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Abstract
Bump hunting deals with finding in sample spaces meaningful data subsets known
as bumps. These have traditionally been conceived as modal or concave regions in
the graph of the underlying density function. We define an abstract bump construct
based on curvature functionals of the probability density. Then, we explore several
alternative characterizations involving derivatives up to second order. In particular, a
suitable implementation of Good and Gaskins’ original concave bumps is proposed
in the multivariate case. Moreover, we bring to exploratory data analysis concepts
like the mean curvature and the Laplacian that have produced good results in applied
domains. Our methodology addresses the approximation of the curvature functional
with a plug-in kernel density estimator. We provide theoretical results that assure the
asymptotic consistency of bump boundaries in the Hausdorff distance with affordable
convergence rates. We also present asymptotically valid and consistent confidence
regions bounding curvature bumps. The theory is illustrated through several use cases
in sports analytics with datasets from the NBA, MLB and NFL. We conclude that the
different curvature instances effectively combine to generate insightful visualizations.
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1 Introduction

The subject of bump hunting (BH) refers to the set estimation task (Baíllo et al. 2000)
of discovering meaningful data regions, called bumps, in a sample space (Good and
Gaskins 1980). The most representative example is the study of modal regions in a
probability density function (pdf), which are literally bumps in its graph. Even though
the concept has a broader scope, BH remains relatively unexplored.

Consider the problem of identifying made shots on a basketball court. Coaches,
scouts and other personnel might be interested in extracting shooting patterns for
adopting specific pre-game strategies, assessing talent or working on player develop-
ment. Figure 1 illustrates four different ways of constructing bumps with basketball
shot data. Figure 1a, b corresponds to Hyndman’s classical highest density region
(HDR) configurations, while Fig. 1c, d follows our novel curvature-based character-
izations. Each of them presents a distinctive perspective on the underlying shooting
tendencies. Figure 1a, c points at fine-grained locations, whereas Fig. 1b, d covers
entire influence areas. Smaller regions suggest spots to prioritize in an offensive or
defensive scheme. The larger ones connect the dots, revealing general trends. Both
views complement each other to offer a complete picture.

Fig. 1 Four ways of constructing bumps for basketball converted shot data. The exact 804 made shot
locations are scattered across each sub-figure. The top left and right bumps correspond to HDRs comprising
35% and 95% of all observations. The bottom left bumps highlight regions where the pdf subgraph is locally
concave. The bottom right bumps comprise points where the Laplacian of the underlying pdf takes negative
values
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Bump hunting through density curvature features 1253

1.1 Goals

We propose a new BH curvature-based methodology addressing some blind spots
of classical methods. Figure 1a, b either misses or masks relevant information. The
finer-grained 35%-HDR does not include the perimeter concave bumps in Fig. 1c.
Meanwhile, the 95%-HDR fails to keep the short, mid- and long ranges well separated,
as opposed to the Laplacian bumps in Fig. 1d.

Contributions. The main contributions of this paper are:

➤ Presenting a general set estimation framework for curvature-based BH.
➤ Extending concave bumps to the multivariate setting.
➤ Introducing mean curvature and Laplacian bumps.
➤ Deriving consistency convergence rates for curvature bump boundaries.
➤ Building valid and consistent confidence regions for curvature bumps.
➤ Showcasing the numerous applications of curvature-based BH.

1.2 Related work

One of the first BH references was due to Good and Gaskins (1980). They offered a
premier definition of a bump as the concave region delimited between two inflection
points. Moreover, they suggested an extension to the multivariate case. Figure 1c
corresponds to our implementation of multivariate concave bumps.

In 1996, Hyndman introduced the concept of HDR, which he conceives as level sets
of the pdf f that enclose a certain probability mass (Hyndman 1996). More formally,
the (1 − α)-level HDR is defined as R( fα) = {x : f (x) ≥ fα}, where fα is the
largest value such that P (X ∈ R( fα)) ≥ 1−α, and the random variable (rv) X is such
that X ∼ f . HDRs satisfy the nice property of being the smallest sets with a given
probability mass.

Chaudhuri and Marron (1999) presented SIgnificant ZERo crossings of derivatives
(SiZer), envisioning bumps as places where the first derivative becomes zero. Chaud-
huri and Marron (2002) showcased the role of second derivatives in an unpublished
manuscript. Also Godtliebsen et al. (2002) explored curvature features from a point-
wise perspective by assessing Hessian eigenvalue sign combinations in the bivariate
case. A multivariate extension to Godtliebsen et al. (2002) was formulated by Duong
et al. (2008), targeting the pointwise significance of non-zero Hessian determinants.
Lastly,Marron andDryden (2021) elaborate on second derivatives in their bookObject
Oriented Data Analysis.

1.3 Outline

The new methodology is presented in Sect. 2. The supplementary material (SM)
(Chacón and Fernández Serrano 2023) provides the necessary differential geometry
foundations. In turn, Sect. 3 is entirely dedicated to asymptotic consistency and infer-
ence results. A sports analytics application is explored in Sect. 4. The SM (Chacón
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1254 J. E. Chacón, J. Fernández Serrano

and Fernández Serrano 2023) includes all the proofs and computational details. We
reflect on the proposed methodology in Sect. 5.

2 Methods

Ourmethodologyfinds alternativeways of analysing sample spaces by exploiting pdfs’
curvature properties, adhering to Chaudhuri and Marron’s defence of pdf derivatives.
Considering Hyndman’s approach a well-established tool, we believe there are still
some blind spots to address with curvature.

