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Abstract
For family x ′ = (a0 + a1 cos t + a2 sin t)|x | + b0 + b1 cos t + b2 sin t , we solve
three basic problems related with its dynamics. First, we characterize when it has a
center (Poincaré center focus problem). Second, we show that each equation has a
finite number of limit cycles (finiteness problem), and finally we give a uniform upper
bound for the number of limit cycles (Hilbert problem 16).
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1 Introduction andMain Results

Consider the scalar piecewise equation

x ′ = h(t, x) =
{
f (t, x), if x ≥ 0,

g(t, x), if x < 0,
(1.1)

where f (t, x) and g(t, x) are continuous and locally Lipschitz continuouswith respect
to x in R

2 and f (t, 0) = g(t, 0). Under these hypotheses, there is a unique maximal
solution that satisfies each of the initial conditions.
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Let u(t, τ, x) be the maximal solution of (1.1) determined by u(τ, τ, x) = x . Let
f , g ∈ C1(R2) and (τ, x) ∈ R

2. Suppose the set of zeroes of f (t, 0) = g(t, 0) does
not contain any interval, then there exists

ux (t, τ, x) = exp

(∫ t

τ

hx (s, u(s, τ, x)) ds

)

and it is continuous with respect to t and x (see [4, Appendix A]). In this paper,
subscripts in a function indicate its partial derivatives.

Now assume that f and g are T−periodic functions with respect to t . We say
that u(t, τ, x) is closed or periodic if u(T , τ, x) = x . Let u(t, τ, x) be closed. It is
singular or multiple if ux (T , τ, x) = 1, otherwise it is simple or hyperbolic. Isolated
periodic solutions are also called limit cycles. By analogy with the planar case and
for simplicity, a continuum of periodic solutions (period annulus) is called a center of
(1.1). A more precise definition is given in Sect. 2.1.

Several authors have studied the case in which f and g are linear in x , i.e.
f (t, x) = a+(t)x + b(t) and g(t, x) = a−(t)x + b(t), where a+(t), a−(t), b(t)
are real continuous functions defined onR. Then, since f and g are globally Lipschitz
continuous with respect to x , the solutions are defined in R.

In [6], from a three-dimensional piecewise linear system with two zones, the fol-
lowing reduced one-dimensional 2π−periodic differential equation is obtained

x ′ =
{
a+x + b(t), if x ≥ 0,

a−x + b(t), if x < 0,

where a+, a− ∈ R, b(t) = b0 + b1 cos(t), b0 ∈ {0, 1}, and b1 ≥ 0. The analysis
of the limit cycles of this equation determines the dynamics of the three-dimensional
piecewise linear system.

In [11] the authors obtain upper bounds for the number of limit cycles of

x ′ =
{
a1(t)xm + b(t), if x ≥ 0,

a2(t)xm + b(t), if x < 0,

wherem is a positive integer and a1(t), a2(t) and b(t) are 2π−periodic functions such
that a1(t) and a2(t) do not change sign.

In [10], an upper bound for the number of limit cycles of equation

x ′ = a(t)|x | + b(t), (1.2)

is obtained by analyzing the displacement application, where a(t) and b(t) are real,
1−periodic and C1 functions such that one of them does not change sign.

In contrast, when a(t) or b(t) changes sign, there is no uniform upper bound for
the number of limit cycles of (1.1); indeed, in [7] (see also [4]) it is shown that
for any natural number k ≥ 2 and ε small enough, the differential equation x ′ =
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ε cos(kt)|x | + sin(t) has at least k − 2 limit cycles. However, if f (t, x) and g(t, x)
are T−periodic analytic functions, the following finiteness theorem holds.

Theorem 1.1 ([4]) Let f and g be real T−periodic analytic functions such that
f (t, 0) = g(t, 0) has n simple zeroes in [0, T ]. Then there exist x1 < . . . < xr ,
where 1 ≤ r ≤ n + 2, such that, if u(t) is a periodic solution that changes sign, then
u(0) ∈ [x1, xr ]. Moreover, for each 1 ≤ k < r one of the following statements holds:

(1) There is a finite number of values x ∈ [xk, xk+1] such that u(t, 0, x) is periodic.
(2) For every x ∈ [xk, xk+1], u(t, 0, x) is periodic.

In this paper we solve three fundamental problems related to the dynamics of
(1.2) when a(t) and b(t) are linear trigonometric polynomials. First, we characterize
when (1.2) has a center (Poincaré center-focus problem). Second, we prove that each
equation has a finite number of limit cycles (finiteness problem), and finally we set a
uniform upper bound for the number of limit cycles (Hilbert’s problem 16).

2 Linear Trigonometric Coefficients

Consider the Abel piecewise linear equation

x ′ = a(t)|x | + b(t), (2.3)

where a(t) = a0 + a1 cos(t) + a2 sin(t) and b(t) = b0 + b1 cos(t) + b2 sin(t).
Since periodic solutions with constant sign are determined by a linear differential

equation, the key point is to study periodic solutions that change sign, that is, those
solutions u(t) such that there exist t1, t2 such that u(t1)u(t2) < 0. In particular, b(t)
must change sign, otherwise x = 0 is a lower or an upper solution, thus avoiding
the existence of periodic solutions that change sign. By a translation of time, it is not
restrictive to assume b(0) = 0 and b(t) > 0 for t > 0 close to 0. Moreover, since b(t)
is linear, b(t) = 0 has a unique solution in (0, 2π), which we denote t̄ .

