factor (Ministry of Ecological 
Transition and Demographic Challenge 2020).  

2.2 Topology of the Fuzzy Cognitive Map 

Five health system managers made up the panel of experts 
in Healthcare Engineering. Three experts are employed 
within the regional healthcare system, while the remaining 
two are affiliated with a different healthcare system within 
Spain. All experts possess comparable educational backgrounds, 
as well as comparable capabilities, and collectively boast 
over 100 years of experience managing the operations and 
maintenance of healthcare facilities in Spain which results 
in a well-balanced expert panel. This group was provided 
with this systematic collection of information about water 
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consumption in healthcare centres and other information 
about the functional parameters of those buildings. Based 
on this information and their own professional experience, 
they identified a series of factors that influence water 
consumption in healthcare centres (Stach et al. 2010). 

The range of values of each factor that influences water 
consumption was fuzzified into the interval [−1,1] using a 
hyperbolic tangent function (Bueno and Salmeron 2009). 
In fuzzy linguistics, the activation level −1 represented the 
lowest value of the range of a factor, +1 represented the 
highest value of the said range, and 0 represented the average 
value of this interval of real values according to the fuzzy 
interpretation (Nahmias 1978). The values of the nodes in 
the equilibrium state after the simulation were defuzzified 
to translate the linguistic fuzzy back into numerical values. 

This panel of experts interrelated the factors and reported 
on the intensity of the influence of antecedent factors 
(pre-synaptic, cause) on the consequent ones (post-synaptic, 
effect) to build the adjacency matrix, [A]. 

11 1
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n nn
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é ù
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                              (1) 

where wij represents the intensity with which the factors i 
and j are related. 

An FCM was drawn whose topology follows the provisions 
of the group of experts for the adjacency matrix. Designated 
as source nodes were N01, N02, N03, and N04; in the graph, 
they are the ones which receive no edges. Designated as sink 
nodes were N12, N13, and N14; these are the ones which 
receive edges but from which no edge originates. 

The relationship between a node i and a node j was 
represented by an edge with weight wij that represented the 
intensity of the relationship between the two factors (Felix 
et al 2019). Positive causality between factors was represented 
by wij > 0 which means that the factor j is potentiated by the 
factor i (pre-synaptic, cause). The contrary is the case when 
wij < 0. The direction of the arrow indicated the direction in 
which the calculation evolves. 

2.3 Calculation process and what-if analysis 

Once the topology of the FCM had been defined, the 
calculation process (Salmeron 2012) began by setting the 
initialization state vector of the simulation following the 
general form of Eq. (2). 

( )0 0 0 0
1 2 nC c c c=


                            (2) 

where 0
ic  is the state assigned to the ith factor at time t = 0. 

Specifically, several initial vectors with values of the source 

nodes were proposed and the state of the rest of the nodes 
of the network was set to 0 to carry out a what-if analysis. 

Due to the dynamic nature of the FCM, the process   
of iterative calculation caused the values of the non-source 
nodes in the network to evolve at each iteration according 
to Eq. (3): 
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where 1t
ic +

 is the new value of node i at time t + 1, obtained 
by f(...) as membership function, from t

ic  as the value of 
the node i at time t, from wji as the intensity of influence of 
node j on node i and from t

jc  as the value of node j at time t. 
The hyperbolic tangent (Bueno and Salmeron 2009) was 

used as the membership function to calculate the component 
i of the state vector 1t

ic +

 as shown in Eq. (4), although other 
membership functions were tested as shown in the validation 
section. 

( ) ( )

( ) ( )
1 1

1 1

· · ·
1

· · · ·

e e

e e

n nt t t t
i ji j i ji jj j

n nt t t t
i ji j i ji jj j

λ c w c λ c w c
t
i

λ c w c λ c w c
c

= =

= =

⋅ + - +

+

+ - +

å å-
=

å å+
               (4) 

An error-driven approach was applied as the optimizer 
to adjust the developed model parameters. So, the values of 
the factors—states of the nodes—changed at each iteration 
until those changes were negligible concerning the previous 
iteration, meaning that they had converged to a state of 
equilibrium (Felix et al. 2019). The variation of state values 
between consecutive iterations was calculated from Eq. (5) to 
determine the evolution of the error on the system’s dynamics: 