Hyndman’s HDRs have the advantage of always including globalmodes. However,
they may generally miss local modes if small enough; lowering the threshold α might
not capture them without obfuscating the HDR. On the other hand, when varying α

works, questions remain on the specific value it should take. Moreover, sometimes it
is necessary to explore the whole range of α ∈ (0, 1) to recover all the relevant pdf
features (Stuetzle 2003).

Consider a d-variate pdf f : Rd → [0,∞). We define bumps as subsets of Rd of
the form

Bφ = {x ∈ R
d : (−1)sφ[ f ](x) ≥ 0}, (1)

for some functionalφmeasuring the curvature of f at any point, and some sign selector
s ∈ {0, 1} that will usually be kept implicit. If the gradient ∇φ[ f ] does not vanish
near the zero level set of φ[ f ], the bump boundary ∂Bφ is retrieved by substituting the
inequality with an equality sign in (1) (Qiao 2020, Remark 3.1); see Theorem 2 ahead
for a formal condition (Chen et al. 2017, Assumption G) (Chen 2022). Contrary to
HDRs, the idea behind (1) is that φ carries an implicit threshold, say zero, to determine
if a point belongs to the bump, solving the arbitrariness of the choice of α in HDRs.

Once some curvature functional is chosen, we propose to employ a kernel plug-in
estimator of Bφ , replacing f with its kernel density estimator (KDE) in (1). Thus,
given a sample X1, . . . ,Xn of independent and identically distributed (i.i.d.) random
variables with pdf f and a bandwidth h > 0, we consider the KDE of f as

f̂n,h(x) = 1

n

n∑

i=1

Kh(x − Xi ) = 1

nhd

n∑

i=1

K

(
x − Xi

h

)
, (2)

for some kernel function K , typically a d-variate pdf. Using (2), we then define the
plug-in estimator of (1) as

B̃φ
n,h = {x ∈ R

d : (−1)sφ[ f̂n,h](x) ≥ 0}. (3)

To a first approximation, a scalar bandwidth is chosen for simplicity. Chacón and
Duong demonstrated that, for d > 1, unconstrained bandwidth matrices produce sig-
nificant performance gains, especially in kernel density derivative estimation (KDDE)
(Chacón and Duong 2018, Section 5.2). Preliminary experiments seem to support
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Bump hunting through density curvature features 1255

their recommendation also for curvature-based BH. Nonetheless, all the theoretical
developments and, consequently, all the exhibition figures in this paper obey this sim-
plification. On the other hand, the kernel K has a lower impact on the results. Most
of the statements in Sect. 3 do not impose a particular choice. However, all of them
are compatible with the Gaussian kernel (see Arias-Castro et al. 2016; Chen et al.
2015, 2016), which is almost universally preferred in a multivariate setting (Chacón
and Duong 2018, p. 15).

For d = 1, Chaudhuri and Marron studied the functional φ[ f ] = f ′′, which leads
to concave bumps, if s = 1, or convex dips, if s = 0. Different alternatives arise in
the multivariate case. The geometrical concepts in the SM (Chacón and Fernández
Serrano 2023) lay the grounds for characterizing bumps in alternative ways to HDRs.
Considering pdfs as hypersurfaces, notions like themean and Gaussian curvatures find
new usages in statistics. Figure 2 illustrates the two main kinds of curvature bumps in
this paper. Even though φ may a priori depend on partial derivatives of f of arbitrary
order r , the theory of hypersurfaces in the SM (Chacón and Fernández Serrano 2023)
suggests that our quest for curvature features is essentially fulfilled with up to second
derivatives of the pdf f .

Given the connection of curvature with second derivatives, we propose targeting
r = 2 in one of the standard bandwidth selectors (Chacón and Duong 2013). The
same heuristic worked well for KDE-based applications such as mean shift clustering
or feature significance testing (Chacón and Duong 2018, Chapter 6).

2.1 Concavity and convexity

Given a sufficiently smooth pdf f , let us define λi [ f ], for i ∈ {1, 2, . . . , d}, as the
function mapping x ∈ R

d to the i-th largest possibly repeated eigenvalue of D2 f (x),
the Hessian matrix of f at x, i.e.

λ1[ f ](x) ≥ λ2[ f ](x) ≥ · · · ≥ λd [ f ](x), (4)

for all x ∈ R
d . As mentioned in the SM (Chacón and Fernández Serrano 2023),

the eigenvalues of the Hessian (or the shape operator, equivalently) determine local
concavity and convexity. Let us assume that (−1)sλi [ f ] > 0, for all i on some subset
U ⊂ R

d . If s = 0, f will be locally convex, whereas if s = 1, it will be locally concave
on U . Considering the ordering of functions (4), we can express the former concave
and convex bumps in terms of a single functional, aligned with a specific sign s, as,
respectively,

Bλ1 = {x ∈ R
d : λ1[ f ](x) ≤ 0}, (5)

Bλd = {x ∈ R
d : λd [ f ](x) ≥ 0}. (6)

The concave region (5) yields the most recognizable flavour of bumps in the lit-
erature, this time in a multivariate setting. It is the method depicted in Fig. 1c. As
for (6), they are actually not bumps but dips. Assuming non-degenerate Hessians,
concave bumps typically delineate areas near local pdf modes, while convex dips do
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1256 J. E. Chacón, J. Fernández Serrano

Fig. 2 Curvature bumps for a bivariate Gaussian mixture encompassing two equally weighted components
with means μ1 = [−3/2, 0], μ2 = [3/2, 0] and covariance matrices �1 = [1, −0.7;−0.7, 1], �2 =
[1, 0.7; 0.7, 1]. The top two sub-figures show the same graph of the pdf f . The area colours refer to the
values takenby a specific curvature functionalφ[ f ] at eachpoint. For the left-handpicture, this function is the
λ1[ f ] that defines concave bumps (5); on the right, it is the mean curvature div(∇̄ f ) in (7). The magenta
halos represent the zero level sets of those functionals and, thus, the corresponding bump boundaries.
Concave and mean curvature bump boundaries are shown in blue and cyan in the bottom sub-figure, along
with a 1000-observation random sample from the mixture, where each point is coloured according to the
value of f

with local minima. Consequently, the former and the latter are known as peaks and
holes (Godtliebsen et al. 2002, Table 1).