In consequence, if u(t) is a periodic solution of (2.3) that changes sign, then there
exist 0 < t1 < t̄ < t2 < 2π such that u(t1) = u(t2) = 0. Moreover, u(t) < 0
if t ∈ (0, t1), u(t) > 0 if t ∈ (t1, t2) and u(t) < 0 if t ∈ (t2, t1 + 2π). Since
u(t) is a solution of the IVP x ′ = a(t)x + b(t), x(t1) = 0 for t ∈ (t1, t2), and of
x ′ = −a(t)x + b(t), x(t2) = 0 for t ∈ (t2, t1 + 2π), and u(t1 + 2π) = 0, we have

∫ t2

t1
b(t) exp

(∫ t2

t
a(s) ds

)
dt = 0,

∫ t1+2π

t2
b(t) exp

(∫ t1+2π

t
−a(s) ds

)
dt = 0, (2.4)

and conversely, if there exist 0 < t1 < t̄ < t2 < 2π such that (2.4) holds, then there
exists a periodic solution u(t) of (1.1) determined by u(t1) = 0. This allows to reduce
the problem of finding periodic solutions to the problem of finding the points where
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two Poincaré half-maps intersect. Specifically, let

T+ : (0, t̄) → (t̄, 2π) and T− : (2π, 2π + t̄) → (t̄, 2π),

where T+(t1) is the first time where the solution u(t) of (2.3) determined by u(t1) = 0
is zero, that is,

T+(t1) = inf{t2 : t2 > t1, u(t2) = 0}, (2.5)

and T−(t1) is determined by

T−(t1) = sup{t2 < t1 + 2π : t2 > t1, u(t2) = 0}, (2.6)

where u(t) is, now, determined by u(2π + t1) = 0.

Proposition 2.1 The periodic solutions of (2.3) that change sign are in a one-to-one
correspondence with the solutions of T+(t) = T−(t), t ∈ (0, t̄).

Proof Assume u(t) is a periodic solution of (2.3) that changes sign.
If u(0) = u(2π) ≥ 0, as b(t) > 0 for t ∈ (0, t̄), then u(t) ≥ 0 for t ∈ [0, t̄], and,

as b(t) < 0 for t ∈ (t̄, 2π), then u(t) ≥ 0 for t ∈ [t̄, 2π ], so it has definite sign, in
contradiction with the assumption.

Therefore, u(0) = u(2π) < 0. Since b(t) has a single zero at (0, 2π), u(t) has at
most one sign change at both (0, t̄) and (t̄, 2π). So, as u(t) has indefinite sign, there
exist 0 < t1 < t̄ < t2 < 2π such that u(t1) = u(t2) = u(t1 + 2π) = 0. Therefore,
(2.4) holds and, consequently, T+(t1) = T−(t1).

Conversely, suppose t ∈ (0, t̄) is such that T+(t) = T−(t). Note that if T+(t) is
well defined, by the sign of b(t), we have that

T+(t) = T−(t) ∈ (t̄, 2π).

Let u(t) be the solution of (2.3) determined by u(t) = 0. As u(t) can change sign
at most once in each interval where b(t) has definite sign, u(s) > 0 for t < s < t̄ , and,
by (2.5), u(T+(t)) = 0. And, since T+(t) = T−(t), then u(T−(t)) = 0. Therefore,
u(t) < 0 for T−(t) < s < 2π , and, by (2.6), u(t + 2π) = 0, so u(t) is a periodic
solution. ��

Note that the Poincaré half-maps are defined implicitly by

∫ T+(t)

t
b(s) exp

(∫ T+(t)

s
a(r) dr

)
ds = 0,

∫ t+2π

T−(t)
b(s) exp

(
−

∫ t+2π

s
a(r) dr

)
ds = 0. (2.7)
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Lemma 2.2 The functions T+(t) and T−(t) are solutions of the differential equations

b(x)x ′ − b(t) exp

(∫ x

t
a(s) ds

)
= 0, (2.8)

b(x)x ′ − b(t) exp

(∫ x

t+2π
−a(s) ds

)
= 0, (2.9)

respectively.

Proof It is enough to observe that deriving (2.7) with respect to t , we obtain

b(T+(t))
dT+

dt
(t) − b(t) exp

(∫ T+(t)

t
a(s) ds

)
= 0, (2.10)

b(T−(t))
dT−

dt
(t) − b(t) exp

(
−

∫ T−(t)

t+2π
a(s) ds

)
= 0. (2.11)

��

2.1 The Center Problem

Let u(t, x) denote the solution of (2.3) determined by u(0, x) = x . Given x ∈ R

define the displacement application

d(x) := u(2π, x) − x .

Note that the solution u(·, x) is 2π−periodic if and only if d(x) = 0. Equation (2.3)
has a center if d(x) = 0 for every x in an interval. We say that (2.3) has a global center
if d is identically zero.