1 1maxt t t
i ii

E C C+ += -                             (5) 

where 1tE +  is the variation of states between two consecutive 
iterations, 1t

iC +  is the present state vector, and t
iC  is the state 

vector of the previous iteration. 
The value of the source nodes marked different 

configuration states of the graph, with that value kept 
constant for all the iterations of a simulation. The rest of 
the nodes influence other nodes and are in turn influenced 
by other nodes, so they are how the network will evolve from 
the source nodes to the sink nodes (Glykas 2010). This 
progress through the network nodes will continue until 
static or cyclic equilibrium is reached. 

Finally, a what-if analysis was conducted to determine 
the prediction of the rest of the possible scenarios. All the 
possible options of input variable activation were considered 
in order to know their predictions. Assuming all input 
variables as null does not lead to any results since the 
network would not evolve, so this option was discarded 
(Jetter 2006). 
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2.4 Validation of the Fuzzy Cognitive Map 

Out of the total 111 healthcare centres present within the 
region, a sample of 66 centres was taken. From the sampled 
cohort, 61 centres were utilized for model training 
purposes, while the remaining five centres were reserved 
for validation purposes. The model was subsequently tested 
using an additional 10 health centres selected from the 
remaining population. 

Five forward simulations were performed taking as 
initial state vectors the actual data from five representative 
healthcare centres in the sample. The items for validation were 
selected based on their FCM input variables exhibiting 
similarities to scenarios in which a single variable was at a 
heightened activation level, as defined by fuzzy linguistic 
terminology, the scenarios in question were represented 
by S01 (where N01 = 1), S03 (where N02 = 1), S05 (where 
N03 = 1), S09 (where N04 = 1), and S14 (where N01 = 1, 
N02 = 1, N03 = 1, and N04 = 1). From the iterative process, 
consistent equilibrium state values were determined. These 
predicted values were compared with the actual records to 
calculate the error of prediction. This validation stage was 
checked by the expert panel to ensure the robustness of the 
Fuzzy Cognitive Map. 

Additionally, the assessment of the model’s accuracy 
and precision involved two ways: firstly, graphically via 

boxplots, which contrasted the distribution of actual and 
predicted data (validation subset); and secondly, through 
numerical evaluation using statistical metrics (testing subset): 
mean absolute error (MAE), mean squared error (MSE) 
and root mean squared error (RMSE). In the knowledge of the 
satisfactory results obtained in the test, the FCM developed 
to predict the level of water consumption in healthcare 
centres was validated. 

3 Results 

3.1 Topology of the Fuzzy Cognitive Map 

Table 1 presents the factors identified by the expert panel 
and their descriptions, as well as the range of values that these 
variables took as extracted from historical records. These 
values were transformed into fuzzy linguistics by assigning 
the lowest value of the range to the fuzzy value −1 and the 
highest to +1. 

The experts established the connections between the 
variables identified and assigned them the weight as the 
intensity of the relationship between nodes to construct the 
adjacency matrix (Table 2). 

Figure 2 shows the topology of the designed FCM and 
causal relationships among nodes. It includes the input 
layer which comprises four nodes (independent factors), an  

Table 1 Factors affecting water consumption in healthcare centres 
Code Description Definition Range 

N01 Number of users Average annual number of users assigned to a healthcare centre, expressed in units 497–24 200 

N02 Energy management level Level of energy management in a healthcare centre, expressed as a percentage: low (≤25%); 
medium (25%–75%); high (≥75%) 0–100 

N03 Town’s climate Severity of weather conditions in the city where the healthcare centre is located, expressed in 
heating degree-days (HDDY): low (≤1500); middle (1500–1900); high (≥1900) 1052–2250 

N04 Contribution of renewable  
energies 

Ratio between energy from renewable sources and the total energy used in a healthcare 
centre, expressed as a percentage: low (≤20%); medium (20%–40%); high (≥40%) 0–52 

N05 Number of workers Average annual number of workers in a healthcare centre, expressed in units 6–57 

N06 Number of basic care units Number of doctor-nurse teams per 1500 patients (±10%), expressed in units 2–15 