When concave bumps contain local modes, they make the most natural definition of
ad-dimensional neighbourhood.Although straightforward, consideringmodal regions
as ε-fattenings or enlargements (see Sect. 3.1.1) poses challenges regarding the choice
of ε > 0, as similarly argued for α in HDRs. Besides, employing a single radius ε

limits the overall expressiveness of the bump. On the other hand, if we saw modal
regions as basins of attraction instead (Chacón 2015), despite ε disappearing and
attaining more flexibility, we would not be pursuing a solution to a BH problem any
more but a clustering one, giving up on the cohesive sense of bumps. In this respect,
concave bumps provide us with an elegant compromise answer.
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Bump hunting through density curvature features 1257

Moreover, this modal vicinity notion seamlessly incorporates the missing mode
scenario. Concave bumps point out incipient modal regions as the central mouth in
Fig. 2a, c, which does not contain amode. Suchweakmodal regions are well-known in
the context of univariate mode hunting as shoulders, representing complicated cases
(Cheng and Hall 1999). As for BH, d-dimensional shoulders deserve attention as evi-
dence of hidden structure. See the NFL application in the SM (Chacón and Fernández
Serrano 2023) for an interpretable dynamic shoulder. In turn, the mouth in Fig. 2 is
characteristic of mixtures whose components influence each other significantly. All in
all, concave bumps subsume the modal regions, having a slightly broader reach.

2.2 Gradient divergence

Concave bumps may be too restrictive in some use cases. Imagine the pdf graph as a
landscape, withmountains being local high-density regions. Concave bumps originate
nearmountain peaks,missingmost of the hillside.Mean curvature allows the discovery
of entire mountain chains.

The shape operator is a linearmapof the tangent space thatmeasures howamanifold
bends in different directions [see the SM (Chacón and Fernández Serrano 2023) for a
formal definition]. Let us consider its eigenvalues: the principal curvatures. Concavity
requires all principal curvatures to be negative. By contrast, the mean curvature adds
them all so that only the net sign matters. Computing curvature in this way fills the
gaps between concave peaks in a long ridge (Godtliebsen et al. 2002, Table 1), as
depicted in Fig. 2b, c in the form of a boomerang.

The SM (Chacón and Fernández Serrano 2023) shows the connection between
the mean curvature and divergence of the normalized version of the gradient ∇̄ f =
∇ f /

√
1 + ‖∇ f ‖2. The divergence operator takes positive values when the argument

field diverges from a point, whereas the sign is negative when it converges. Therefore,
we define the mean curvature bump as

B∇̄ = {x ∈ R
d : div(∇̄ f )(x) ≤ 0}. (7)

When the gradient is slight, as is usually the case for pdfs (one can even tweak the
scale of the random variables to make ‖∇ f ‖ small), the Laplacian � f = div(∇ f ) =∑d

i=1 ∂2 f /∂x2i roughly approximates themean curvature (see Folland 2002, Equation
5.28). Hence, we define the Laplacian bump as

B� = {x ∈ R
d : � f (x) ≤ 0}. (8)

Note that Bλ1 ⊂ B�. Even though (8) may be less intrinsic than (7), it has a more
straightforward form, for � is a second-order linear differential operator on f . A
discretized version of the Laplacian operator has been used for contour detection in
image processing through theLaplacian-of-Gaussian algorithm (Haralick and Shapiro
1992). We have already seen an example of a Laplacian bump in Fig. 1d. The results
would have been almost indistinguishable if the mean curvature had been employed.

123



1258 J. E. Chacón, J. Fernández Serrano

The term ridge was used above to convey a mountain range covering several peaks
following Godtliebsen et al. (2002). Ridges also refer in the statistical literature to a
specific definition of higher-dimensional pdfmodes (Chen et al. 2015). This concept of
ridge shares with Laplacian and mean curvature bumps the ability to unveil filament-
like structures. However, ridges are intrinsically one-dimensional in their most typical
form. For them to extend toRd , one would need to take an ε-enlargement, introducing
some arbitrariness and rigidity with ε that gradient divergence bumps do not have. In
our context, we will stick to the informal meaning of ridge in the following sections.

2.3 Intrinsic curvature

The Gaussian curvature is an intrinsic measure derived from the shape operator [see
the SM (Chacón and Fernández Serrano 2023) for a precise definition]. This and the
Hessian determinant provide alternative ways to detect warps. The analysis of these
two notions ismore subtle than in the previous sections: from the definition ofGaussian
curvature in the SM (Chacón and Fernández Serrano 2023), many sign combinations
among the multiplied principal curvatures produce the same net sign.

The Gaussian curvature and the Hessian determinant differ by a positive factor;
thus, if we set the bump detection threshold at zero, we can restrict our analysis to the
latter. In the bivariate case, the bump

Bdet = {x ∈ R
2 : det(D2 f )(x) ≥ 0} (9)

coincides with the union of (5) and (6). Therefore, (9) is helpful for detecting both
concave bumps and convex dips simultaneously. We will refer to (9) as a Gaussian
bump.