A linear center is defined as a center where the periodic solutions of the continuum
have definite sign.

For x > 0 large enough, the solution u(·, x) is positive, so the displacement appli-
cation is

d(x) = (A − 1)x + B,

where

A = exp

(∫ 2π

0
a(r) dr

)
, B =

∫ 2π

0
b(s) exp

(∫ 2π

s
a(r) dr

)
ds. (2.12)

Analogously, for x < 0 small enough d(x) = ( Ā− 1)x + B̄, where Ā, B̄, are defined
analogously. Therefore, for |x | large enough, the equation is linear, so it has a center
if A = 1, B = 0, for x 	 0, and if Ā = 1, B̄ = 0 for x 
 0.
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If b(t) ≡ 0, the non-zero solutions are either always positive or negative, so the
possible centers are linear (or global) and determined by conditions above. The general
case is covered in the next result.

Theorem 2.3 Equation (2.3) has linear centers or a global center. Moreover, it has a
global center if and only if a0 = 0 and a(t) and b(t) are proportional.

Proof If b(t) is identically zero, in particular it is proportional to a(t). Since u(t) ≡ 0
is a solution, there are no periodic solutions that change sign. Therefore, (2.3) has only
linear centers. Moreover, by comment above, (2.3) has a global center if and only if
A = Ā = 1, which is equivalent to a0 = 0.

If b(t) does not change sign and it is not identically zero, then x = 0 is either a
lower or an upper solution, so there are no periodic solutions that change sign. That
is, there are only linear centers and they are characterized by A = 1, B = 0 when
the periodic solutions are positive and Ā = 1, B̄ = 0 when the periodic solutions are
negative.

Assume that b(t) changes sign. First we prove that if (2.3) has a center that is not
linear, that is, if there exists a continuum of periodic solutions that change sign, then
(2.3) has a global center. Recall that we can assume that b(0) = b(t̄) = 0 are the
unique zeroes of b(t) in [0, 2π), and that b(t) > 0 for t ∈ (0, t̄) and b(t) < 0 for
t ∈ (t̄, 2π). Then there is a continuum of periodic solutions crossing x = 0 twice,
one in (0, t̄) and one in (t̄, 2π). By analyticity, these crossing must cover all (0, t̄) and
(t̄, 2π). In particular, the value at t = 0 of these solutions is an interval of the form
(x̄, 0), where u(t, x̄) and u(t, 0) do not change sign, and the displacement application
d is identically zero in the interval (x̄, 0) and linear in (−∞, x̄] ∪ [0,+∞). However,
since d is differentiable, we conclude that d is identically zero, and thus the center is
global.

Next we show that the global centers are characterized by the fact that a0 = 0 and
that the functions a(t) and b(t) are proportional. Assume that (2.3) has a global center.
As for x 	 0, d(x) = (A− 1)x + B, then A = 1, so a0 = 0. Also, since all solutions
are periodic, solutions that change sign are, then T (t) := T+(t) = T−(t) for every
t ∈ [0, t̄]. Therefore, the vector fields of (2.8) and (2.9), coincide, so

∫ T (t)

t
a(s) ds =

∫ T (t)

t+2π
−a(s) ds.

for every t ∈ (0, t̄). But, as a0 = 0,

0 =
∫ T (t)

t
a(s) ds +

∫ T (t)

t+2π
a(s) ds = 2

∫ T (t)

t
a(s) ds +

∫ t

t+2π
a(s) ds

= 2
∫ T (t)

t
a(s) ds.

Considering that for some constants c �= 0 and ta ∈ (0, 2π), a(t) = a1 cos(t) +
a2 sin(t) = c sin(t − ta), we have that cos(t − ta) = cos(T (t) − ta), which implies
that T (t) = −t + 2π because 0 ≤ t < t̄ < T (t) ≤ 2π , T (t) is strictly decreasing and
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T (0) = T (2π). If we now derive the expression
∫ −t+2π
t a(s) ds = 0 with respect to t ,

we obtain a(t)+a(−t+2π) = 0, implying a(t) = a2 sin(t).Moreover, T (t) = 2π−t
also implies that t̄ = π , so b(t) is proportional to sin(t), and a2b(t) = a2 sin(t) = a(t)

Conversely, if a0 = 0 and b(t) = λa(t) �≡ 0, then there exist c > 0 and γ ∈ [0, 2π)

such that a(t) = c sin(t − γ ). By the change of variables t → t + γ, x → x/c,
equation (2.3) transforms into x ′ = sin(t)|x | + λ sin(t) which has a center because
u(t) = u(−t) for every solution u(t). ��

2.2 The Finiteness Problem

The finiteness problem is essentially solved in Theorem 1.1 of [4]. Thus, we only show
here that (2.3) satisfies the hypotheses of that theorem.

Theorem 2.4 Equation2.3 has a finite number of limit cycles.

