
This is the accepted version of the article:

Jesús M. Sánchez-Gómez, Miguel A. Vega-Rodríguez, Carlos J. Pérez (2020). A decomposition-
based multi-objective optimization approach for extractive multi-document text summarization,
Applied Soft Computing, Volume 91, 2020, 106231, ISSN: 1568-4946, DOI:
10.1016/j.asoc.2020.106231

A Decomposition-based Multi-Objective Optimization

Approach for Extractive Multi-Document Text

Summarization

Jesus M. Sanchez-Gomeza,∗, Miguel A. Vega-Rodŕıgueza, Carlos J. Pérezb

aDepartment of Computer and Communications Technologies, University of
Extremadura, Campus Universitario s/n, 10003 Caceres, Spain.

bDepartment of Mathematics, University of Extremadura, Campus Universitario s/n,
10003 Caceres, Spain.

Abstract

Currently, due to the overflow of textual information on the Internet, auto-
matic text summarization methods are becoming increasingly important in
many fields of knowledge. Extractive multi-document text summarization
approaches are intended to automatically generate summaries from a docu-
ment collection, covering the main content and avoiding redundant informa-
tion. These approaches can be addressed through optimization techniques.
In the scientific literature, most of them are single-objective optimization ap-
proaches, but recently multi-objective approaches have been developed and
they have improved the single-objective existing results. In addition, in the
field of multi-objective optimization, decomposition-based approaches are
being successfully applied increasingly. For this reason, a Multi-Objective
Artificial Bee Colony algorithm based on Decomposition (MOABC/D) is
proposed to solve the extractive multi-document text summarization prob-
lem. An asynchronous parallel design of MOABC/D algorithm has been
implemented in order to take advantage of multi-core architectures. Exper-
iments have been carried out with Document Understanding Conferences
(DUC) datasets, and the results have been evaluated with Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) metrics. The obtained results
have improved the existing ones in the scientific literature for ROUGE-1,

∗Corresponding author
Email addresses: jmsanchezgomez@unex.es (Jesus M. Sanchez-Gomez),

mavega@unex.es (Miguel A. Vega-Rodŕıguez), carper@unex.es (Carlos J. Pérez)

ROUGE-2, and ROUGE-L scores, also reporting a very good speedup.

Keywords: Multi-Document Summarization, Multi-Objective
Optimization, Artificial Bee Colony, Decomposition-based.

1. Introduction

Nowadays, there is a large amount of information contained on the Internet,
and it follows growing day-to-day. This makes that the number of digital
documents is also increasing. This data volume makes difficult to obtain the
most important information of a specific topic, whereas the Internet users
demand to obtain such information as quickly as possible. According to Fan
and Bifet [1], text mining tools are capable of extracting relevant information
from a large set of documents. Besides, from the textual information con-
tained in the documents, these tools should be able to automatically create
a summary (Hashimi et al. [2]), satisfying the needs of the users by covering
the main content and reducing the number of redundant sentences.

The summaries generated by text mining tools can be of various kinds.
Firstly, a summary can be abstractive or extractive: abstractive summariza-
tion generates summaries made by words and phrases which may not be
contained in the document collection, and extractive summarization selects
sentences that exist in the original text (Wan [3]). Secondly, summaries can
be single-document or multi-document depending on where the information
comes from: single-document methods are limited to reducing the informa-
tion of a single document to the required length, and multi-document meth-
ods gather textual information of the entire set of documents (Zajic et al.
[4]). Extractive multi-document text summarization is one of the most used
methods to generate summaries in an automatic way. Its main goal is to
represent the most relevant information contained in a document collection,
covering the main content and avoiding redundant information. On the other
hand, abstractive multi-document text summarization is becoming a current
research trend, since it requires new and challenging natural language pro-
cessing techniques. These techniques are based on linguistic and semantic
approaches, and they can also be addressed with evolutionary algorithms
(see e.g. Khan et al. [5], Khan et al. [6], and Mendoza et al. [7]).

The extractive multi-document text summarization has been addressed
from single-objective and multi-objective approaches. In particular, single-
objective approaches are focused on the optimization of only one objective

2

function (Alguliev et al. [8]). This optimization technique requires weighting
all the criteria included in the single objective function, which means that
the weight allocation is performed subjectively, therefore, influencing the final
result. In contrast, in multi-objective approaches, every criterion corresponds
to a different objective function and all the objective functions are optimized
simultaneously (Sanchez-Gomez et al. [9]). In the scientific literature, multi-
objective optimization for extractive multi-document text summarization has
provided better results than the single-objective optimization.

In recent years, the multi-objective optimization approaches have evolved
in different ways, and new techniques have emerged in this field. This is the
case of approaches based on decomposition (Zhang and Li [10]). Unlike
traditional multi-objective optimization approach, which is based on Pareto
dominance, this technique consists of the decomposition of a multi-objective
optimization problem into a number of scalar optimization subproblems. In
addition, every subproblem is optimized taking into account the information
from its neighboring subproblems.

This decomposition-based technique has been applied in several cases,
improving the results that already existed. A decomposition-based multi-
objective approach was compared in Li and Zhang [11] with the Non-
dominated Sorting Genetic Algorithm II (NSGA-II), and the obtained results
indicated a significant improvement. Moreover, Zhang et al. [12] proposed
another decomposition-based algorithm for dealing with expensive multi-
objective optimization problems in real-world applications. In Ke et al. [13],
an ant colony optimization algorithm was adopted to derive a decomposition-
based approach, improving the existing results in two well-known problems:
multi-objective 0-1 knapsack problem and bi-objective traveling salesman
problem. In addition, in decomposition-based approaches, there are different
methods to transform the approximation of the Pareto front to scalar opti-
mization subproblems. Some of the most popular approaches are boundary
intersection (Das and Dennis [14]), non-normalized Tchebycheff (Jaszkiewicz
[15]), and normalized Tchebycheff (Tang et al. [16]).

In this paper, a Multi-Objective Artificial Bee Colony based on Decom-
position (MOABC/D) is proposed to address the extractive multi-document
text summarization problem. MOABC/D algorithm generates summaries au-
tomatically by maximizing two objective functions simultaneously: the con-
tent coverage and the redundancy reduction. Experiments have been carried
out with Document Understanding Conferences (DUC) datasets, and the
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics has

3

been used. The main contributions of this paper are:

� MOABC/D has been designed and applied to the extractive multi-
document text summarization problem.

� A parallel version of MOABC/D has been designed and implemented,
which is based on an asynchronous parallel model.

� Quality of the summaries provided by the proposed MOABC/D ap-
proach has been statistically analyzed and compared to other ap-
proaches. For this purpose, DUC datasets and ROUGE metrics (the
standard in the field) have been used.

� Execution times have been analyzed and compared. For this goal,
speedup and efficiency (the standard in the field) have been used, ob-
taining very good results for both metrics with 64 threads.

The remainder of this paper is organized as follows. Section 2 includes
the state-of-the-art. In Section 3, the extractive multi-document text sum-
marization problem is defined as a multi-objective optimization problem.
Then, Section 4 describes the proposed MOABC/D algorithm. In Section 5,
the datasets used, the experimental settings, the evaluation metrics, and the
obtained results are reported. And, finally, Section 6 presents the conclusions
and the future research.

2. Related Work

Firstly, single-objective approaches are presented. An unsupervised text
summarization model based on integer linear programming that used the
Branch and Bound (B&B) algorithm and a Particle Swarm Optimization
(PSO) algorithm was proposed by Alguliev et al. [17]. Alguliev et al. [8]
addressed document summarization as a discrete optimization problem, im-
plementing an adaptive Differential Evolution (DE) algorithm in order to
solve it. A multi-document text summarization based on modified p-median
problem was proposed by Alguliev et al. [18] (Self-Adaptive DE algorithm)
and Alguliev et al. [19] (DE algorithm based on Self-Adaptive Mutation and
Crossover parameters, DESAMC). Alguliev et al. [20] and Alguliev et al. [21]
tackled the document text summarization problem, in which the objective
function was defined as the Heronian mean of all criteria in a 0-1 non-linear

4

programming problem. In both works the PSO algorithm was used. A
quadratic boolean programming approach was considered by Alguliev et al.
[22] and Alguliev et al. [23] with a binary DE algorithm. Alguliev et al.
[24] used PSO algorithm in a quadratic integer programming framework. An
improved DE algorithm was developed by Alguliev et al. [25] with the aim
of solving the optimization-based approach for generic document summa-
rization. Alguliev et al. [26] modeled document summarization as a linear
and nonlinear optimization problem, and used a PSO algorithm to solve it.
Multi-document summarization was described as a binary optimization prob-
lem in Mendoza et al. [27], where a Cross-generational elitist selection, Het-
erogeneous recombination and Cataclysmic mutation (CHC) algorithm was
proposed to solve it. Benjumea and León [28] presented a novel approach
for automatic extractive text summarization based on sentence clustering,
which used a genetic clustering algorithm. Multi-document summarization
was also considered as a topical closeness approach by Umam et al. [29],
which proposed a Self-Adaptive DE algorithm. Alguliev et al. [30] addressed
the text summarization problem as boolean programming using a DE algo-
rithm. A pattern-based model for generic multi-document summarization
by using a closed pattern mining algorithm was presented in Qiang et al.
[31]. A two-stage sentences selection model based on clustering and opti-
mization techniques was presented by Alguliyev et al. [32], using an adaptive
DE algorithm with a novel mutation strategy. Finally, Verma and Om [33]
proposed a novel extraction-based method for multi-document summariza-
tion, using a meta-heuristic approach by means of Shark Smell Optimization
(SSO) algorithm.