3 Asymptotics

This section will demonstrate the soundness of plug-in estimators in the asymptotic
regime for curvature bumps.

3.1 Consistency

We rely on a recent result by Chen to prove consistency (Chen 2022). Let

M = {x ∈ R
d : 	(x) = 0}, (10)

M̃ = {x ∈ R
d : 	̃(x) = 0} (11)

be two solution manifolds defined by their criterion functions 	, 	̃ : R
d → R,

respectively. Chen’s stability theorem shows that M and M̃ are near whenever the
criterion functions and their derivatives are close. In our context, 	 will represent a
curvature measure and 	̃ the corresponding kernel plug-in estimator so that M and
M̃ are the boundaries of the associated curvature bumps.

123



Bump hunting through density curvature features 1259

3.1.1 Notational preliminaries

The theory of convergence in the uniform norm for KDDE allows applying Chen’s
stability theorem to the curvature BH problem.

Vectors of nonnegative integers β = (β1, . . . , βd) ∈ Z
d+ shall represent partial

derivatives through ∂β f = ∂ |β| f /∂xβ1
1 · · · ∂xβd

d , where |β| = ∑d
i=1 βi . Let us call

Z
d+[k] = {β ∈ Z

d+ : |β| ≤ k}. We also include the case β = 0, which represents the
identity. Let us also define, for any derivative index vectors β1, . . . ,βm ∈ Z

d+, the
function ∂β1,...,βm f : Rd → R

m as ∂β1,...,βm f (x) = (∂β1 f (x), . . . , ∂βm f (x)).
We will denote C�(A) the class of functions ϕ : A ⊂ R

d → R with continuous
partial derivatives up to �-th order. Likewise, we will say that a function ϕ : Rd → R

is Hölder continuous with exponent α ∈ (0, 1] if there exists C ∈ (0,∞) such that
|ϕ(x) − ϕ(y)| ≤ C‖x−y‖α , for all x, y ∈ R

d (Jiang 2017). By convention, we include
the case α = 0 when Hölder continuity does not hold for any positive exponent.

For any ϕ : Rd → R and some A ⊂ R
d , we denote ‖ϕ‖∞ = supx∈A |ϕ(x)|, and we

will indicate that the supremum is over A by explicitly stating that ‖ϕ‖∞ satisfies some
property on A. Also, write ‖ϕ‖∞,k = max

{‖∂βϕ‖∞ : β ∈ Z
d+, |β| = k

}
. All these

norms will formalize how close the criterion functions and their respective derivatives
are.

On the other hand, the stability theorem invokes some other concepts related to
sets. Let us define the distance from a point x ∈ R

d to some subset A ⊂ R
d as

d(x, A) = infy∈A‖x − y‖, and the ε-fattening of a set A ⊂ R
d , where ε > 0, as

A⊕ε = {x ∈ R
d : d(x, A) ≤ ε}. Finally, theHausdorff distance between two subsets

A, B ⊂ R
d is Haus(A, B) = max

{
supx∈B d(x, A), supx∈A d(x, B)

}
.

The problem of uniformly bounding the KDDE error refers to finding an infinites-
imal bound for supx∈Rd |∂β f̂n,h(x) − ∂β f (x)|. Note that the latter is bounded by the
bias supx∈Rd |E[∂β f̂n,h(x)]−∂β f (x)| plus the stochastic error supx∈Rd |∂β f̂n,h(x)−
E[∂β f̂n,h(x)]|. We will analyse both terms separately.

3.1.2 Bias analysis

Lemma1 is an extended version of (Arias-Castro et al. 2016, Lemma2)with alternative
hypotheses to ensure consistency under less stringent differentiability assumptions.
Namely, we resort to Hölder and uniform continuity, following the example of Jiang
(2017) and (Nadaraya 1989, Theorem 1.1, p. 42).

Lemma 1 Letβ ∈ Z
d+ be a partial derivative index vector. Let f be a pdf inC|β|+r (Rd),

for some r ∈ Z+ ∪ {∞}, with all partial derivatives bounded up to (|β| + r)-th order.
Assume that ∂β f is Hölder continuous onRd with exponent α ∈ [0, 1]. If the exponent
is α = 0, then ultimately assume that ∂β f is uniformly continuous. Finally, let f̂n,h

be the KDE of f based on a true pdf kernel K vanishing at infinity and satisfying the
moment constraints

∫

Rd
x K (x) dx = 0,
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1260 J. E. Chacón, J. Fernández Serrano

∫

Rd

∣∣xix j
∣∣ K (x) dx < ∞,

for all i, j ∈ {1, . . . , d}. Then,

sup
x∈Rd

|E[∂β f̂n,h(x)] − ∂β f (x)| =
{
O(hs), if max{r , α} > 0

o(1) as h → 0, otherwise
,

where s = max{α,min{r , 2}}.

3.1.3 Stochastic error analysis

Lemma 2 appears as an auxiliary result in Arias-Castro et al. (2016) in the case � = 3,
but the proof works for an arbitrary �.

Lemma 2 (Arias-Castro et al. 2016). Let f be a bounded pdf inRd and let f̂n,h be the
KDEof f . Fix a nonnegative integer � as themaximumpartial derivative order. Assume
that K is a product kernel of the form K (x1, . . . , xd) = ∏d

i=1 κi (xi ), where each κi
is a univariate PDF of class C�(R). Further, assume that all the partial derivatives up
to �-th order of K are of bounded variation and integrable on R

d . Then, there exists
b ∈ (0, 1) such that, if h ≡ hn is a sequence satisfying log n ≤ nhd ≤ bn, then

sup
x∈Rd

|∂β f̂n,h(x) − E[∂β f̂n,h(x)]| = O

(√
log n

nhd+2|β|

)
,

almost surely (a.s.) for all β ∈ Z
d+[�].