Proof If the zeroes of b(t) are simple, then the result follows from Theorem 1.1. Now,
as b(t) is linear trigonometric, if b(t) has multiple zero, then it does not change sign,
so x = 0 is a lower or an upper solution. In particular, no periodic solution crosses
x = 0, and there is at most one positive and one negative periodic solution because
the equation is linear in these regions. ��

2.3 Hilbert’s 16th Problem

When a(t) or b(t) does not change sign, an uniform upper bound is 2 (see [10, 14]),
so we assume that a(t) and b(t) change sign.

If we denote

F(t, x, a0, b0) := (
a0 + a1 cos(t) + a2 sin(t)

)|x | + b0
(
1 − cos(t)

) + sin(t),

then ∂F
∂a0

= |x | ≥ 0 and ∂F
∂b0

= 1 − cos(t) ≥ 0, being strict inequalities for x �= 0
and t �= 2kπ , k ∈ Z, respectively. Thus, since the vector field defined by (2.3) is
increasing with respect to a0 and b0, the same is true for the displacement application,
that is, if d(x, a0) (resp. d(x, b0)) denotes the displacement application in terms of a0
(resp. b0), then d is strictly increasing with respect to a0 (resp. b0).

Proposition 2.5 Assume that (2.3) has at least n limit cycles for a certain value of a0
(resp. b0). Then there exist nearby values of a0 (resp. b0) such that (2.3) has at least
n limit cycles.

Proof Assume x̄ is a zero of d such that d changes sign. Then d changes sign for
nearby values of a0 for any sufficiently small neighborhood of x̄ .

Assume x̄ is a zero of d such that d does not change sign for a0 = ā0; for instance,
d(x, ā0) ≥ 0 for x in a neighborhood of x̄ , being the strict inequality for x �= x̄ . Then
for a0 < ā0 sufficiently small, d has at least two zeroes close to x̄ .

Now, by conveniently selecting a0, we get the desired result. ��
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From the previous proposition, to obtain a uniform upper bound for the limit cycles
of (2.3), we can exclude any finite number of values of a0 and b0. In particular, in the
following we assume that a0 �= 0.

When b(t) changes sign, it has two simple roots in [0, 2π). By a translation of time,
it is not restrictive to assume that 0 is one of them and that b′(0) > 0. Moreover, by
rescaling x we can assume that the coefficient of sin(t) is one, so we assume that

b(t) = sin(t) + b0(1 − cos(t)).

Moreover, we have that b(t) > 0 for t ∈ (0, t̄) and b(t) < 0 for t ∈ (t̄, 2π), where t̄ is
the zero of b(t) in (0, 2π). By Proposition 2.1, there is a one-to-one correspondence
between the periodic solutions of (2.3) that change sign and the solutions of T+(t) =
T−(t).

Unfortunately, the equation T+(t) = T−(t) is difficult to handle, since T+ and T−
are implicitly defined functions. In the following steps, the problem of bounding the
number of solutions to this equation is reduced to bounding the number of solutions
to simpler equations. For this, we first consider the function

h(t, x) =
∫ x

t
a(s) ds +

∫ x

t+2π
a(s) ds.

Proposition 2.6 Let n−1 be themaximum number of isolated points in the intersection
of h(t, x) = 0 with the graph of a solution of (2.8) in (0, t̄)× (t̄, 2π). Then the number
of limit cycles of (2.3) that change sign is less than or equal to n.

Proof First, we recall that, by Lemma 2.2, T+(t) and T−(t) are solutions of (2.8)
and (2.9) respectively. Consider the vector fields defined by (2.8) and (2.9). The set
of points (t, x) ∈ (0, t̄) × (t̄, 2π) where the two vector fields are proportional are the
solutions of

− b(t)

b(x)
exp

(∫ x

t
a(s) ds

)
= − b(t)

b(x)
exp

(∫ x

t+2π
−a(s) ds

)
.

This equation is equivalent to h(t, x) = 0.
ByProposition 2.1, the number of limit cycles of (2.3) that change sign is the number

of solutions of T+(t) = T−(t), which is bounded by the number of intersections of
the graph of a solution of (2.8) with the graph of a solution of (2.9), both restricted to
(0, t̄) × (t̄, 2π). Let u(t) and v(t) be solutions of (2.8) and (2.9), respectively. If the
graphs of x = u(t) and x = v(t) intersect in two consecutive points of u(t), then both
vector fields are proportional in an intermediate value, that is, the graph of x = u(t)
and h(t, x) = 0 intersect at one point. Therefore, if n−1 is the number of intersections
of the graph of x = u(t) and h(t, x) = 0, then the number of intersections of the graphs
of x = u(t) and x = v(t) is at most n. ��
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To control the number of intersections of solutions of (2.8) or (2.9) with h(t, x) = 0
we need some additional properties of h(t, x) = 0. Note that

h(t, x) =
∫ x

t
a(s) ds +

∫ x

t+2π
a(s) ds

= 2
∫ x

t
a(s) ds +

∫ t

t+2π
a(s) ds

= 2
∫ x

t
a(s) ds − 2πa0. (2.13)

Lemma 2.7 The graph of h(t, x) = 0 for (t, x) ∈ R := (0, t̄) × (t̄, 2π) is, after a
linear change of variables, the restriction to R of the graph of a function.