N07 Number of support units Number of care services additional to primary care (rehabilitation, dental health, obstetrics, 
etc.), expressed in units 0–6 

N08 Domestic hot water system 
efficiency 

Overall performance of the domestic hot water system, expressed as a percentage: low 
(≤60%); medium (60%–85%); high (≥85%) 0–100 

N09 Water distribution and  
pumping system efficiency 

Overall performance of the water distribution and pumping system, expressed as a 
percentage: low (≤60%); medium (60%–85%); high (≥85%) 0–100 

N10 Environmental awareness 
level 

Level of environmental awareness by healthcare centre staff, expressed as a percentage: low 
(≤30%); medium (30%–70%); high (≥70%) 0–100 

N11 Maintenance management  
level 

Rate of annual corrective maintenance interventions to preventive, expressed as a percentage: 
low (≤25%); medium (25%–60%); high (≥60%) 0–100 

N12 Annual water consumption Annual amount of water consumed in a healthcare centre, expressed in m3 8184–271 270

N13 Annual CO2 emissions Annual amount of CO2 emitted into the atmosphere by a healthcare centre, expressed in 
equivalent tons of CO2 

30–327 

N14 Annual water cost Annual cost of water consumed in a healthcare centre, expressed in euros (€) 6629–219 728 
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output layer with three nodes (dependent factors), and an 
intermediate (or hidden) layer that links the input with the 
output. 

3.2 The output of what-if analysis 

The outputs of the forward simulations are depicted in 
Figure 3, utilizing both fuzzy linguistic and deterministic 
values. This arrangement enables the ordered representation 
of the output values of all scenarios along intervals, facilitating 
a comprehensive visual representation of the what-if 
analysis. 

The scenarios exhibiting the maximum values of water 

utilization, water expenditure, and greenhouse gas (GHG) 
emissions are S01, S08, and S02 respectively. Conversely, 
the scenarios demonstrating the minimal values of water 
utilization, GHG emissions, and water costs are in the 
following order: S13, S05, S12, and S04. 

In particular, the deterministic values of the output 
variables—water consumption, CO2 emissions, and cost of 
water consumption—are shown in Figure 4.  

3.3 Causes analysis of the output of each scenario 

The heat map shown in Figure 5 provides a view of the 
activation level of each FCM variable (intermediate and  

Table 2 Adjacency matrix between identified factors 

 N01 N02 N03 N04 N05 N06 N07 N08 N09 N10 N11 N12 N13 N14 

N01 0 0 0 0 0.2 1 1 0 0 0.2 0.3 0 0 0 

N02 0 0 0 0 0 0 0 0 0 0 1 −0.5 0 −0.4 

N03 0 0 0 0 0 0 0 1 1 0 0.4 −1 0 0 

N04 0 0 0 0 0 0 0 0 0 0.6 0.5 0 −1 0 

N05 0 0 0 0 0 0 0 0 0 0 0.3 0.6 0 0 

N06 0 0 0 0 1 0 0 0 0 0 0.3 0.5 0 0 

N07 0 0 0 0 1 0 0 0 0 0 0.4 0.4 0 0 

N08 0 0 0 0 0 0 0 0 0 0 1 −1 −0.5 0 

N09 0 0 0 0 0 0 0 0 0 0 1 −1 −0.4 0 

N10 0 0 0 0 0 0 0 0 0 0 0.3 −0.4 0 0 

N11 0 0 0 0 0 0 0 0 0 0.2 0 −0.7 −0.3 0 

N12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

N13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Fig. 2 Topology of the Fuzzy Cognitive Map predicting water consumption 
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Fig. 3 Output layer comparison between fuzzy linguistic and deterministic values 

Fig. 4 Deterministic values of the output variables: water consumption, CO2 emissions, and water costs 

 
Fig. 5 Heat map of equilibrium states according to each initial state 
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sink nodes), which are the equilibrium states of the forward 
simulations for each one of the initial state vectors—the level 
of activation of proposed scenarios—of the source nodes. 