Finally, note that Lemma 2 also holds for a sufficiently small but constant h.

3.1.4 Total error analysis

Combining Lemmas 1 and 2, we obtain a general consistency result in the supremum
norm for KDDE. We will focus on the Gaussian kernel for simplicity, but any other
satisfying the conditions in both Lemmas 1 and 2 would do.

Theorem 1 Let β ∈ Z
d+ be a partial derivative index vector. Let f be a pdf in

C|β|+r (Rd), for somer ∈ Z+∪{∞}, with all partial derivatives boundedup to (|β|+r)-
th order. Assume that ∂β f is Hölder continuous on R

d with exponent α ∈ [0, 1]. If
the exponent is α = 0, then ultimately assume that ∂β f is uniformly continuous. Let
f̂n,h be the KDE of f based on the Gaussian kernel. Finally, let h ≡ hn be a sequence
converging to zero as n → ∞ and satisfying nhd ≥ log n. Then,

sup
x∈Rd

|∂β f̂n,h(x) − ∂β f (x)| =

⎧
⎪⎨

⎪⎩

O
(
hs +

√
log n

nhd+2|β|
)

, if max{r , α} > 0

o(1) + O
(√

log n
nhd+2|β|

)
, otherwise

,
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a.s. as n → ∞, where s = max{α,min{r , 2}}. In particular,

sup
x∈Rd

|∂β f̂n,h(x) − ∂β f (x)| a.s.−−−→
n→∞ 0 if

log n

nhd+2|β| −−−→
n→∞ 0.

3.1.5 Manifold stability

Theorem 2 gathers the essential elements of Chen’s stability theorem needed in our
context.

Theorem 2 (Chen 2022). Let	, 	̃ : Rd → R and letM and M̃ be as defined in (10)
and (11), respectively. Assume that:

A1. There exists δ > 0 such that 	 has bounded first-order derivatives on M ⊕ δ.
A2. There exists λ > 0 such that ‖∇	(x)‖ > λ, for all x ∈ M ⊕ δ.
A3. ‖	̃ − 	‖∞ is sufficiently small on Rd .

Moreover, suppose that:

B1. 	̃ has bounded first-order derivatives on M ⊕ δ.
B2. ‖	̃ − 	‖∞,1 is sufficiently small onM ⊕ δ.

Then, Haus(M̃,M) = O(‖	̃ − 	‖∞).

We have introduced in Theorem 2 a slight relaxation on the differentiability con-
straint for 	̃. Chen supposes differentiability and bounds on R

d , whereas we allow
for a narrower domainM⊕ δ. This deviation is justified since hypotheses (A) imply
M̃ ⊂ M⊕ ε ⊂ M⊕ δ, where ε < δ. Since pdfs typically vanish at infinity, it might
be unfeasible to ask 	̃ = φ[ f̂n,h] to be differentiable everywhere. This is the case
for the eigenvalues (4) in Proposition 1, where condition (12) would not hold if the
infimum were taken over Rd .

Finally, putting all the pieces together, we get the following main result.

Theorem 3 Assume the following:

� Let φ be a curvature functional defined over d-variate pdfs depending on their
partial derivatives up to �-th order. More formally, given a pdf p, we have
φ[p] = ϕ ◦ ∂β1,...,βm p, for some ϕ : Rm → R and derivative index vectors
β1, . . . ,βm ∈ Z

d+[�].
� Let f be a pdf in C�+r (Rd), for some r ∈ {1, 2, . . . ,∞}, with all partial

derivatives bounded up to (� + r)-th order. If r = 1, further assume that the
(� + 1)-th partial derivatives of f are either Hölder continuous with exponent
α ∈ (0, 1] or uniformly continuous.

� Let f̂n,h be the KDE of f based on the Gaussian kernel.
� Let h ≡ hn converge to zero and satisfy limn→∞ n−1h−(d+2�+2) log n = 0.

Let the curvature bump boundary and its plug-in estimator, respectively, be

∂Bφ = {x ∈ R
d : φ[ f ](x) = 0},

∂B̃φ
n,h = {x ∈ R

d : φ[ f̂n,h](x) = 0}.

Further, suppose that:
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1262 J. E. Chacón, J. Fernández Serrano

� There exists δ > 0 such that ϕ ∈ C1(U), for some open set U ⊂ R
m containing

the images of ∂Bφ ⊕ δ under both ∂β1,...,βm f and ∂β1,...,βm f̂n,h a.s.
� There exists λ > 0 such that ‖∇φ[ f ](x)‖ > λ, for all x ∈ ∂Bφ ⊕ δ.

Then,

Haus(∂B̃φ
n,h, ∂Bφ) = O

(
hmin{r ,2} +

√
log n

nhd+2�

)
a.s.−−−→

n→∞ 0.

The optimal bound is Haus(∂B̃φ
n,h, ∂Bφ) = O([n−1 log n]2/(d+2�+4)), achieved

with h � [n−1 log n]1/(d+2�+4) (r ≥ 2). The former coincides up to a logarithmic
term with the optimum in KDDE for �-th order partial derivatives according to the
root mean integrated square error criterion, which is O(n−2/(d+2�+4)) (Chacón et al.
2011).

Theorem 3 straightforwardly leads to bump boundary convergence results for the
determinants and traces of the shape operator and the Hessian matrix.