Proof As a0 �= 0, then

1

a0
h(t, x) = 2 (r1 sin(x) − r2 cos(x) + x − r1 sin(t) + r2 cos(t) − t) − 2π

with ri = ai/a0, i = 1, 2.
By the change of variables:

(
z1
z2

)
=

(
1 1

−1 1

) (
t
x

)
,

1
a0
h(t, x) can be written in the form

1

a0
h(z1, z2) = 4 (r1 cos(z1/2) + r2 sin(z1/2)) sin(z2/2) − 2π + 2z2.

Thus the graph of the equation h(t, x) = 0, restricted to 0 < t < t̄ and t̄ < x < 2π ,
becomes in part of the (bigger) graph of

π − z2
sin(z2/2)

= 2 (r1 cos(z1/2) + r2 sin(z1/2)) (2.14)

restricted to t̄ < z1 < t̄+2π and 0 < z2 < 2π . Now, since the left hand side of (2.14)
is a strictly decreasing function in (0, 2π), we conclude that z2 is a function of z1. ��

Now, by studying the tangencies of T+ along the curve h(t, x) = 0, it is possible
to simplify the problem even further. Let us denote

m(t, x) := a(t)b(x) − a(x)b(t)eπa0 .

Proposition 2.8 Let n − 2 be the number of isolated solutions of

h(t, x) = m(t, x) = 0,
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where 0 < x − t < 2π and t̄ < t + x < t̄ + 2π . Then the number of limit cycles of
(2.3) that change sign is less than or equal to n.

Proof By Lemma 2.7, h(t, x) = 0 is the graph of a function in the region 0 < x − t <

2π and t̄ < t + x < t̄ + 2π . Then, between any two consecutive intersections of
h(t, x) = 0 and the graph of a solution of (2.8), the vector field defined by (2.8) must
be tangent to the curve, that is, for some point of h(t, x) = 0,

l(t, x) := hx (t, x)b(t) exp

(∫ x

t
a(s) ds

)
+ ht (t, x)b(x) = 0.

Moreover, since h(t, x) = 0 is equivalent to
∫ x
t a(s) ds = πa0, the set of points such

that l(t, x) = h(t, x) = 0 is the set of points such that

h(t, x) = a(t)b(x) − a(x)b(t)eπa0 = 0.

Therefore, if the number of isolated intersections of the curve h(t, x) = 0 with
m(t, x) = 0 is at most n − 2, then the number of isolated intersections of the curve
h(t, x) = 0 with the graph of a solution of (2.8) in (0, t̄) × (t̄, 2π) is at most n − 1
and, by Proposition 2.6, we are done. ��

The following result guarantees finiteness and a (very thick) upper bound for the
number of limit cycles. To obtain this bound, we use the followingKhovanskiı̆ theorem
( [12, Section 1.4]), which gives an estimate of the number of solutions of a system of
real exponential and trigonometric polynomials.

Theorem 2.9 (Khovanskiı̆). Let P1 = . . . = Pn = 0 be a system of n equations with n
real unknowns x = x1, . . . , xn, where Pi is a polynomial of degree mi in n + k + 2ρ
real variables x, y1, . . . , yk, u1, . . . , uρ, v1, . . . , vρ , where y j = exp〈a j , x〉, j =
1, . . . , k and uq = sin〈bq , x〉, vq = cos〈bq , x〉, q = 1, . . . , ρ. Then the number
of isolated real solutions of this system in the region bounded by the inequalities
|〈bq , x〉| < π/2, q = 1, . . . , ρ is finite and less than

m1 · · ·mn

(
n∑

i=1

mi + ρ + 1

)ρ+k

2ρ+(ρ+k)(ρ+k−1)/2

Theorem 2.10 The number of limit cycles of (2.3) is less than or equal to 9834500 =
74 · 212 + 2 + 2.

Proof First, note that there are at most two limit cycles that do not change sign, so
we only need to limit the number of limit cycles that change sign. Also, as we noted
earlier, we assume a0 �= 0.

Now, since

1

a0
h(t, x) = 2 (r1 sin(x) − r2 cos(x) + x − r1 sin(t) + r2 cos(t) − t) − 2π
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and

2

a0
m(t, x) =a(t)b(x) − a(x)b(t)eπa0

=(eπa0 − 1)(b0r2 − r1) sin(x + t)

+ (eπa0 − 1)(b0b1 + r2) cos(x + t)

+ (eπa0 − 1)(b0r2 − r1) sin(x − t)

+ (eπa0 − 1)(b0r1 − r2) cos(x − t)

+ 2(b0r2 − eπa0) sin(t) + 2b0(r1 + eπa0) cos(t)

− 2(eπa0b0r2 − 1) sin(x) − 2b0(e
πa0r1 + 1) cos(x)

− 2(eπa0 − 1)b0

with ri = ai/a0, i = 1, 2, are polynomials of degree 1 in the variables t, x, sin(t),
sin(x), sin(x + t), sin(x − t), cos(t), cos(x), cos(x + t), and cos(x − t). By the Kho-
vanskiı̆ theorem (Theorem 2.9), with n = 2, x1 = t, x2 = x, k = 0,m1 = m2 =
1, b1 = (1, 0), b2 = (0, 1), b3 = (1, 1) and b4 = (−1, 1), that is ρ = 4, we have
that the number of isolated real solutions of the system h(t, x) = m(t, x) = 0 in the
region

Q = {|〈bq , x〉| < π/2 : q = 1, . . . , 4}
= {(x, t) ∈ R

2 : |x + t | < π/2, |x − t | < π/2}

is finite and less than 74 · 210. Now, since we need four translations of Q to cover
the region (0, π) × (π, 2π), we conclude that the number of isolated real solutions
of the system h(t, x) = m(t, x) = 0 for (t, x) ∈ (0, π) × (π, 2π) is bounded by
4 · 74 · 210 = 74 · 212.