The scientific literature on multi-objective optimization for extractive
multi-document text summarization is much more limited. Saleh et al. [34]
proposed a model based on discrete optimization using a Non-dominated
Sorting Genetic Algorithm-II (NSGA-II), whereas Sanchez-Gomez et al. [9]
used a Multi-Objective Artificial Bee Colony (MOABC) optimization ap-
proach. These two approaches were based on the Pareto dominance, that is,
they are not decomposition-based multi-objective approaches.

Table 1 shows a summary of the previous approaches. In addition to the
algorithm described and whether it is a multi-objective optimization algo-
rithm, the table includes the used criteria, which have been mainly content
coverage and redundancy reduction. Besides, all these previous works have
used DUC datasets and ROUGE metrics.

5

Work (year) Algorithm Criteria
Multi-

objective

Alguliev et al. [8] (2011) Adaptive DE
Coverage and

redundancy reduction
No

Alguliev et al. [17] (2011) B&B and PSO
Coverage and

redundancy reduction
No

Alguliev et al. [18] (2011) Self-Adaptive DE
Coverage, redundancy

reduction and relevance
No

Alguliev et al. [20] (2011) PSO
Coverage and

redundancy reduction
No

Alguliev et al. [19] (2012) DESAMC
Coverage, redundancy

reduction and relevance
No

Alguliev et al. [22] (2012) DE
Coverage and

redundancy reduction
No

Alguliev et al. [23] (2012) DE
Coverage and

redundancy reduction
No

Alguliev et al. [21] (2013) PSO
Coverage and

redundancy reduction
No

Alguliev et al. [24] (2013) PSO
Coverage and

redundancy reduction
No

Alguliev et al. [25] (2013) DE
Coverage and

redundancy reduction
No

Alguliev et al. [26] (2013) PSO
Coverage and

redundancy reduction
No

Mendoza et al. [27] (2014) CHC
Coverage and

redundancy reduction
No

Benjumea and León [28] (2015) Genetic clustering
Coverage and

redundancy reduction
No

Umam et al. [29] (2015) Self-Adaptive DE
Coverage, redundancy

reduction and coherence
No

Alguliev et al. [30] (2015) DE
Coverage and

redundancy reduction
No

Qiang et al. [31] (2016) Closed pattern mining
Coverage and

redundancy reduction
No

Alguliyev et al. [32] (2019) Adaptive DE
Coverage and

redundancy reduction
No

Verma and Om [33] (2019) SSO
Coverage, redundancy

reduction and relevance
No

Saleh et al. [34] (2015) NSGA-II
Coverage and

redundancy reduction
Yes

Sanchez-Gomez et al. [9] (2018) MOABC
Coverage and

redundancy reduction
Yes

Table 1: Works related with extractive multi-document text summarization.

6

3. Problem Definition

In this section, extractive multi-document text summarization is formalized
as an optimization problem. In this field, the most common methods use
the term-based vector space model (VSM). For this kind of methods, every
sentence is represented as a term vector, and the similarity measure used
for pairwise comparison is usually cosine similarity (Alguliev et al. [8], Saleh
et al. [34], Sanchez-Gomez et al. [9]).

Table 2 contains the notation used through the paper.

Symbol Definition

D Document collection
tk Distinct term k of the document collection D
T Set of different terms from the document collection D
m Number of distinct terms in the document collection D
si Sentence i of the document collection D
wik Weight associated to the term tk in the sentence si
tfik Frequency of the term tk in the sentence si
n Number of sentences in the document collection D
nk Number of sentences containing the term tk
O Mean vector or centre of the document collection D
ok Component k of mean vector O
sim(si, sj) Cosine similarity measure between sentences si and sj
N Number of documents in the document collection D
S Generated summary
L Summary length constraint

xi
Binary decision variable equal to 1 if sentence si
is presented in the generated summary S

yij
Binary decision variable equal to 1 if sentences si and sj
are presented in the generated summary S

X Solution representation or decision vector
Φ(X) Objective function
li Length of the sentence si
ε Summary length tolerance

Table 2: Notations and symbols used in this work.

7

3.1. Similarity Measure

Firstly, the cosine similarity measure is described. Let T = {t1, t2, . . . , tm}
be the set that contains all the distinct terms from the document collection
D, where m is the number of terms. Every sentence si from D can be
represented as a vector of terms si = (wi1, wi2, . . . , wim), i = 1, 2, . . . , n, where
every component wik of the vector is associated to the weight of the term tk
in the sentence si. The most common way to calculate this weight is using
the term-frequency inverse-sentence-frequency scheme, called tf isf (Salton
and Buckley [35]). According to this scheme, the weight wik is calculated as
follows:

wik = tfik · log(n/nk). (1)

The first component tfik counts the times that the term tk occurs in the
sentence si, and the second component log(n/nk) (isf expression) takes into
account the number of sentences nk in D which contain the term tk. The
total number of sentences in D is n.

The main content of the document collection D can be represented
through the average weights of the m terms in the set of sentences. The
vector O = (o1, o2, . . . , om), also called mean vector, represents the center of
the document collection D. Its components are calculated as follows:

ok =
1

n

n∑
i=1

wik, k = 1, 2, . . . ,m. (2)

Finally, the cosine similarity is based on the weights presented previ-
ously. It is defined as a resemblance measure between two sentences si =
(wi1, wi2, . . . , wim) and sj = (wj1, wj2, . . . , wjm) as follows:

sim(si, sj) =

∑m
k=1wikwjk√∑m

k=1w
2
ik ·
∑m

k=1w
2
jk

, i, j = 1, 2, . . . , n. (3)

3.2. Formulation of the Optimization Problem

After explaining the cosine similarity measure, the formulation of the opti-
mization problem is described. Let D = {d1, d2, . . . , dN} be the document
collection, which is a set of N documents. In addition, D can be repre-
sented as a set of the n sentences contained in the document collection:
D = {s1, s2, . . . , sn}. The aim is to generate a summary S ⊂ D satisfying
three aspects:

8

� Content coverage: the generated summary should cover the main con-
tent of the document collection by including the most relevant sen-
tences.

� Redundancy reduction: the generated summary should not contain sim-
ilar sentences from the document collection.

� Length: the generated summary must have a restricted length L. This
constraint is explained later.

The presented extractive multi-document text summarization problem
implies the simultaneous optimization of the content coverage and the re-
dundancy reduction. Nevertheless, these two criteria are in conflict. Thus,
the natural way to address this problem is by a multi-objective optimization
approach.

Let xi ∈ {0, 1} be a binary decision variable which takes into account
the presence or absence (xi = 1 or xi = 0) of the sentence si in the gen-
erated summary S. So, the representation of the solution is denoted as
X = (x1, x2, . . . , xn), which is also called the decision vector.

Firstly, the objective function ΦCov(X) concerns the content coverage
criterion. Given the sentence si ∈ S, the content coverage is formulated by
using the cosine similarity between the sentence si and the set of sentences in
D represented by the mean vector O. Thus, the following objective function
should be maximized:

ΦCov(X) =
n∑

i=1

sim(si, O) · xi. (4)

Secondly, the objective function ΦReR(X) concerns the redundancy re-
duction criterion. A new binary decision variable yij must be defined. This
variable is related to the pair of sentences si and sj, i.e., yij = 1 if si and
sj are presented simultaneously in the generated summary S, and yij = 0
otherwise. For each pair of sentences si, sj ∈ S, the cosine similarity between
them sim(si, sj) should be minimized. This is the same as maximizing the
following objective function:

ΦReR(X) =
1(∑n−1

i=1

∑n
j=i+1 sim(si, sj) · yij

)
·
∑n

i=1 xi
. (5)

9

Finally, after defining the objective functions to be maximized, the multi-
objective extractive multi-document text summarization problem can be for-
mulated as follows:

max Φ(X) = {ΦCov(X),ΦReR(X)}, (6)

subject to L− ε ≤
n∑

i=1

li · xi ≤ L+ ε. (7)

The variable li is the length of the sentence si and ε is the tolerance for
the summary length constraint, defined as maxi=1,2,...,n li −mini=1,2,...,n li.