In the heat map, we can see that there are similarities in the 
output layer of several sets of scenarios, either in all three 
output variables or in at least two of them. Only scenario S02 
does not comply with this pattern; however, S02 was compared 
to a similar pair. In order to highlight these patterns in 
the output layer of the FCM that help us identify common 
causes that lead to these consequences, the Venn diagrams 
in Figure 6 are provided, which also rank them from 
unfavourable (left) to favourable (right) scenarios. 

Firstly, the highest prediction for water consumption 
(N12 = 202 538.8 m3), GHG emissions (N13 = 211.4 ton 
CO2eq), and water costs (N14 = 160 508.5 €) were observed 
in scenario S01. The second least favourable scenario (i.e., 
S08) showed a medium-high level of water consumption 
(N12 = 175 598.8 m3), of water costs (N14 = 141 531.9 €), 
and a low level of GHG emissions (N13 = 64.6 ton CO2eq). 
The third least favourable scenario was S02, which leads to 
128 453.8 m3 of water consumption (N12), 124.8 ton CO2eq 
of GHG emissions (N13), and 145 602.2 € in water costs 
(N14). The three scenarios share a high number of users 
(N01) and a medium level of climate severity (N03). 
However, they differ in their levels of energy management 
(N02) and RE contribution (N04). In particular, scenario 
S08 incorporates a high level of RE contribution (N04), 
which leads to lower GHG emissions compared to the other 
two scenarios. 

Secondly, the set of scenarios designated as S03, S06, 
S07, S11, S14, and S15, in their output layer exhibit a common 
characteristic of having a low level of water consumption 
(N12) and GHG emissions (N13), and a medium-low level 
of water cost (N14). The only input that is consistent across 

all scenarios is a high level of energy management (N02). 
It is noteworthy to mention the differences between the 
scenarios, including: (i) medium RE contribution (N04) in 
scenarios S03, S06, and S07, and high RE contribution in 
scenarios S11, S14, and S15; (ii) medium climate severity  
in scenarios S03 and S11 and high climate severity in the 
remaining scenarios; and (iii) a high number of users in 
scenarios S06 and S15 and a medium number of users in 
the other scenarios. 

Then, in the output layer of the FCM, a similar pattern 
can be observed between scenarios S09 and S10. Both exhibit 
comparable levels of water consumption (63 405.8 m3 and 
107 354.3 m3, respectively) and GHG emissions (38.6 ton 
CO2eq and 42.9 ton CO2eq, respectively). However, S09 
displays a medium-low level of water cost (N14 = 57 474.7 €) 
while S10 has a medium level (N14 = 129 449.2 €). The 
similarities between these two scenarios can be attributed 
to their high user levels (N01), medium levels of energy 
management (N02) and climate severity (N03). The differences 
in their respective results are due to varying contributions 
of RE (N04), which is medium for S09 and high for S10. 

Finally, the scenarios with the lowest values for water 
consumption (N12), GHG emissions (N13), and water costs 
(N14) are ranked as follows: S13, S05, S12, and S04. These 
four scenarios share a medium level of energy management 
(N02) and a high level of climatic severity (N03). Additionally, 
they are equal in pairs concerning the other two variables 
(N01 and N04). On one hand, while scenarios S05 and S13 
demonstrate a medium level of users (N01), by contrast, 
scenarios S04 and S12 exhibit a high level of that variable 
(N01). On the other hand, while scenarios S12 and S13 
exhibit a high level of RE contribution (N04), in contrast, 
scenarios S04 and S05 have a medium level of that variable 
(N04). 

 
Fig. 6 Venn diagrams of scenarios with similar patterns in the output layer of the Fuzzy Cognitive Map 
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3.4 Validation of the Fuzzy Cognitive Map 

Table 3 shows the actual and predicted values for the FCM 
proposed. Absolute errors of less than 10% are obtained for 
the five healthcare centres, so this controlled experiment 
allows validation of the FCM developed. 

Furthermore, Figure 7 illustrates the comparison of the 
distributions between the actual sample data and values 
obtained from the simulations. Notably, the actual data 
exhibits a narrower distribution compared to the predicted 
values, which display a slightly wider distribution. Despite 
this disparity, the pivotal features of the distributions, such 
as the quartiles, mean, and median, display comparable 
positioning. The discrepancy between the mean of the actual 
and predicted values is 8.21% for water consumption, 4.45% 
for GHG emissions, and 3.16% for water cost, what appears 
to be an adequate accuracy of the FCM model. 