Finally, by Proposition 2.8, we conclude that the of limit cycles of (2.3) that change
sign is less than or equal to 74 · 212 + 2. ��

2.4 Improving the Upper Bound

The aim of this subsection is to improve the upper bound given by Theorem 2.10, by
performing a more detailed analysis of the system of equationsm(t, x) = h(t, x) = 0.

Note that m(t, x) is a trigonometric polynomial, while h(t, x) is the primitive of a
trigonometric polynomial.Our goal is to reduce the problemof bounding the number of
limit cycles to computing the number of intersections of two trigonometric polynomial
curves, which can be done by Bezout’s theorem. Then, we repeat the arguments above
and study the tangencies of h(t, x) along the branches ofm(t, x) = 0, so the next step
is to study the implicit equation m(t, x) = 0.

Recall that as in the previous subsection, we assume that a(t) and b(t) change sign,
and that a0 and b0 are generic.

Proposition 2.11 The number of connected components of m(t, x) = 0 in (0, 2π) ×
(0, 2π) is at most 4.



119 Page 12 of 17 J. L. Bravo et al.

Proof Asa0, b0 are generic,wemay assume thata(t) and b(t) have not common zeroes
in [0, 2π ]. By the change of variables t → 2 atan(z1) + π and x → 2 atan(z2) + π ,
m(t, x) becomes

φ(z1, z2) := 2 f (z1, z2)

(z21 + 1)(z22 + 1)
,

where f (z1, z2) is a polynomial of degree 3 which is irreducible over the complex by
Lemma A.1. According to [13, p. 300], applying Harnack’s theorem, we obtain that
the real connected components of an affine algebraic algebraic curve of degree d is less
than or equal to max(g+1, g+N ), where N is the number of non-compact connected
components of the affine algebraic curve and g is the genus of the corresponding
projective curve. Therefore, since f (z1, z2) = 0 defines a curve of degree 3 in R2 we
conclude that g = (3−1)(3−2))

2 = 1 and, according to Bezout’s theorem, that N is less
than or equal to 3. So, f (z1, z2) = 0 has at most 1+ 3 = 4 connected components in
R
2. Therefore, φ(z1, z2) has at most four connected components. Now, since the above

change of variables is a diffeomorphism fromR
2 to (0, 2π)× (0, 2π); in particular, it

is an homeomorphism and we conclude that m(t, x) = 0 has at most four connected
components in (0, 2π) × (0, 2π). ��

Since we are assuming a0 �= 0, dividing a(t) by a0, we can take ā(t) := a(t)/a0 =
1+ r1 cos(t) + r2 sin(t) and c := eπa0 . Then m(t, x) = 0 is equivalent to ā(t)b(x) −
ā(x)b(t)c = 0, which for t, x such that b(t)b(x) �= 0 can be rewritten as

k(t) − k(x)c = 0,

where k(t) = ā(t)/b(t).
By Proposition 2.8, to bound the number of limit cycles of (2.3), it suffices to

compute the number of isolated solutions of h(t, x) = 0,m(t, x) = 0, for 0 < x− t <

2π and t̄ < t + x < t̄ + 2π . Note that in every connected component of m(t, x) = 0,
if we have two consecutive zeros of h(t, x) = 0, then the gradients of m(t, x) = 0
and of h(t, x) = 0 must be proportional. Therefore, the number of isolated zeros of
m(t, x) = h(t, x) = 0 is bounded by the number of points of m(t, x) = 0 where both
gradients are proportionals, plus four by Proposition 2.11.

Next, we show that the points ofm(t, x) = 0 where both gradients are proportional
are, after a suitable variable change, the real solutions of two algebraic equations, so
that we can bound their number using Bezout’s theorem.

Observe that the gradient of m(t, x) = 0 is (k′(t),−k′(x)c), where k′(t) =
−n(t)/b(t)2 with

n(t) := ((b0r1 + b0) sin(t) + (1 − b0r2) cos(t) + b0r2 + r1.

Proposition 2.12 The set of points (t, x) ∈ (0, π) × (π, 2π) such that m(t, x) = 0
and (ht , hx ) = (−2ā(t), 2ā(x)) is proportional to (k′(t),−k′(x)c) is the set Z of
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solutions of

{
ā(t)b(x) − ā(x)b(t)c = 0,

n(t)b(x)3 − n(x)b(t)3c2 = 0.
(2.15)

The number of isolated points of Z is less than or equal to 27.