Example 1 Consider the Laplacian and Gaussian bumps (8) and (9) for a bivariate pdf
f : R2 → [0,∞), with φ[ f ] equal to, respectively,

tr(D2 f ) ≡ � f = ∂2 f

∂x21
+ ∂2 f

∂x22
,

det(D2 f ) = ∂2 f

∂x21

∂2 f

∂x22
−

(
∂2 f

∂x1∂x2

)2

.

For the trace, the underlying derivative functional is ϕ(a1, a2) = a1 + a2, considering
β1 = (2, 0) and β2 = (0, 2). In turn, the functional is ϕ(a1, a2, a3) = a1a2 − a23 for
the determinant, taking β1 and β2 as before plus β3 = (1, 1). In both cases, ϕ is an
infinitely smooth function over U = R

m , making every δ > 0 satisfy the requirement
in Theorem 3without imposing additional hypotheses on the original pdf and its KDE.

The case for the Hessian eigenvalues is more involved. The functions λi [ f ] in (4)
are not generallyRd -differentiable. To solve this differentiability issue, we will follow
the standard assumption in Kato’s book that, for every x ∈ R

d , all the eigenvalues of
D2 f (x) have multiplicity one (Kato 1995, Theorem 5.16, p. 119). We will ask for an
even stronger hypothesis to ensure that all plug-in estimators λi [ f̂n,h] are eventually
distinct everywhere for large n a.s.

Proposition 1 Let f be a pdf and let f̂n,h be its KDE. Let us assume that f and f̂n,h

satisfy all the conditions in Theorem 1 so that the second-order partial derivatives of
f are consistently approximated with plug-in estimators. Let us call ∂Bφ the bump
boundary for the criterion function φ ≡ λ j [ f ], for some j ∈ {1, . . . , d}. If there exists
δ > 0 such that

inf
x∈∂Bφ⊕δ

{λi [ f ](x) − λi+1[ f ](x)} > 0, (12)
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for all i ∈ {1, . . . , d − 1}, then (12) also holds a.s. for n sufficiently large if we
replace f by f̂n,h. In particular, both λ j [ f ] and λ j [ f̂n,h] are infinitely differentiable
functions of the second-order partial derivatives of f and f̂n,h, respectively, on some
neighbourhood ∂Bφ ⊕ δ a.s. for n sufficiently large.

3.2 Inference

In this section, we derive bootstrap inference for curvature bumps, following similar
steps as in the scheme developed by Chen et al. for pdf level sets (Chen et al. 2017).
To accommodate the required techniques, we will exclusively focus on curvature
functionals φ deriving from the pdf Hessian D2 f .

3.2.1 Inference scheme

We will simplify the inference problem by targeting fh : Rd → [0,∞), given by
fh(x) = E[ f̂n,h(x)], instead of f , considering the bias negligible for a small h. There
are compelling arguments favouring fh against f for inference purposes (see Chen
et al. 2017, Section 2.2 for a thorough discussion).

Let us call Bφ
h the smoothed version of (1) derived by replacing f with fh . We

will assume that Bφ
h ⊂ �, for some � ⊂ R

d , or at least that the inferential procedure

focuses on Bφ
h ∩ �. Ideally, � should be as small as possible (hopefully � �= R

d ) so
that the resulting confidence regions are efficient.

Given α ∈ (0, 1), a path for narrowing down a (1 − α)-level confidence region for
Bφ
h is constructing two sets

B̄φ
n,h(ζ

α
n,h) = {x ∈ � : (−1)sφ[ f̂n,h](x) ≥ −ζ α

n,h}
B̄φ
n,h(ζ

α
n,h) = {x ∈ � : (−1)sφ[ f̂n,h](x) ≥ ζ α

n,h}
, (13)

for some margin ζ α
n,h ∈ [0,∞). Note that B̄φ

n,h(ζ
α
n,h) ⊂ B̃φ

n,h ⊂ B̄φ
n,h(ζ

α
n,h), thus (13)

are set bounds for the B̃φ
n,h in (3) approximating Bφ

h . This vertical scheme is similar
to Chen et al.’s second method for pdf level set inference (Chen et al. 2017) and a
particular case of Mammen and Polonik’s universal approach (Mammen and Polonik
2013).

Our inference results will establish conditions to ensure the previous set inequality
eventually holds too with probability 1 − α when replacing B̃φ

n,h with Bφ
h while the

set bounds (13) draw nearer Bφ
h , namely

⎧
⎨

⎩
P

(
B̄φ
n,h(ζ̃

α
n,h) ⊂ Bφ

h ⊂ B̄φ
n,h(ζ̃

α
n,h)

)
≥ 1 − α + o(1)

ζ̃ α
n,h = o(1)

, (14)

as n → ∞, for some sequence {ζ̃ α
n,h}∞n=1. The inference scheme (14) can be proven

for all curvature bumps using Theorem 4. From Sect. 3.1, it is an exercise to realize
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that, under the conditions in which (14) will hold, and with a few mild additional
assumptions, the boundaries of the set bounds (13) converge in the Hausdorff distance
to ∂Bφ

h .
In what follows, we will equivalently denote Qp{X} ≡ QX (p) the p-th quantile,

p ∈ (0, 1), of the rv X (van der Vaart 1998, p. 304).