The accuracy of the model was tested with the statistical 
metrics (MAE, MAPE, and RMSE) shown in the Table 4. 
Additionally, statistical metrics indicate that the tangent 
hyperbolic membership function exhibits a lower error than 
the sigmoid function. 

4 Discussion 

The prediction of water consumption in a healthcare centre 
using FCM differs from conventional mathematical regression 
models in the state-of-the-art. FCMs take into account the 
comprehensive characteristics of a system, hereby, a healthcare 
centre. Specifically, FCMs consider causal relationships 
among various variables that define the dynamics of the 

water consumption phenomenon. The in-depth results that 
could be obtained from FCM provide valuable insights for 
decision-making in Healthcare Engineering management 
and are thus a very powerful tool for conducting what-if 
analyses (Jetter 2006). 

Water scarcity and the environmental impact of its use, 
as well as its impact on public health, turns water management 
into an obligation (Rizzo et al. 2020). This research allows 
the most influential variables affecting the management of 
a healthcare centre’s water consumption can be determined. 
The backwards and forwards tracking attributable to the 
FCMs makes the causes and consequences of the phenomenon 
under study recognizable (Nápoles et al. 2020). The FCM 
allows deviation to be detected, then the root causes of  
an adequate or inadequate level of water consumption  
to be identified, and it acknowledges the consequences  
of management decisions affecting the installation to be 
predicted by modifying the input variables. 

Having about 24 200 users assigned to a healthcare 
centre, while keeping the rest of the input variables at a 
medium level, was seen to generate the worst scenario for 
water consumption, GHG emissions, and water costs. This 
FCM will enables to infer the demand for water based on 
the operational conditions of a healthcare centre, surpassing 
previous techniques that relied solely on the building’s 
functional parameters. By incorporating additional input 
variables into the design, it becomes possible to prevent 
oversizing of water installations, thus reducing CO2 emissions 
and the carbon embedded in the building installations 
(García-Sanz-Calcedo et al. 2021). 

The distribution of users by healthcare centres is a 

Table 3 Comparison of actual and predicted values by the FCM 
Healthcare centre ID 

(scenario check)   Water consumption GHG emissions Water costs 

Actual 210 437.21 m3/yr 212.70 ton CO2 eq/yr 172 039.20 €/yr 

Predicted 202 538.78 m3/yr 211.44 ton CO2 eq/yr 160 508.51 €/yr HC7 Scenario 01 

Error −3.75% −0.60% −6.70% 

Actual 32 068.30 m3/yr 62.90 ton CO2 eq/yr 78 329.34 €/yr 

Predicted 34 045.35 m3/yr 63.13 ton CO2 eq/yr 72 381.01 €/yr HC12 Scenario 03 

Error +6.17% +0.37% −7.59% 

Actual 8540.29 m3/yr 33.45 ton CO2 eq/yr 32 229.03 €/yr 

Predicted 8565.47 m3/yr 35.66 ton CO2 eq/yr 32 158.38 €/yr HC38 Scenario 05 

Error +0.29% +6.60% −0.22% 

Actual 64 823.23 m3/yr 39.12 ton CO2 eq/yr 59 309.93 €/yr 

Predicted 63 405.75 m3/yr 38.57 ton CO2 eq/yr 57 474.66 €/yr HC42 Scenario 09 

Error −2.19% −1.41% −3.09% 

Actual 9833.90 m3/yr 32.20 ton CO2 eq/yr 53 292.30 €/yr 

Predicted 9196.88 m3/yr 30.77 ton CO2 eq/yr 56 537.02 €/yr HC50 Scenario 14 

Error −6.48% −4.43% +6.09%   
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result of the health system’s strategic planning. Acting on 
this input variable is therefore neither direct nor immediate. 
However, we can take action by installing certain technologies 
and devices designed to reduce the unit consumption of water. 
These include electronic taps, aerators, misting shower 
systems, cisterns with optimized discharge, rainwater reuse 
systems, condensation from air conditioning installations, 
greywater, variable flow pumps, and intelligent control 
systems (Wei 2010; Attia et al. 2015). 