4. Multi-Objective Artificial Bee Colony based on Decomposition

This section presents the proposed Multi-Objective Artificial Bee Colony
based on Decomposition (MOABC/D). The fundamentals of the standard
ABC (Artificial Bee Colony) algorithm can be found in Karaboga and Bas-
turk [36]. ABC algorithm has been successfully applied to different real-
world problems (Karaboga et al. [37]), motivating its selection as part
of the approach proposed here. In the following subsections, firstly, the
decomposition-based multi-objective optimization is described. Secondly, in-
dications about the preprocessing of the input documents are presented, and
then, the main steps of the MOABC/D algorithm and its main operators
are detailed. Finally, the asynchronous parallel design of the algorithm is
explained.

4.1. Decomposition-based Multi-Objective Optimization

The principles of multi-objective optimization can be consulted in Deb [38].
This subsection describes the decomposition-based multi-objective optimiza-
tion technique applied in this work. Without loss of generality, we assume
that all the objective functions have to be maximized. In traditional multi-
objective optimization problems, the objectives contained in the set of ob-
jective functions are conflicting among them. That is, there is no point in
the objective space maximizing all objective functions simultaneously, so the
best tradeoffs found are called Pareto optimal points. In these points, which
make up the Pareto front, any improvement in one objective leads to a de-
terioration in, at least, other. This is the case of the problem presented here
(Equation 6).

10

The basic idea of decomposition-based multi-objective optimization con-
sists of the decomposition of the Pareto front into a number of scalar subprob-
lems. In addition, every subproblem is optimized by using the information
from its neighboring subproblems. Mathematically, the optimization prob-
lem is defined as follows.

Supposing two objective functions (like in Equation 6), let λi = (λi1, λ
i
2) be

a weight vector with two components (one for each objective), and
∑2

j=1 λ
i
j =

1. In addition, let Λ = {λ1, λ2, . . . , λpopsize} be a set with popsize (the popula-
tion size) weight vectors, that is, the Pareto front is divided into popsize scalar
subproblems. The neighborhood of the weight vector λi is defined as a set
of its closest weight vectors in

{
λi,1, λi,2, . . . , λi,niche

}
, being niche the prede-

termined size of the neighborhood. Let z∗ = (z∗1 , z
∗
2) be the reference point,

where z∗j is the best value found for the objective j. Figure 1 shows how
the Pareto front is divided into several scalar subproblems. In this example,
ten weight vectors (λi) divide the objective space into ten evenly-distributed
subspaces. In every subspace, each point is optimized as a single-objective
subproblem according to its corresponding weight vector, also taking into
account the information from its neighboring subproblems.

11

10

9

8

7

6

5

4

3
2

 O
bj

ec
tiv

e
2

 Objective 1

1

Figure 1: Decomposition-based approximation for dividing the Pareto front into several
scalar subproblems.

In the scientific literature, there are several mathematical methods to
transform the approximation of the Pareto front to scalar optimization sub-
problems. Three of the most common approaches, and the ones experi-
mented in this work, are: boundary intersection (Das and Dennis [14]),
non-normalized Tchebycheff (Jaszkiewicz [15]), and normalized Tchebycheff
(Tang et al. [16]). First, the boundary intersection method aims to find
intersection points of the most top boundary and a set of lines evenly dis-
tributed. Secondly, in the non-normalized Tchebycheff method, it is possible
to obtain different Pareto optimal solutions by altering the weight vector of
every Pareto optimal point. Finally, the normalized Tchebycheff method is
similar to the previous one, only taking into account the distance between
the reference point and the Pareto optimal point for each objective function.

4.2. Preprocessing

The input documents from the document collection need to be preprocessed
before the execution of the algorithm. In the Natural Language Processing

12

(NLP) field, there are various techniques for preprocessing the text to a
normalized form, such as lemmatization and stemming algorithms (Toman
et al. [39]). Lemmatization replaces or removes the suffix of a word to get
the basic form, which is called lemma, whereas word stemming produces an
approximation of the basic form, called stem. According to Toman et al. [39],
the Porter stemming algorithm is the most appropriate algorithm for word
normalization in English language. In fact, it is the most used one in the
extractive multi-document text summarization field (see the related works
in Section 2). Therefore, word stemming is applied in this paper with the
following preprocessing steps:

1. Sentence segmentation. All the sentences in the document collection
are separated with the aim of defining their beginning and ending.

2. Word tokenization. All the words from the sentences are extracted
separately. Exclamation, interrogation, punctuation, and other marks
are removed.

3. Stop word removal. Stop words are common words that have no rele-
vant meaning, such as prepositions, conjunctions, articles, possessives,
pronouns and others. Thus, these words are deleted from the sentences.
The ROUGE package (ROUGE [40]) provides a list of stop words in
English language, which contains a total of 598 words.

4. Word stemming. Finally, by means of the Porter stemming algorithm
(Porter [41]), the roots of the remaining words are extracted, allow-
ing that the words with the same lexical root will be processed as a
same term. Porter stemming algorithm is one of the most adopted
and extended algorithms, becoming a standard to word conflation for
information retrieval in a wide range of languages (Willett [42]).

Figure 2 represents a flow chart with the steps followed by the proposed
method.

13

MOABC/D execution

Summary S

End

Start

D = {t1, t2, ..., tk}

D = {d1, d2, ..., dN}

 Sentence segmentation

Word tokenization

Stop word removal

Word stemming

D = {s1, s2, ..., sn}

Figure 2: Flow chart of the steps followed by the proposed method.

4.3. Main Steps of the Algorithm

In this subsection, the main steps of the MOABC/D algorithm are presented
by the pseudocode in Algorithm 1 and later fully described.

14

Algorithm 1 MOABC/D pseudocode.

1: NDSfile ← ∅
2: initialize reference(refPoint)
3: for i = 1 to popsize do
4: initialize colony(i, Colony)
5: end for
6: for i = 1 to popsize do
7: update reference(i, Colony, refPoint)
8: end for
9: for cycle = 1 to cyclesmax do

10: for i = 1 to popsize do
11: send employed bee(i, Colony)
12: end for
13: calculate probabilities(Colony)
14: for i = 1 to popsize do
15: send onlooker bee(i, Colony)
16: end for
17: for i = 1 to popsize do
18: send scout bee(i, Colony, cycle)
19: end for
20: for i = 1 to popsize do
21: update reference(i, Colony, refPoint)
22: end for
23: for i = 1 to popsize do
24: update problem(i)
25: end for
26: for i = 1 to popsize do
27: export bee(i, NDSfile)
28: end for
29: end for

In the first place, the storing file NDSfile, that will contain the non-
dominated solutions, is initialized to an empty set in line 1. Then, the refer-
ence point (refPoint) is initialized in line 2. After that, in line 4, the Colony
(a population of popsize solutions) is initialized. In this step, firstly, the set of
evenly-distributed weight vectors is initialized. Secondly, the neighborhood
of the subproblems is initialized based on the distances of the weight vectors.

15

And finally, the initial solution population is randomly generated. The last
step of the initialization is the update of the reference point in line 7.

Once the initialization steps are performed, the following steps of the al-
gorithm (lines 9 to 29) are repeated during a maximum number of cycles
cyclesmax. At the beginning of a cycle, the employed bees step is performed
(line 11). Every employed bee has a solution associated. The mutation oper-
ator, that is explained in Subsection 4.4, is applied in this case with the aim
of generating a neighbor solution to each current solution. If the mutated
solution improves the original one, the mutated solution will replace it. Oth-
erwise, the mutated solution is discarded. Then, the selection probabilities
are calculated in line 13. They are calculated by means of a scalar function,
which will depend on the considered decomposition approach. After that,
the onlooker bees step is carried out (line 15). Each one of the onlooker
bees selects its corresponding employed bee solution taking into account the
selection probabilities previously calculated. In this way, the onlooker bee
tries to improve its employed bee solution. The mutation operator is applied
in this step too. The colony size is duplicated at this point of the algorithm,
due to the onlooker bee solutions.

The last bee step is the scout bees step (line 18). It verifies if the current
solutions are exhausted. A solution is exhausted if it has not been improved
after a determined number of tries. The exhausted bees/solutions are re-
placed by scout bee solutions, which are randomly generated and mutated
with a number of mutations proportional to the current number of cycles.

At the end of a cycle, the colony size is reduced to the half, that is,
its original size (popsize). Two steps related to decomposition are carried out
before ending the cycle in lines 21 and 24 respectively: updating the reference
point and updating the best solutions of neighboring subproblems. Finally,
the solutions of the current cycle are repaired (as explained in Subsection
4.5), and they are exported to NDSfile (line 27).