Proof A point (t, x) ∈ (0, π) × (π, 2π) satisfies both that m(t, x) = 0 and that
(ht , hx ) = (−2ā(t), 2ā(x)) is proportional to (k′(t),−k′(x)c) if and only if thematrix

(−ā(t) b(t)c k′(t)
ā(x) −b(x) −k′(x)c

)

has rank two, that is, the 2 × 2−minors of the above matrix are equal to zero.
Now, by the change of variables t → 2 atan(z1) + π, x → 2 atan(z2) + π , we

obtain that (2.15) is equivalent to a polynomial system of equations determined by
two polynomials; one of degree 3 and another of degree 9. Therefore, by Bezout’s
theorem (see [1, Theorem 4.106] for more details) Z has at most 27 isolated points. ��
Remark 2.13 Applying Gröbner basis techniques, one can show that cardinality of
the set Z in Proposition 2.12 is less than or equal to 15. Indeed, using Singular [8],
we can compute a Gröbner basis of the ideal a of C[z1, z2] generated by the two
polynomials that define the system equivalent to (2.15) after the change of variable
t → 2 atan(z1)+π, x → 2 atan(z2)+π , for generic r1, r2, b0 and c. The initial ideal
of a with respect to the graded reverse lexicographic monomial order on C[z1, z2]
is generated by {z61, z21z2, z1z52, z62}. Therefore, C[z1, z2]/a is a finite C−algebra of
degree equal to

dimCC[z1, z2]/〈z61, z21z2, z1z52, z62〉 = 15,

that is, for generic r1, r2, b0 and c, the set Z has cardinality 15 at most.

Summarizing all of the above results, we obtain the following.

Theorem 2.14 The number of limit cycles of (2.3) is less than or equal to 35 = 27 +
4 + 2 + 2 (or 23 = 15 + 4 + 2 + 2 by Remark 2.13).
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Appendix A. Irreducibility ofm

Next we prove that, generically, the function f (z1, z2) defined in Proposition 2.11 is
irreducible.

Lemma A.1 Let a0 �= 0. The following statements are equivalent.

(1) a(t) and b(t) have not common zeroes in [0, 2π ].
(2) (r1 + 1)

(
(r1 + 1)b20 − 2b0r2 − r1 + 1

) �= 0.
(3) After the change of variables t → 2 atan(z1) + π and x → 2 atan(z2) + π , the

numerator of m(t, x) is an irreducible polynomial over the complex.

Proof (1) ⇐⇒ (2). Let us prove that a(t) and b(t) has common zeroes if and only if
(r1+1)

(
(r1 + 1)b20 − 2b0r2 − r1 + 1

) = 0. Since a(t) = a0(1+r1 cos(t)+r2 sin(t))
and b(t) = sin(t) + b0(1 − cos(t)), we have that

(
r1 r2

−b0 1

) (
cos(t)
sin(t)

)
=

( −1
−b0

)
. (1.16)

If b0r2 + r1 = 0, then (1.16) has solutions if and only if r1 = −1 and b0r2 = −1,
which is equivalent to (r1+1)

(
(r1 + 1)b20 − 2b0r2 − r1 + 1

) = 0when b0r2+r1 = 0.
Otherwise, if b0r2 + r1 �= 0, then

(
cos(t)
sin(t)

)
=

(
r1 r2

−b0 1

)−1 ( −1
−b0

)
= 1

b0r2 + r1

(
b0r2 − 1
b0(r1 + 1)

)
,

thus, the system (1.16) has solutions if and only if (b0r2 − 1)2 + b0(r1 + 1)2 =
(b0r2 + r1)2; equivalently, (r1 + 1)

(
(r1 + 1)b20 − 2b0r2 − r1 + 1

) = 0.
(3) ⇐⇒ (2). Set c = eπa0 . By the change of variables t → 2 atan(z1) + π and

x → 2 atan(z2) + π we have that m(t, x) becomes

2 f (z1, z2)

(z21 + 1)(z22 + 1)

http://creativecommons.org/licenses/by/4.0/
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where

f (z1, z2) = − (r1 + 1)z21z2 + c(r1 + 1)z1z
2
2 + b0(r1 + 1)z21

− 2(c − 1)r2z1z2 − b0c(r1 + 1)z22 − (2b0r2 + c(r1 − 1))z1
+ (2b0cr2 + r1 − 1)z2 + b0(c − 1)(r1 − 1)

Suppose that f factorizes into two nonconstant polynomials, say

f1 = a1z
2
1z2 + a2z1z

2
2 + a3z

2
1 + a4z1z2 + a5z

2
2 + a6z1 + a7z2 + a8

and

f2 = b1z
2
1z2 + b2z1z

2
2 + b3z

2
1 + b4z1z2 + b5z

2
2 + b6z1 + b7z2 + b8.