Based on the scenario where about 12 350 users are 
assigned to a healthcare centre with high energy-efficient 
facilities in a low severity climatic location and a RE 
contribution greater than 50%, a total water consumption 
of 8.4 dam3, 32.1 k€ in water costs, and about 30.8 ton 
CO2eq of GHG emissions are estimated. Assuming a built 
surface area of around 1600 m2, we would obtain an indicator 
of 5.25 m3/m2, compared to 1.65 m3 per built surface area 
reported by Garcia-Sanz-Calcedo et al. (2017) for hospitals 
in the same region of Spain. However, the numbers are not 
similar as the hospital requires a much larger surface area 
for ancillary services to clinical practice than healthcare 
centres. Notwithstanding, a decline in this optimal scenario 
at the beginning of the paragraph is suggested by the FCM 
if the severity of the local climate demands almost 2250 
heating degree days. This may be because too much RE 
installation would be required to meet the joint demand for 
DHW and heating (Atienza-Márquez et al. 2022). 

The results indicate that adequate energy management 
leads to favourable results in terms of consumption, water 
costs, and GHG emissions. These results improve if RE  

contribution is also great than 50%. In this sense, GHG 
emissions are low if the contribution of RE is high, which is 
logical since it is not necessary to burn fossil fuels to obtain 
DHW (González-Domínguez et al. 2022). 

Despite the above, it was found that having about 24 
200 users together with a RE contribution greater than 50% 
do not by themselves lead to the minimum results in terms 
of water consumption, its cost, and GHG emissions, like 
scenario S08. Complementing the contribution of RE 
with appropriate energy management and energy-efficient 
installations will do so, like scenario S10. The difference 
between the two scenarios is almost 70 dam3, more than 10 k€ 
in costs, and about 22 ton CO2eq, which, when extended 
to a whole Health System of a country, would lead to 
incredible amounts of savings and efficiency. Similar findings 
were obtained by González et al. (2016) to deduce that they 
could save 34.24 m3 per hospital bed and, consequently, 
would save 5600 dam3 and about 22 400 ton CO2eq in Spain. 

With the prediction not only of water consumption 
but also of its cost and its GHG emissions, it is possible to 
adequately control the consumption of supplies and plan the 
operation and maintenance of the building and its facilities, 
as well as to take decisions on investment in renewable 
energies. Prognosis, i.e., the ability to forecast the most 
probable development of an event, is extremely worthwhile 
for those responsible for hospital management to be able to 
infer consumption, design helpful control indicators, and 
thus to manage the actual consumption. 

On the long road towards healthcare sector sustainability, 
it is also crucial to introduce sector-based measurement 

 
Fig. 7 Comparison of actual data against FCM model predictions using boxplot 

Table 4 Model errors for predicted values compared to actual data 

Membership function Error Water consumption Greenhouse gas emissions Water costs 

MAE 4426.65 m3 2.79 ton CO2eq 2533.87 € 

MAPE 8.88% 5.17% 3.48% Hyperbolic tangent 

RMSE 8880.54 3.45 4068.00 

MAE 6659.74 m3 4.33 ton CO2eq 6493.33 € 

MAPE 12.33% 14.38% 12.23% Sigmoid 

RMSE 14 049.38 9.42 10 938.32   
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systems to control the consumption segregated by areas of 
a hospital, and thus be able to implement specific measures 
to enhance consumption ratios. Future research should 
focus on extrapolating the FCM to hospitals with the 
incorporation of new variables, and on calibrations not 
only to greater building sizes and water installation complexity 
but also on including the specific water demands of certain 
medical treatments. 

In this regard, the reduction of the complexity of our 
FCM model would pose a challenge for future endeavors, 
albeit the present study provides initial profound 
understanding of the phenomenon of water consumption 
in healthcare centres. In fact, the developed FCM is 
comprised of fourteen interdependent variables, wherein 
the instantaneous values of certain variables influence the 
remaining ones, while some of these influenced variables 
are further affected by others. It is feasible to curtail the 
number of variables and expert opinion’s influence by 
conducting a smaller scale experiment that would enable the 
monitoring of continuous temporal evolution of magnitudes 
of interest, rather than discrete aggregate quantities. 