4.4. Mutation Operator

The mutation operation carried out here consists of adding or removing sen-
tences in the summary. Let pm ∈ (0, 1) be the mutation probability. A
uniform pseudo-random number ri ∼ U(0, 1) is generated for every sentence
si contained in the summary S. The sentence si is candidate for mutation if

16

ri ≤ pm, and finally, if the following condition is fulfilled:

sim(si, O) ≥ 1

n

n∑
j=1

sim(sj, O). (8)

Then, the sentence si will be included in the summary S. Otherwise,
the sentence will be removed. The purpose of the previous condition is
checking that the cosine similarity between the candidate sentence si and
the mean vector O is greater than or equal to the average cosine similarity
of all sentences from the document collection. In this way, the best quality
sentences will remain in the solution.

4.5. Repair Operator

In order to satisfy the length constraint of the generated summary defined
in Equation 7, the repair operation is performed. This operator is the same
as the one used in NSGA-II and MOABC algorithms (Saleh et al. [34] and
Sanchez-Gomez et al. [9], respectively). At the end of a cycle, the generated
summary may violate the length constraint. The length constraint must be
checked in two directions: on the one hand, if the generated summary has
a length smaller than L − ε, the summary must be discarded; and on the
other hand, if the generated summary has a length greater than L + ε, the
summary must be repaired. This decision has been taken due to the fact
that the number of generated summaries having a length smaller than the
length constraint is negligible. Now, the repair operator is explained.

Let S∗ be a generated summary that has more sentences than what is
allowed. The repair operation removes from S∗ one or more sentences that
have a high cosine similarity degree among them in order to obtain a valid
generated summary. For this purpose, it has been considered a similarity
threshold δ = 0.9 (Saleh et al. [34]), since 90% of concordance seems reason-
able to check if sentences match. Then, every pair of sentences si and sj from
the generated summary S∗ is checked, and the repair operation is performed
if the following conditions are fulfilled:

{si, sj ∈ S∗} ∧ {i 6= j} ∧ sim(si, sj) ≥ δ i, j = 1, 2, . . . , n. (9)

Finally, the repair operation removes the worst sentence from this pair.
That is, the sentence with lower score is removed. The score is calculated as

17

follows:

scoresi = sim(si, O) +
(
(sim(Osum, O)− sim(osum−si , O)

)
· 10. (10)

The expression sim(Osum, O) is the cosine similarity between the center
of the generated summary (including the sentence si) and the center of doc-
ument collection O, and sim(Osum−si , O) is the cosine similarity between the
center of the generated summary (excluding the sentence si) and the center
of document collection O. The second term is multiplied by 10, that is, it has
an order of magnitude more, because it measures the quality of the generated
summary when sentence si is removed. The repair operator will be carried
out until the length constraint is satisfied.

4.6. Asynchronous Parallel MOABC/D Algorithm

This subsection presents an asynchronous parallel design for the MOABC/D
algorithm. In contrast to the traditional design, which follows a generational
synchronous scheme, the proposed design is based on the real behavior of the
honey bees in the nature, i.e., when a bee finishes its task, it is not necessary
to wait for other bees to continue with the following task. Therefore, its
behavior is asynchronous.

The scheme followed by the asynchronous parallel MOABC/D algorithm
is based on a master-worker parallel scheme (Zăvoianu et al. [43]). It is
the most suitable way to parallelize evolutionary algorithms as MOABC
(Talbi et al. [44]). Two roles for execution threads are considered in this
scheme: master thread and worker thread. Firstly, the master thread is
the one that manages the entire colony. It carries out the calculation of the
selection probabilities (calculate probabilities step) and the update of the ref-
erence point and subproblems (update reference and update problem steps),
and manages the shared data structures needed for communication with the
worker threads. And secondly, the worker threads perform the tasks related
to the bees steps until the master thread signalizes them the end of the exe-
cution. During these tasks, the worker threads use the shared data structures
to communicate with the master thread in every iteration without waiting.

Once the master-worker scheme has been described, the asynchronous
parallel MOABC/D algorithm is presented. Algorithm 2 shows its global
design, including the OpenMP directives (Chapman et al. [45]) that mark
the parallel regions.

18

Algorithm 2 Asynchronous parallel MOABC/D pseudocode - global design.

1: NDSfile ← ∅
2: initialize reference(refPoint)
3: initialize beeFIFOs(BeeFIFOs)
4: #pragma omp parallel num threads(threadsnum)
5: {
6: #pragma omp for
7: for i = 1 to popsize do
8: initialize colony(i, Colony)
9: end for

10: #pragma omp for
11: for i = 1 to popsize do
12: update reference(i, Colony, refPoint)
13: end for
14: }
15: Colonyaux ← Colony
16: refPointaux ← refPoint
17: calculate probabilities(Colony)
18: #pragma omp parallel num threads(threadsnum)
19: {
20: threadid ← omp get thread num()
21: if threadid == threadsnum then
22: master tasks(Colony, Colonyaux, refPoint, refPointaux, BeeFIFOs)
23: else
24: worker tasks(Colony,BeeFIFOs[threadid], NDSfile)
25: end if
26: }

The initializations before the asynchronous parallel region (the second
parallel region) are performed in lines 1 to 17. There are some variations
regarding Algorithm 1. Firstly, in line 3, the shared data structures for com-
munication between the master thread and the worker threads are initialized.
They are queue-type data structures (FIFO, First In First Out), in which
each worker thread has its own queue where it stores its generated solutions,
and finally the master thread will gather them. Secondly, since the other two
initialization steps (lines 8 and 12) can be parallelized, a first parallel region
is defined from lines 4 to 14 in order to parallelize the two loops. Thirdly, in

19

lines 15 and 16, the initialized colony and the reference point are stored in
auxiliary copies (Colonyaux and refPointaux respectively). The reason why
it is necessary to have a copy of the Colony is because its integrity must be
ensured: Colony will be read by the worker threads and will be written by
the master thread, and Colonyaux will be exclusively handled by the master
thread. As for the reference point, the purpose is the same. Finally, in line
17, the calculate probabilities step has to be performed for the initial colony.
After that, the asynchronous parallel region (the second parallel region) be-
gins (lines 18 to 26). As can be seen, the last thread will perform the master
tasks, while the rest of threads will carry out worker tasks.

Algorithm 3 Asynchronous parallel MOABC/D pseudocode - master tasks.

1: evalcur ← 0
2: while evalcur < evalmax do
3: updated← false
4: for i = 1 to threadsnum − 1 do
5: while not is empty(BeeFIFOs[i]) do
6: bee← pop(BeeFIFOs[i])
7: if update problem(bee) then
8: Colonyaux[bee.position]← bee
9: evalcur ← evalcur + bee.evalnum

10: updated← true
11: end if
12: end while
13: end for
14: if updated then
15: for i = 1 to popsize do
16: update reference(i, Colonyaux, refPointaux)
17: end for
18: interchange reference points(refPoint, refPointaux)
19: calculate probabilities(Colonyaux)
20: interchange colonies(Colony, Colonyaux)
21: end if
22: end while
23: send finalization signal()

As shown in Algorithm 3, the master tasks are carried out until reaching

20

a maximum number of evaluations evalmax. In the first place, in lines 4 to 13,
the master thread empties all shared queues of the worker threads, and for
each solution generated, it checks if the solution updates the best solutions
of its neighboring subproblems (line 7). If so, the generated solution is stored
in the auxiliary colony Colonyaux, the evaluation counter evalcur is increased,
and the boolean variable updated is changed to true (lines 8, 9, and 10). In
the second place, if the auxiliary colony Colonyaux has been updated (updated
is true), the master thread performs the tasks related to the management of
the colony (lines 14 to 21). Once the auxiliary colony Colonyaux has been
modified, its auxiliary reference point refPointaux has to be updated (line
16). Then, in line 18 the main reference point refPoint is interchanged
in order to take the updated information from the auxiliary reference point
refPointaux. After that, the calculate probabilities step is carried out (line
19), and the main colony Colony is also interchanged with the auxiliary
colony Colonyaux (line 20), taking the updated information of the colony.
Finally, in line 23 the master thread broadcasts the finalization signal to
each worker thread when the maximum number of evaluations evalmax has
been reached.

Algorithm 4 Asynchronous parallel MOABC/D pseudocode - worker tasks.