Theorem 4 In the context described above, assume the following:

I There exists a sequence of random variables {Zn,h}∞n=1 such that, for sufficiently

large n ∈ N, Sn,h[φ] ≡ supx∈� |φ[ f̂n,h](x)−φ[ fh](x)| ≤ Zn,h a.s. Let us further
assume that

√
nZn,h converges weakly (van der Vaart and Wellner 1996) to some

rv Z as n → ∞, denoted by
√
nZn,h � Z . Suppose that Z has a continuous and

strictly increasing cumulative distribution function (cdf ).
II For each α ∈ (0, 1), there is {ζ α

n,h}∞n=1 satisfying ζ α
n,h ≥ Q1−α{Zn,h}, for all

n ∈ N, and limn→∞ ζ α
n,h = 0.

III For each α ∈ (0, 1), there is {ζ̃ α
n,h}∞n=1 satisfying |ζ̃ α

n,h − ζ α
n,h | = o(n−1/2) as

n → ∞.

Then, for all α ∈ (0, 1), the asymptotic validity of the inference scheme (14) holds.

The following sections will introduce theoretical results leading to bootstrap
estimates ζ̃ α

n,h that can be feasibly computed in practice.
Mammen and Polonik’s approach (Mammen and Polonik 2013) achieves a sharp

asymptotic coverage probability 1 − α in (14). A key difference separating their pro-
posal fromChen,Genovese, andWasserman’s and ours is that theymanage to bootstrap
from an rv that is a supremum over a neighbourhood of the level set, unlike Sn,h[φ] in
Theorem4,which considers thewhole�. SeeQiao andPolonik (2019) for an overview
of similar local strategies for level sets. Based on that, Mammen and Polonik’s method
will generally be less conservative.

3.2.2 Bootstrap outline

The main point to fill the Theorem 4 template is approximating the stochastic errors
for second-order linear differential operators D

En,h[D] = sup
x∈�

|D f̂n,h(x) − D fh(x)|, (15)

using bootstrap estimates

E∗
n,h[D|Xn] = sup

x∈�

|D f̂ ∗
n,h(x|Xn) − D f̂n,h(x|Xn)|, (16)

where f̂ ∗
n,h(·|Xn) denotes the KDE based on n i.i.d. random variables X∗

1, . . . ,X
∗
n ∼

P
∗
n{Xn} of the empirical bootstrap probability measure P

∗
n{Xn} assigning equal

masses 1/n to each component xi ∈ R
d of a particular n-size i.i.d. realization

123



Bump hunting through density curvature features 1265

Xn = {x1, . . . , xn} from f , and f̂n,h(·|Xn) is the realization of the KDE based on
Xn , i.e.

f̂ ∗
n,h(x|Xn) = 1

n

n∑

i=1

Kh(x − X∗
i ),

f̂n,h(x|Xn) = 1

n

n∑

i=1

Kh(x − xi ).

Assume that both (15) and (16) use the same kernel K everywhere. Estimating
confidence regions for curvature bumps will go through, directly or indirectly,
approximating the cdf of (15) with that of (16).

3.2.3 Gaussian process approximation

Lemma 3 allows a Gaussian process (GP) approximation between the suprema (15)
and (16). See (van der Vaart and Wellner 1996) for further knowledge about GPs.
The empirical process (van der Vaart and Wellner 1996) on a sample X1, . . . ,Xn of
i.i.d. d-dimensional random variables indexed by a class F of measurable functions
ϕ : Rd → R is defined as the functional Gn mapping a function ϕ ∈ F to the rv

Gn(ϕ) = 1√
n

n∑

i=1

(ϕ(Xi ) − E [ϕ(Xi )]) .

Lemma 3 invokes the pointwise measurable (PM) and Vapnik-Chervonenkis (VC)-
type classes of functions. We refer the reader to van der Vaart and Wellner (1996) for
the former and briefly define the latter, including the auxiliary Definition 1.

Definition 1 [Covering number (van der Vaart and Wellner 1996)]. Let (V, ‖·‖) be a
vector space with a seminorm and let F ⊂ V . We define the ε-covering number of
F , denoted by N (F ,V, ε), as the minimum number of ε-balls of the form {x ∈ V :
‖x − y‖ < ε}, where y ∈ V , needed to cover F .

Definition 2 [VC-type class of functions (Chernozhukov et al. 2014)]. Let F be a
class of measurable functions ϕ : Rd → R. Let 	 be an envelope function for F , i.e.
	 : Rd → R measurable such that supϕ∈F |ϕ(x)| ≤ 	(x) for all x ∈ R

d . An F class
equipped with an envelope 	 is called a VC-type class if there exist A, ν ∈ (0,∞)

such that, for all ε ∈ (0, 1),

sup
Q

N (F ,L2(Rd;Q), ε‖	‖2,Q) ≤
(
A

ε

)ν

,

where the supremum is taken over all finitely discrete probability measuresQ defined
on Rd and ‖	‖2,Q = (

∫
Rd |	|2 dQ)1/2 is the seminorm of L2(Rd ;Q).
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Wewill denote the Kolmogorov distance as ρcdf (X ,Y ) = supt∈R |FX (t) − FY (t)|,
where FX is the cdf of the rv X . Likewise, X

d= Y will denote equality in distribution
between the random variables.

Lemma 3 (Chernozhukov et al. 2014; Chen et al. 2015, 2016). Consider a sample
X1, . . . ,Xn of i.i.d. random variables. Let F be a PM and VC-type class of functions
with constant envelope b ∈ (0,∞). Let σ ∈ (0,∞) be such that supϕ∈F E

[
ϕ(X1)

2
] ≤

σ 2 ≤ b2. Let B be a centred tight GP with sample paths on the space of bounded
functions �∞(F), and with covariance function

Cov(B(ϕ1),B(ϕ2)) = E [ϕ1(X1)ϕ2(X1)] − E [ϕ1(X1)]E [ϕ2(X1)] , (17)

forϕ1, ϕ2 ∈ F . Then, there exists an rvB d= supϕ∈F |B(ϕ)| such that, for all γ ∈ (0, 1)
and n sufficiently large,

P

(∣∣∣∣∣ supϕ∈F
|Gn(ϕ)| − B

∣∣∣∣∣ > A1
b1/3σ 2/3 log2/3 n

γ 1/3n1/6

)
≤ A2γ,

where Gn is based on X1, . . . ,Xn, and A1, A2 are universal constants.