4.1 Limitations 

The primary limitation of this study is that the findings 
were derived from a simulated model and therefore, the 
input data uncertainty (aleatoric and/or epistemic) may 
impact the results if another sample of healthcare facilities 
is employed. The epistemic uncertainty affecting the 
phenomenon of water consumption in healthcare facilities 
has been mitigated through two efforts: (1) by taking a 
sufficient sample of buildings and (2) by incorporating a 
panel of experts with more than 100 years of experience in 
hospital management. Consequently, the methodology utilized 
in this investigation can be applied to other buildings and 
even to different geographic regions after incorporating 
managerial expertise. 

Additionally, a limited number of experts involved in 
the study may introduce bias in the analysis due to their 
professional experiences. However, the extensive collective 
experience of the expert panel, totalling over 100 years in 
two diverse health systems, helps mitigate the uncertainty 
in the reliability of their opinions. 

5 Conclusions 

This research proposed an FCM to infer water consumption 
and its impacts on both economics and the environment 
while identifying the underlying causes. The management of 
healthcare centres often relies on the personal experience 
of managers. Consequently, some causes of weak hospital 

operation and maintenance performance may not be 
discovered. This study captured the expertise of Healthcare 
Engineering professionals to quantitatively determine the 
causes and consequences of the phenomenon in question. 
The FCM’s weights of the causal relationships were obtained 
as a result of a quantitative diagnosis based on the qualitative 
opinion of experts. The robustness and accuracy of the 
predictions were verified through a controlled case study. 
Thus, the proposed FCM-based prediction algorithm was 
validated by a panel of experts in Healthcare Engineering. 

The results indicate that 8.3 dam3 of water was consumed 
and 30.7 ton CO2eq of GHG emissions are generated in a 
healthcare centre with high energy-efficient facilities, or one 
that demands around 1100 heating degree days, or whose 
RE contribution exceeds 50% and the other input variables 
are at a medium level. Having nearly 24 200 registered users 
leads to the consumption of over 200 dam3, a water cost of 
more than 160 k€, as well as more than 210 tons of CO2 eq, 
with all other input variables remaining at a medium level. 

For each target variable, the following conclusions were 
reached through analysis. Firstly, the lowest annual water 
consumption was observed to be 8.3 dam3 for a healthcare 
centre that serves approximately 12 350 users and is equipped 
with high energy-efficient facilities, is located in a city that 
needs about 2250 heating degree days and a RE contribution 
of nearly 50%. Secondly, the minimum GHG emissions of 
30.8 tons of CO2eq were observed for a healthcare centre 
that boasts high energy-efficient facilities, or is located in a 
city with a demand for only 1100 heating-degree days, and 
has a RE contribution greater than 50%, and about 12 350 
users. Finally, the lowest annual cost of water, estimated 
at 32.1 k€, occurs in a healthcare centre with medium 
energy-efficient installations and equipment and located in 
a town with a demand for only 1100 heating-degree days. 

Conclusively, the type of healthcare centre with the lowest 
water consumption (8.4 dam3), GHG emissions (30.8 ton 
CO2 eq), and water cost (32.1 k€) will correspond to a 
healthcare centre with about 12350 assigned users and 
moderate energy-efficient facilities, whose climatic severity 
allows for about 1100 heating degree days, and more than 
50% of the RE contribution. 

The findings of this study show the capacity an FCM 
has to represent the functioning of a healthcare’s water 
consumption system. From the above, it is demonstrated 
that FCMs are indeed effective in predicting a variable of 
interest in a complex system, such as water consumption in 
a healthcare centre. Moreover, they help to identify the 
factors that contribute to a phenomenon under study. Thus, 
FCMs actively serve health systems at the strategic level 
to design new health facilities, and also at the operational 
level of these organisations to control the operation and 



Sánchez-Barroso et al. / Building Simulation / Vol. 16, No. 11 

 

2204 

maintenance of healthcare centres. This computational tool 
is extremely effective in enhancing the performance of the 
management division of health systems. 
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