1: i← 0
2: while not finalization signal() do
3: index← get index(popsize, threadsnum, threadid, i)
4: if threadid < threadsnum/2 then
5: bee← send employed bee(index, Colony)
6: else
7: bee← send onlooker bee(index, Colony)
8: end if
9: if bee.trials > limit then

10: bee← send scout bee(index, Colony, evalcur)
11: end if
12: push(BeeFIFOs[threadid], bee)
13: i← i+ 1
14: end while
15: while not is empty(BeeFIFOs[threadid]) do
16: export bee(pop(BeeFIFOs[threadid]), NDSfile)
17: end while

21

In the second place, the worker tasks are presented in Algorithm 4. The
worker tasks can be performed by the employed workers or the onlooker
workers. They are executed until the finalization signal is received from the
master thread (lines 2 to 14). At the beginning of the task (line 3), the
worker thread must know its corresponding chunk of the colony by means of
its specific index. Then, the employed tasks or the onlooker tasks are carried
out depending on the thread identifier (threadid): the first half of the execu-
tion threads sends the employed bees (line 5), and the second one sends the
onlooker bees (line 7) except the last one (the master thread). Afterward,
in line 9, if the trial counter of bee surpasses the maximum number of trials
(limit), a scout bee is sent in order to replace it (line 10). At the end, in line
12, the bee is stored in its corresponding shared queue BeeFIFOs[threadid].
To finish the worker tasks, once the finalization signal is sent by the mas-
ter thread, the remaining solutions in BeeFIFOs[threadid] are exported to
NDSfile (lines 15 to 17).

5. Experimental Results

This section includes the datasets used, the experimental settings, the eval-
uation metrics and performance measures, and the results obtained.

5.1. Datasets

The performance has been evaluated using the multi-document summariza-
tion datasets provided by Document Understanding Conferences (DUC). It
is an open benchmark from the National Institute of Standards and Technol-
ogy (NIST) for the evaluation of generic automatic summarization. The used
datasets have been obtained from DUC2002 (NIST [46]), which have been
widely used in the field. They consist on a set of topics, and each topic con-
tains several newspaper articles that inform about a single specific subject.
Table 3 shows some features.

Description Features

Topics used 10 (d061j through d070f)
Total of documents 77
Average documents in each topic ∼ 8 (from 5 to 14)
Summary length constraint 200 words

Table 3: Some features of the used topics from DUC2002.

22

The documents contained in DUC2002 have been preprocessed following
the steps explained in Subsection 4.2. Table 4 presents the number of words
before and after preprocessing and the number of sentences of each topic.

Topic
No. of words before

preprocessing
No. of words after

preprocessing
No. of

sentences

d061j 3679 693 184
d062j 2691 630 118
d063j 4793 846 249
d064j 4080 924 183
d065j 5500 1080 284
d066j 3894 923 190
d067f 2805 644 122
d068f 2565 531 131
d069f 7767 1306 327
d070f 3116 620 148

Table 4: Some counts of each used topic.

5.2. Experimental Settings

The parameter setting for the MOABC/D algorithm has been the same
as used in Sanchez-Gomez et al. [9] in order to provide fair comparisons:
population size, popsize = 64; mutation probability, pm = 0.1; number of
cycles, cyclesmax = 1000; and number of independent runs or repetitions,
repsmax = 20. In addition to these settings, two more related to decomposi-
tion have been used: the neighborhood or niche size and the decomposition
approach. After carrying out an experimental study, it has been determined
that the best configuration for the decomposition settings are: niche = 3
and the Normalized Tchebycheff approach.

The experiments have been executed in a compute node with 4 processors
(16 cores per processor) AMD Opteron Abu Dhabi 6376 2.3GHz and 96
GB RAM. The approach has been implemented in C/C++ language, and
developed in Eclipse platform on Ubuntu 16.04 LTS. The OpenMP version
was 4.0, and the C/C++ compiler version was GCC 5.3.0.

5.3. Evaluation Metrics

The approach performance has been evaluated by using Recall-Oriented Un-
derstudy for Gisting Evaluation (ROUGE) metric (Lin [47]). The Document

23

Understanding Conferences consider ROUGE as the official evaluation met-
ric for text summarization. This metric calculates the similarity between
a system-generated summary and a human-generated summary by count-
ing the number of overlapping units. Two variants of ROUGE scores have
been used in this work: ROUGE-N and ROUGE-L. ROUGE-N compares
the N − gram recall of the system-generated summary and a set of human-
generated summaries. In this case, ROUGE-1 and ROUGE-2 have been used.
ROUGE-L measures the ratio between the length of the summaries’ longest
common subsequence and the length of the reference summary. These two
metrics have been selected to provide fair comparisons with results from other
approaches in the scientific literature.

Two dispersion statistics have also been considered: range and a coeffi-
cient of variation-type statistics. The range is calculated as follows:

Range = ROUGEbest −ROUGEworst. (11)

It provides information about the data dispersion. Nevertheless, the range
is not an adimensional measure. For this reason, it is complemented with a
modification of the Pearson’s coefficient of variation (CV). This coefficient
involves the relation between the range and the arithmetic mean, leading to
an adimensional measure of the data relative dispersion. The CV is calculated
as follows:

CV =
Range

ROUGEaverage

· 100. (12)

In addition to the previous metrics, other measures have been used to
assess the performance of the asynchronous parallel design of the MOABC/D
algorithm. One of them is the execution time (ET) that represents the total
computing time of one execution, whereas the other two measures, speedup
(S) and efficiency (E), are the most common ones in this field to measure
the performance improvement. On the one hand, speedup measures the
improvement factor for a number c of threads in execution, and it is calculated
as:

Sc =
ET1
ETc

. (13)

ET1 is the execution time of the serial version and ETc is the execution
time with a number of threads c (being c > 1). On the other hand, efficiency

24

is expressed in percentage terms, taking into account the number of threads
c:

Ec =
Sc

c
· 100 =

ET1
c · ETc

· 100. (14)

Finally, hypothesis tests have been considered. Specifically, Mann-Whitney
U test has been applied on ROUGE scores to report statistically significant
differences between two approaches. Two-side p-values smaller than 0.05
have been considered as statistically significant. R software (R Development
Core Team [48]) has been used for the statistical analysis.

5.4. Comparing MOABC/D with MOABC

In this subsection, the results obtained by the proposed MOABC/D al-
gorithm are compared with those of the MOABC algorithm presented in
Sanchez-Gomez et al. [9]. In that work, the results obtained by the MOABC
algorithm improved to those existing in the scientific literature. Firstly, Ta-
ble 5 presents average, range, and CV for ROUGE-1 scores for each one of
the used topics and the average values obtained. The p-values obtained from
pairwise comparison between both approaches are also shown.

Topic
MOABC

(Sanchez-Gomez et al. [9])
MOABC/D p-values

Average Range CV Average Range CV

d061j 0.539 0.067 12.38 0.670 0.040 5.94 <0.001
d062j 0.536 0.033 6.10 0.661 0.061 9.18 <0.001
d063j 0.456 0.040 8.70 0.533 0.057 10.69 <0.001
d064j 0.495 0.015 3.06 0.549 0.061 11.06 <0.001
d065j 0.373 0.046 12.33 0.513 0.034 6.71 <0.001
d066j 0.471 0.015 3.25 0.541 0.055 10.23 <0.001
d067f 0.567 0.020 3.53 0.571 0.072 12.55 0.081
d068f 0.655 0.093 14.25 0.622 0.064 10.22 <0.001
d069f 0.417 0.020 4.81 0.415 0.033 8.07 0.253
d070f 0.482 0.012 2.42 0.454 0.019 4.08 <0.001

Average 0.499 0.036 7.08 0.553 0.050 8.87

Table 5: Average, range, and CV of ROUGE-1 scores. The best values appear in grey
background. In the case of the results are not statistically significant, both approaches are
highlighted in grey background.

25

The results shown in Table 5 report that the MOABC/D algorithm out-
performs MOABC algorithm. The proposed MOABC/D algorithm obtains
the best ROUGE-1 scores in 6 out of 10 topics, while MOABC algorithm
is better in only 2 topics. 8 out of 10 topics present statistically significant
differences (topics d067f and d069f did not obtain statistically significant
differences). Besides, both algorithms provide similar average values regard-
ing the data dispersion. In average terms, the MOABC/D algorithm has
obtained an improvement percentage of 10.82% for ROUGE-1 score. Fig-
ure 3 shows graphically the results for ROUGE-1 scores. The results of the
10 topics are represented as columns, and the average ROUGE-1 scores are
symbolized as discontinuous lines.

d061j d062j d063j d064j d065j d066j d067f d068f d069f d070f
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RO
U
G
E-
1

Topics

 MOABC
 MOABC/D

Figure 3: Comparison of MOABC/D with MOABC for ROUGE-1 score for the 10 topics.
The discontinuous lines represent the average ROUGE-1 scores.

Secondly, the results obtained for ROUGE-2 score are presented in Table
6. It includes the same information as ROUGE-1 score.