Therefore, the coefficients of the monomials of f1 f2− f = 0 have to be equal to zero.
Let us first notice that the coefficients of the monomials z21z

2
2 and z

i
1z

j
2 for i > 2 or

j > 2 must be zero, that is,

0 = a1b1 = a2b1 + a1b2 = a2b2 = a4b1 + a1b4
= a3b1 + a4b2 + a1b3 + a2b4 = a5b1 + a3b2 + a2b3 + a1b5
= a5b2 + a2b5 = a4b4 = a6b1 + a4b3 + a3b4 + a1b6
= a7b1 + a6b2 + a3b3 + a5b4 + a4b5 + a2b6 + a1b7
= a7b2 + a5b3 + a3b5 + a2b7 = a5b5 = a6b4 + a4b6 = a7b5 + a5b7.(1.17)

With the following Singular [8] commands:

LIB "primdec.lib";
ring r = 0, (b0,r1,r2,c,

a1,a2,a3,a4,a5,a6,a7,a8,
b1,b2,b3,b4,b5,b6,b7,b8),dp;

ideal m =
a1*b1,a2*b1+a1*b2,a2*b2,a4*b1+a1*b4,
a3*b1+a4*b2+a1*b3+a2*b4,a5*b1+a3*b2+a2*b3+a1*b5,
a5*b2+a2*b5,a4*b4,a6*b1+a4*b3+a3*b4+a1*b6,
a7*b1+a6*b2+a3*b3+a5*b4+a4*b5+a2*b6+a1*b7,
a7*b2+a5*b3+a3*b5+a2*b7,a5*b5,a6*b4+a4*b6,a7*b5+a5*b7;

list L = minAss(m);
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we obtain that the system (1.17) has the following eight solutions:

b7 = b6 = b5 = b4 = b3 = b2 = b1 = 0,

b7 = b5 = b4 = b3 = b2 = b1 = a4 = a2 = a1 = 0,

b6 = b5 = b4 = b3 = b2 = b1 = a5 = a2 = a1 = 0,

b5 = b4 = b3 = b2 = b1 = a5 = a4 = a2 = a1 = 0,

b5 = b4 = b2 = b1 = a5 = a4 = a3 = a2 = a1 = 0,

b5 = b2 = b1 = a6 = a5 = a4 = a3 = a2 = a1 = 0,

b4 = b2 = b1 = a7 = a5 = a4 = a3 = a2 = a1 = 0,

a7 = a6 = a5 = a4 = a3 = a2 = a1 = 0.

Notice that the first and last solutions imply f2 ∈ R and f1 ∈ R, respectively. So, they
can be removed.

Consider now the coefficients of the monomials zi1z
j
2 of f1 f2 − f such that 0 ≤

i ≤ 2, 0 ≤ j ≤ 2 and (i, j) �= (2, 2), namely

0 = a8b1 + a6b3 + a7b4 + a3b6 + a4b7 + a1b8 + r1 + 1

= −r1c + a8b2 + a7b3 + a6b5 + a5b6 + a3b7 + a2b8 − c

= −r1b0 + a8b4 + a6b6 + a4b8 − b0
= 2r2c + a8b3 + a7b6 + a6b7 + a3b8 − 2r2
= r1b0c + b0c + a8b5 + a7b7 + a5b8
= 2r2b0 + r1c + a8b6 + a6b8 − c

= −2r2b0c + a8b7 + a7b8 − r1 + 1

= −r1b0c + r1b0 + b0c + a8b8 − b0.

ideal A =
a8*b1+a6*b3+a7*b4+a3*b6+a4*b7+a1*b8+r1+1,
-r1*c+a8*b2+a7*b3+a6*b5+a5*b6+a3*b7+a2*b8-c,
-r1*b0+a8*b4+a6*b6+a4*b8-b0,
2*r2*c+a8*b3+a7*b6+a6*b7+a3*b8-2*r2,
r1*b0*c+b0*c+a8*b5+a7*b7+a5*b8,
2*r2*b0+r1*c+a8*b6+a6*b8-c,
-2*r2*b0*c+a8*b7+a7*b8-r1+1,
-r1*b0*c+r1*b0+b0*c+a8*b8-b0;

If we restrict these equations to each of the eight solutions obtained above, eliminat-
ing the first and the last for the reasons given above, we obtain six systems of equations
defined by the six ideals ai , i = 1, . . . , 6, of C[b0, r1, r2, c, a1, . . . , a7, b1, . . . , b8].

If we now impose the conditions c > 0 (actually only c �= −1 is needed) and
a0 �= 0, i.e. c �= 1, and eliminate the variables a1, . . . , a8, b1, . . . , b8, we obtain the
conditions that must be satisfied by b0, c, r1, and r2, if any, for f to factorize into
f1 · f2.
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for (int i=2; i<=7; i=i+1)
{

eliminate(sat(A+L[i],c*(cˆ2-1))[1],
a1*a2*a3*a4*a5*a6*a7*a8*b1*b2*b3*b4*b5*b6*b7*b8);

}

As a result of the above computation we conclude that equation f1 f2 − f = 0 has
solutions if and only if (r1 + 1)

(
(r1 + 1)b20 − 2b0r2 − r1 + 1

) = 0. Therefore, f is
irreducible if, and only if, (r1 + 1)

(
(r1 + 1)b20 − 2b0r2 − r1 + 1

) �= 0. ��
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