26

Topic
MOABC

(Sanchez-Gomez et al. [9])
MOABC/D p-values

Average Range CV Average Range CV

d061j 0.365 0.093 25.43 0.472 0.022 4.70 <0.001
d062j 0.342 0.023 6.60 0.466 0.027 5.74 <0.001
d063j 0.272 0.005 1.84 0.329 0.052 15.93 <0.001
d064j 0.308 0.009 2.83 0.352 0.049 13.97 <0.001
d065j 0.198 0.026 13.32 0.231 0.031 13.30 <0.001
d066j 0.290 0.019 6.54 0.329 0.023 7.05 <0.001
d067f 0.356 0.005 1.39 0.353 0.029 8.34 <0.001
d068f 0.444 0.084 18.83 0.396 0.037 9.30 <0.001
d069f 0.240 0.008 3.15 0.238 0.037 15.54 0.068
d070f 0.305 0.002 0.76 0.254 0.018 7.26 <0.001

Average 0.312 0.027 8.07 0.342 0.033 10.11

Table 6: Average, range, and CV of ROUGE-2 scores. The best values appear in grey
background. In the case of the results are not statistically significant, both approaches are
highlighted in grey background.

In the same way, the results reported in Table 6 show that the MOABC/D
algorithm outperforms MOABC algorithm. The proposed MOABC/D algo-
rithm obtains the best ROUGE-2 scores in 6 out of 10 topics, while MOABC
algorithm is better in 3 topics. All the topics present statistically significant
differences, except topic d069f, where a tie is obtained. Regarding the data
dispersion, it can be observed that both algorithms provide similar average
values. In average, an improvement percentage of 9.62% has been obtained
for ROUGE-2 score by using MOABC/D algorithm. A visual representation
of the results for ROUGE-2 scores is shown in Figure 4. Both the 10 topics’
results and the average ROUGE-2 scores are represented.

27

d061j d062j d063j d064j d065j d066j d067f d068f d069f d070f
0.0

0.1

0.2

0.3

0.4

0.5

RO
U
G
E-
2

Topics

 MOABC
 MOABC/D

Figure 4: Comparison of MOABC/D with MOABC for ROUGE-2 score for the 10 topics.
The discontinuous lines represent the average ROUGE-2 scores.

Finally, the results obtained for ROUGE-L scores are presented in Table
7.

Topic
MOABC

(Sanchez-Gomez et al. [9])
MOABC/D p-values

Average Range CV Average Range CV

d061j 0.590 0.056 9.46 0.616 0.032 5.27 <0.001
d062j 0.536 0.017 3.26 0.588 0.045 7.62 <0.001
d063j 0.509 0.050 9.74 0.524 0.017 3.33 <0.001
d064j 0.495 0.011 2.19 0.539 0.025 4.56 <0.001
d065j 0.464 0.057 12.29 0.517 0.029 5.52 <0.001
d066j 0.519 0.007 1.36 0.573 0.068 11.92 <0.001
d067f 0.580 0.012 2.15 0.551 0.039 7.10 <0.001
d068f 0.639 0.071 11.09 0.653 0.032 4.90 0.011
d069f 0.554 0.010 1.81 0.544 0.048 8.82 0.565
d070f 0.515 0.005 0.90 0.513 0.030 5.86 0.289

Average 0.540 0.030 5.43 0.562 0.037 6.49

Table 7: Average, range, and CV of ROUGE-L scores. The best values appear in grey
background. In the case of the results are not statistically significant, both approaches are
highlighted in grey background.

From the results reported in Table 7, it can also be concluded that the

28

MOABC/D algorithm outperforms MOABC algorithm. The MOABC/D al-
gorithm performs better than MOABC in 7 out of 10 topics, while MOABC
algorithm does it in only 1 topic. All topics, except d069f and d070f, present
statistically significant differences. Again both algorithms provide similar
average values in range and CV. In this case, in average, an improvement per-
centage of 4.07% has been obtained for ROUGE-L score by using MOABC/D
algorithm. Figure 5 shows the results of the ROUGE-L score in a visual way,
including the 10 topics used and the average ROUGE-L scores.

d061j d062j d063j d064j d065j d066j d067f d068f d069f d070f
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RO
U
G
E-
L

Topics

 MOABC
 MOABC/D

Figure 5: Comparison of MOABC/D with MOABC for ROUGE-L score for the 10 topics.
The discontinuous lines represent the average ROUGE-L scores.

5.5. Comparing MOABC/D with NSGA-II and Adaptive DE

This subsection presents the comparison of the results obtained among the
proposed MOABC/D algorithm and the algorithms presented in works Al-
guliev et al. [8] and Saleh et al. [34]. On the one hand, Alguliev et al. [8] is
a single-objective approach with an Adaptive DE algorithm which obtained
very good results in this problem. On the other hand, Saleh et al. [34] is
based on NSGA-II and it is the multi-objective approach from other authors
that obtained the best results in the scientific literature. Both of them ex-
perimented with the same datasets (DUC2002), and used the same ROUGE
scores that are used in this work.

In the first place, Table 8 shows average, range, and CV of ROUGE-2
scores for each used topic and their average values for these three approaches.

29

Topic
Adaptive DE

(Alguliev et al. [8])
NSGA-II

(Saleh et al. [34])
MOABC/D

Average Range CV Average Range CV Average Range CV

d061j 0.266 0.290 109.02 0.306 0.263 85.95 0.472 0.022 4.70
d062j 0.188 0.275 146.28 0.200 0.422 211.00 0.466 0.027 5.74
d063j 0.245 0.208 84.90 0.275 0.279 101.45 0.329 0.052 15.93
d064j 0.194 0.280 144.33 0.233 0.356 152.79 0.352 0.049 13.97
d065j 0.144 0.209 145.14 0.182 0.208 114.29 0.231 0.031 13.30
d066j 0.201 0.257 127.86 0.181 0.245 136.36 0.329 0.023 7.05
d067f 0.239 0.235 98.33 0.260 0.298 114.62 0.353 0.029 8.34
d068f 0.491 0.384 78.21 0.496 0.281 56.65 0.396 0.037 9.30
d069f 0.184 0.166 90.22 0.232 0.239 103.02 0.238 0.037 15.54
d070f 0.224 0.260 116.07 0.262 0.215 82.03 0.254 0.018 7.26

Average 0.238 0.256 114.03 0.263 0.281 115.72 0.342 0.033 10.11

Table 8: Average, range, and CV of ROUGE-2 scores. Comparison among MOABC/D,
NSGA-II, and Adaptive DE. The best values appear in grey background.

From the results reported in Table 8, it can be noted that the proposed
MOABC/D algorithm outperforms the other two approaches. MOABC/D
algorithm outperforms the Adaptive DE algorithm in Alguliev et al. [8] in 9
out of 10 topics, and to NSGA-II in Saleh et al. [34] in 8 out of 10 topics.
In average terms, for the ROUGE-2 score, the proposed approach improves
by 43.70% and 30.04% to the other two approaches, respectively. Besides,
ranges and CVs show that the results of the proposed algorithm are very
robust, being much smaller than those of the other two approaches. This
means that the results from all the repetitions are more stable. Considering
the average values of the ten topics for CV, the MOABC/D algorithm obtains
only 10.11% versus 114.03% and 115.72% obtained by the other two algo-
rithms (Adaptive DE and NSGA-II). Figure 6 shows graphically the results
of the ROUGE-2 score for the three approaches compared. In the same way
as in previous figures, the results of the 10 topics are represented as columns,
and the average ROUGE-2 scores are represented as discontinuous lines.

30

d061j d062j d063j d064j d065j d066j d067f d068f d069f d070f
0.0

0.1

0.2

0.3

0.4

0.5

RO
U
G
E-
2

Topics

 Adaptive DE
 NSGA-II
 MOABC/D

Figure 6: Comparison of MOABC/D with Adaptive DE and NSGA-II for ROUGE-2 score
for the 10 topics. The discontinuous lines represent the average ROUGE-2 scores.

Now, average, range, and CV for ROUGE-L scores for each used topic
and their average values are presented in Table 9.

Topic
Adaptive DE

(Alguliev et al. [8])
NSGA-II

(Saleh et al. [34])
MOABC/D

Average Range CV Average Range CV Average Range CV

d061j 0.542 0.208 38.38 0.554 0.205 37.00 0.616 0.032 5.27
d062j 0.473 0.239 50.53 0.481 0.306 63.62 0.588 0.045 7.62
d063j 0.493 0.156 31.64 0.528 0.171 32.39 0.524 0.017 3.33
d064j 0.462 0.235 50.87 0.488 0.287 58.81 0.539 0.025 4.56
d065j 0.431 0.141 32.71 0.457 0.174 38.07 0.517 0.029 5.52
d066j 0.455 0.196 43.08 0.441 0.149 33.79 0.573 0.068 11.92
d067f 0.509 0.232 45.58 0.529 0.244 46.12 0.551 0.039 7.10
d068f 0.666 0.226 33.93 0.626 0.226 36.10 0.653 0.032 4.90
d069f 0.454 0.135 29.74 0.476 0.191 40.13 0.544 0.048 8.82
d070f 0.496 0.173 34.88 0.513 0.158 30.80 0.513 0.030 5.86

Average 0.498 0.194 39.13 0.509 0.211 41.68 0.562 0.037 6.49

Table 9: Average, range, and CV of ROUGE-L scores. Comparison among MOABC/D,
NSGA-II, and Adaptive DE. The best values appear in grey background.

The results presented in Table 9 show that the MOABC/D algorithm also
outperforms the other two approaches. The proposed MOABC/D algorithm
obtains better values in 9 out of 10 topics when comparing with Adaptive

31

DE algorithm in Alguliev et al. [8], and in 8 out of 10 topics when com-
paring with NSGA-II in Saleh et al. [34]. Regarding the average ROUGE-L
scores, the proposed approach improves by 12.85% and 10.41% to the other
two approaches, respectively. Again ranges and CVs report that the results
obtained by MOABC/D algorithm are much more stable. In this case, the
proposed algorithm provides a CV of only 6.49%, in comparison with 39.13%
and 41.68% for the other two algorithms (Adaptive DE and NSGA-II, respec-
tively). Figure 7 presents the results of the ROUGE-L score in a visual way.
Both the 10 topics’ results and the average ROUGE-L scores are represented.

d061j d062j d063j d064j d065j d066j d067f d068f d069f d070f
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RO
U
G
E-
L

Topics

 Adaptive DE
 NSGA-II
 MOABC/D

Figure 7: Comparison of MOABC/D with Adaptive DE and NSGA-II for ROUGE-L score
for the 10 topics. The discontinuous lines represent the average ROUGE-L scores.

5.6. Analyzing the Efficiency

Finally, this subsection presents a study of the efficiency of the MOABC/D
algorithm in comparison with MOABC algorithm in Sanchez-Gomez et al.
[9], which provided the best results in the scientific literature. In order to
make fair comparisons, the total number of evaluations executed evalmax is
set to popsize · cyclesmax. The experiments have been performed with 64
threads. Table 10 displays, for every topic, the execution time for MOABC
algorithm, the execution time with 64 threads for the proposed MOABC/D
algorithm, and the speedup and efficiency obtained.

32

Topic ET for MOABC ET for MOABC/D S for MOABC/D E for MOABC/D

d061j 197058.27 3536.18 55.73 87.07%
d062j 73496.95 1408.37 52.19 81.54%
d063j 475206.18 8982.26 52.90 82.66%
d064j 270498.76 4832.18 55.98 87.47%
d065j 775763.26 14220.60 54.55 85.24%
d066j 295616.36 5589.73 52.89 82.63%
d067f 78333.87 1479.17 52.96 82.75%
d068f 78924.33 1476.08 53.47 83.55%
d069f 1286430.37 23688.97 54.31 84.85%
d070f 114875.14 2068.70 55.53 86.77%

Average 364620.35 6728.22 54.05 84.45%

Table 10: Comparison between MOABC/D and MOABC: execution times (ET) in seconds,
speedups (S), and efficiencies (E).

The results reported in Table 10 show that the proposed MOABC/D
algorithm provides excellent speedups and efficiencies. The asynchronous
parallel design of MOABC/D achieves an average speedup of 54.05 with 64
threads of execution, that is, an average efficiency of 84.45%, what makes it
very efficient in exploiting the potential of multi-core architectures.

6. Conclusions

Extractive multi-document text summarization is a problem that demands
the simultaneous optimization of more than one objective function, so it
requires the application of multi-objective optimization techniques. In the
field of multi-objective optimization there are different ways to address this
kind of problems. In recent years, decomposition-based approaches have
been increasing their popularity. In this paper, a decomposition-based multi-
objective optimization approach (MOABC/D) has been proposed to solve
this problem. The MOABC/D algorithm has been designed and implemented
following an asynchronous parallel design in order to take advantage of multi-
core architectures.

The results obtained by using MOABC/D have improved those obtained
by other works in the scientific literature. It has been compared with a very
good single-objective approach based on an Adaptive DE algorithm (Alguliev
et al. [8]) and with the multi-objective approach based on NSGA-II (Saleh
et al. [34]) from other authors that obtained the best results for this problem.
When MOABC/D is used, the average improvement percentages obtained
range from 30.04% to 43.70% for ROUGE-2 scores, and from 10.41% to

33

12.85% for ROUGE-L scores. Furthermore, the average dispersion measures
show that MOABC/D is much more robust (approximately 11 times more
for ROUGE-2 and 6 times more for ROUGE-L). Even more, when compar-
ing with the MOABC algorithm presented in Sanchez-Gomez et al. [9], the
average improvement percentage obtained is 9.62% and 4.07% for ROUGE-
2 and ROUGE-L scores, respectively. In addition, the asynchronous par-
allel design of MOABC/D algorithm makes it very efficient compared with
MOABC. More specifically, the proposed MOABC/D algorithm has reported
an average speedup of 54.05 for 64 threads, that is, an average efficiency of
84.45%.

As a future work, the approach will be implemented in NeuroK software 1.
NeuroK is an e-learning platform that is based on social networks principles
and neurodidactics (Calle-Alonso et al. [49]). The purpose of the MOABC/D
algorithm will be to generate summaries automatically of the texts written
by the students in the platform. These texts can belong to learning units
or learning activities from an specific course. This would provide teachers
a tool that would allow them to easily supervise the students’ learning pro-
cess. Moreover, this tool may also include an automatic qualification of the
summary generated with the texts written by each student.

Acknowledgments

This research has been supported by Agencia Estatal de Investigación - Spain
(Projects TIN2016-76259-P and MTM2017-86875-C3-2-R), Junta de Ex-
tremadura - Spain (Projects GR18090 and GR18108), and European Union
(European Regional Development Fund). Jesus M. Sanchez-Gomez is sup-
ported by a doctoral fellowship granted by Junta de Extremadura (Contract
PD18057) and European Union (European Social Fund).

References

[1] W. Fan, A. Bifet, Mining big data: current status, and forecast to the
future, ACM SIGKDD Explorations Newsletter 14 (2013) 1–5.

[2] H. Hashimi, A. Hafez, H. Mathkour, Selection criteria for text mining
approaches, Computers in Human Behavior 51 (2015) 729–733.

1https://neurok.es/en/

34

https://neurok.es/en/

[3] X. Wan, An exploration of document impact on graph-based multi-
document summarization, in: Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, Association for Compu-
tational Linguistics, 2008, pp. 755–762.

[4] D. M. Zajic, B. J. Dorr, J. Lin, Single-document and multi-document
summarization techniques for email threads using sentence compression,
Information Processing & Management 44 (2008) 1600–1610.

[5] A. Khan, N. Salim, Y. J. Kumar, A framework for multi-document
abstractive summarization based on semantic role labelling, Applied
Soft Computing 30 (2015) 737–747.

[6] A. Khan, N. Salim, H. Farman, Clustered genetic semantic graph ap-
proach for multi-document abstractive summarization, in: 2016 Inter-
national Conference on Intelligent Systems Engineering (ICISE), IEEE,
2016, pp. 63–70. doi:10.1109/INTELSE.2016.7475163.

[7] V. N. Mendoza, Y. Ledeneva, R. A. Garćıa-Hernández, Abstractive
multi-document text summarization using a genetic algorithm, in: Mex-
ican Conference on Pattern Recognition, Springer, 2019, pp. 422–432.
doi:10.1007/978-3-030-21077-9_39.

[8] R. M. Alguliev, R. M. Aliguliyev, C. A. Mehdiyev, Sentence selection for
generic document summarization using an adaptive differential evolution
algorithm, Swarm and Evolutionary Computation 1 (2011) 213–222.

[9] J. M. Sanchez-Gomez, M. A. Vega-Rodŕıguez, C. J. Pérez, Extractive
multi-document text summarization using a multi-objective artificial bee
colony optimization approach, Knowledge-Based Systems 159 (2018) 1–
8.

[10] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm
based on decomposition, IEEE Transactions on Evolutionary Compu-
tation 11 (2007) 712–731.

[11] H. Li, Q. Zhang, Multiobjective optimization problems with complicated
Pareto sets, MOEA/D and NSGA-II, IEEE Transactions on Evolution-
ary Computation 13 (2009) 284–302.

35

http://dx.doi.org/10.1109/INTELSE.2016.7475163
http://dx.doi.org/10.1007/978-3-030-21077-9_39

[12] Q. Zhang, W. Liu, E. Tsang, B. Virginas, Expensive multiobjective opti-
mization by MOEA/D with gaussian process model, IEEE Transactions
on Evolutionary Computation 14 (2010) 456–474.

[13] L. Ke, Q. Zhang, R. Battiti, MOEA/D-ACO: A multiobjective evolu-
tionary algorithm using decomposition and ant colony, IEEE Transac-
tions on Cybernetics 43 (2013) 1845–1859.

[14] I. Das, J. E. Dennis, Normal-boundary intersection: A new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems, SIAM Journal on Optimization 8 (1998) 631–657.

[15] A. Jaszkiewicz, On the performance of multiple-objective genetic local
search on the 0/1 knapsack problem - A comparative experiment, IEEE
Transactions on Evolutionary Computation 6 (2002) 402–412.

[16] L. Tang, X. Zuo, C. Wang, X. Zhao, A MOEA/D based approach
for solving robust double row layout problem, in: Evolutionary Com-
putation (CEC), 2015 IEEE Congress on, IEEE, 2015, pp. 1966–1973.
doi:10.1109/CEC.2015.7257126.

[17] R. M. Alguliev, R. M. Aliguliyev, M. S. Hajirahimova, C. A. Mehdiyev,
MCMR: Maximum coverage and minimum redundant text summariza-
tion model, Expert Systems with Applications 38 (2011) 14514–14522.

[18] R. M. Alguliev, R. M. Aliguliyev, C. A. Mehdiyev, pSum-Sade: a modi-
fied p-median problem and self-adaptive differential evolution algorithm
for text summarization, Applied Computational Intelligence and Soft
Computing 2011 (2011) 1–13.

[19] R. M. Alguliev, R. M. Aliguliyev, N. R. Isazade, DESAMC+DocSum:
Differential evolution with self-adaptive mutation and crossover param-
eters for multi-document summarization, Knowledge-Based Systems 36
(2012) 21–38.

[20] R. M. Alguliev, R. M. Aliguliyev, C. A. Mehdiyev, An optimization
model and DPSO-EDA for document summarization, International
Journal of Information Technology and Computer Science (IJITCS) 3
(2011) 59–68.

36

http://dx.doi.org/10.1109/CEC.2015.7257126

[21] R. M. Alguliev, R. M. Aliguliyev, N. R. Isazade, Formulation of doc-
ument summarization as a 0–1 nonlinear programming problem, Com-
puters & Industrial Engineering 64 (2013) 94–102.

[22] R. M. Alguliev, R. M. Aliguliyev, M. S. Hajirahimova, Quadratic
boolean programming model and binary differential evolution algorithm
for text summarization, Problems of Information Technology 3 (2012)
20–29.

[23] R. M. Alguliev, R. M. Aliguliyev, M. S. Hajirahimova, GenDoc-
Sum+MCLR: Generic document summarization based on maximum
coverage and less redundancy, Expert Systems with Applications 39
(2012) 12460–12473.

[24] R. M. Alguliev, R. M. Aliguliyev, N. R. Isazade, CDDS: Constraint-
driven document summarization models, Expert Systems with Applica-
tions 40 (2013) 458–465.

[25] R. M. Alguliev, R. M. Aliguliyev, N. R. Isazade, Multiple documents
summarization based on evolutionary optimization algorithm, Expert
Systems with Applications 40 (2013) 1675–1689.

[26] R. M. Alguliev, R. M. Aliguliyev, C. A. Mehdiyev, An optimization ap-
proach to automatic generic document summarization, Computational
Intelligence 29 (2013) 129–155.

[27] M. Mendoza, C. Cobos, E. Leon, M. Lozano, F. Rodriguez, E. Herrera-
Viedma, A new memetic algorithm for multi-document summariza-
tion based on CHC algorithm and greedy search, in: Mexican Interna-
tional Conference on Artificial Intelligence, Springer, 2014, pp. 125–138.
doi:10.1007/978-3-319-13647-9_14.

[28] S. S. Benjumea, E. León, Genetic clustering algorithm for extractive text
summarization, in: 2015 IEEE Symposium Series on Computational
Intelligence, IEEE, 2015, pp. 949–956. doi:10.1109/SSCI.2015.139.

[29] K. Umam, F. W. Putro, G. Q. O. Pratamasunu, A. Z. Arifin, D. Pur-
witasari, Coverage, Diversity, and Coherence Optimization for Multi-
Document Summarization, Jurnal Ilmu Komputer dan Informasi 8
(2015) 1–10.

37

http://dx.doi.org/10.1007/978-3-319-13647-9_14
http://dx.doi.org/10.1109/SSCI.2015.139

[30] R. M. Alguliev, R. M. Aliguliyev, N. R. Isazade, An unsupervised ap-
proach to generating generic summaries of documents, Applied Soft
Computing 34 (2015) 236–250.

[31] J.-P. Qiang, P. Chen, W. Ding, F. Xie, X. Wu, Multi-document sum-
marization using closed patterns, Knowledge-Based Systems 99 (2016)
28–38.

[32] R. M. Alguliyev, R. M. Aliguliyev, N. R. Isazade, A. Abdi, N. Idris, CO-
SUM: Text summarization based on clustering and optimization, Expert
Systems 36 (2019) e12340: 1–17.

[33] P. Verma, H. Om, MCRMR: Maximum coverage and relevancy with
minimal redundancy based multi-document summarization, Expert Sys-
tems with Applications 120 (2019) 43–56.

[34] H. H. Saleh, N. J. Kadhim, B. A. Attea, A genetic based optimization
model for extractive multi-document text summarization, Iraqi Journal
of Science 56 (2015) 1489–1498.

[35] G. Salton, C. Buckley, Term-weighting approaches in automatic text
retrieval, Information Processing & Management 24 (1988) 513–523.

[36] D. Karaboga, B. Basturk, A powerful and efficient algorithm for nu-
merical function optimization: artificial bee colony (ABC) algorithm,
Journal of Global Optimization 39 (2007) 459–471.

[37] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive
survey: artificial bee colony (ABC) algorithm and applications, Artificial
Intelligence Review 42 (2014) 21–57.

[38] K. Deb, Multi-objective evolutionary algorithms, in: Springer Hand-
book of Computational Intelligence, Springer, 2015, pp. 995–1015.
doi:10.1007/978-3-662-43505-2_49.

[39] M. Toman, R. Tesar, K. Jezek, Influence of word normalization on text
classification, Proceedings of InSciT 4 (2006) 354–358.

[40] ROUGE, Summary Evaluation Package, http://www.berouge.com/,
2017. Last accessed: 14-July-2017.

38

http://dx.doi.org/10.1007/978-3-662-43505-2_49
http://www.berouge.com/

[41] M. Porter, The Porter Stemming Algorithm, http://www.tartarus.

org/martin/PorterStemmer/, 2019. Last accessed: 18-February-2020.

[42] P. Willett, The Porter stemming algorithm: then and now, Program:
electronic library and information systems 40 (2006) 219–223.

[43] A.-C. Zăvoianu, E. Lughofer, W. Koppelstätter, G. Weidenholzer,
W. Amrhein, E. P. Klement, On the performance of master-slave par-
allelization methods for multi-objective evolutionary algorithms, in: In-
ternational Conference on Artificial Intelligence and Soft Computing,
Springer, 2013, pp. 122–134. doi:10.1007/978-3-642-38610-7_12.

[44] E.-G. Talbi, S. Mostaghim, T. Okabe, H. Ishibuchi, G. Rudolph,
C. A. C. Coello, Parallel approaches for multiobjective optimiza-
tion, in: Multiobjective Optimization, Springer, 2008, pp. 349–372.
doi:10.1007/978-3-540-88908-3_13.

[45] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared
Memory Parallel Programming, volume 10, MIT press, 2008.

[46] NIST, Document Understanding Conferences, http://duc.nist.gov,
2014. Last accessed: 18-February-2020.

[47] C.-Y. Lin, ROUGE: A package for automatic evaluation of summaries,
in: Text summarization branches out: Proceedings of the ACL-04 Work-
shop, volume 8, Association for Computational Linguistics, 2004, pp.
74–81.

[48] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing. Vienna,
Austria, 2008.

[49] F. Calle-Alonso, A. Cuenca-Guevara, D. de la Mata Lara, J. M. Sanchez-
Gomez, M. A. Vega-Rodŕıguez, C. J. Perez Sanchez, NeuroK: A Col-
laborative e-Learning Platform based on Pedagogical Principles from
Neuroscience, in: Proceedings of the 9th International Conference on
Computer Supported Education (CSEDU 2017), volume 1, Science and
Technology Publications, 2017, pp. 550–555.

39

http://www.tartarus.org/martin/PorterStemmer/
http://www.tartarus.org/martin/PorterStemmer/
http://dx.doi.org/10.1007/978-3-642-38610-7_12
http://dx.doi.org/10.1007/978-3-540-88908-3_13
http://duc.nist.gov

	Introduction
	Related Work
	Problem Definition
	Similarity Measure
	Formulation of the Optimization Problem

	Multi-Objective Artificial Bee Colony based on Decomposition
	Decomposition-based Multi-Objective Optimization
	Preprocessing
	Main Steps of the Algorithm
	Mutation Operator
	Repair Operator
	Asynchronous Parallel MOABC/D Algorithm

	Experimental Results
	Datasets
	Experimental Settings
	Evaluation Metrics
	Comparing MOABC/D with MOABC
	Comparing MOABC/D with NSGA-II and Adaptive DE
	Analyzing the Efficiency

	Conclusions