If we apply Lemma 3 to (15), we get the following result.

Theorem 5 Let D denote any linear �-th order differential operator. Let K ∈ C�(Rd)

be a kernel with bounded �-th derivatives. Further, suppose that the class

K =
{
y ∈ R

d �→ ∂βK

(
x − y

h

)
: x ∈ �, h > 0,β ∈ Z

d+, |β| = �

}
(18)

is VC-type. Let h ≡ hn be a sequence with h ∈ (0, 1) and h−(d+�) = O(log n).
Moreover, let B be a GP with the same properties as in Lemma 3 and indexed by

Fh =
{
y ∈ R

d �→ 1√
hd+�

DK

(
x − y

h

)
: x ∈ �

}
. (19)

Then, there exists Bh
d= supϕ∈Fh

|B(ϕ)| such that, for n sufficiently large,

ρcdf

(√
nhd+�En,h[D],Bh

)
= O

([
log7 n

nhd+�

]1/8)
−−−→
n→∞ 0.

Moreover, if we fix h ∈ (0, 1) and define B̄h = Bh/
√
hd+�, then

√
n En,h[D] converges

in probability to B̄h, denoted
√
n En,h[D] P−→ B̄h, as n → ∞.

A similar result establishes the asymptotic distribution for (16).
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Theorem 6 Let D denote any linear �-th order differential operator. Let K ∈ C�(Rd)

be a kernel with bounded �-th derivatives. Further, suppose that the classK in (18) is
VC-type. Moreover, let BXn be a GP with the same properties as in Lemma 3, indexed
by Fh as in (19), and with covariance

Cov(BXn (ϕ1),BXn (ϕ2)) = 1

n

n∑

i=1

ϕ1(xi )ϕ2(xi ) − 1

n2

2∏

j=1

(
n∑

i=1

ϕ j (xi )

)
,

where xi is the i-th observation in Xn. If h ≡ hn is a sequence with h ∈ (0, 1) and

h−(d+�) = O(log n), then there exists Bn,h{Xn} d= supϕ∈Fh
|BXn (ϕ)| such that, for n

sufficiently large,

ρcdf

(√
nhd+�E∗

n,h[D|Xn],Bn,h{Xn}
)

= O

([
log7 n

nhd+�

]1/8)
−−−→
n→∞ 0.

Theorem6 holds for any observationsXn . The applicability of this theorem relies on
the assumption that Bn,h{Xn} � Bh a.s. This connection crystallises in the following
result, which can be straightly derived from Theorems 5 and 6.

Theorem 7 Let D denote any linear �-th order differential operator. Let K ∈ C�(Rd)

be a kernel with bounded �-th derivatives. Further, suppose that the class K in (18)
is VC-type. Let h ≡ hn be a sequence with h ∈ (0, 1) and h−(d+�) = O(log n).
Moreover, let us write �n,h(Xn) ≡ ρcdf

(
Bn,h{Xn},Bh

)
, where Bh and Bn,h{Xn} are

as in Theorems 5 and 6, respectively. Let us allow Xn to vary as a random sample
from the pdf f underlying the covariance structure (17) of Bh. Further, suppose that
�n,h(Xn) = o(1) a.s. under the previous hypotheses on h. Then, for n sufficiently
large,

ρcdf

(√
nhd+�E∗

n,h[D|Xn],Bh

)
= O

(
�n,h(Xn) +

[
log7 n

nhd+�

]1/8)
a.s.−−−→

n→∞ 0.

We can state sufficient conditions under which �n,h(Xn) would converge to zero
a.s. Corollary 1 gathers all the previous findings in an easy, ready-to-use form.

Corollary 1 In the hypotheses of Theorem 7, if we further take a constant h and define
B̄h = Bh/

√
hd+�, then

ρcdf
(√

n En,h[D], B̄h
) −−−→

n→∞ 0

ρcdf
(√

n E∗
n,h[D|Xn], B̄h

) a.s.−−−→
n→∞ 0

.

In particular,
√
n E∗

n,h[D|Xn] � B̄h a.s. Moreover,
√
n En,h[D] P−→ B̄h. Finally, B̄h

has a continuous and strictly increasing cdf.
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3.2.4 Inference for curvature bumps

The results from the previous section hold the key to ensuring (14) for curvature
bumps.

Laplacian bumps. Theorem 8 straightly follows from Corollary 1 and Theorem 4.

Theorem 8 Let us fix h ∈ (0, 1). Let E∗
n,h[·|Xn] be as defined in (16) with KDE

based on a kernel K ∈ C2(Rd) with bounded second derivatives. Taking � = 2,
suppose that the class K in (18) is VC-type. For any α ∈ (0, 1), define the margin
ζ̃ α
n,h = Q1−α{E∗

n,h[�|Xn]}. Then, for all α ∈ (0, 1), the asymptotic validity of the
inference scheme (14) holds a.s. for the smoothed version of the Laplacian bump (8).

Concave bumps and convex dips. Concave bumps and convex dips are more involved.
To obtain a parallel result to Theorem 8, we will borrow the Tail Value at Risk (TVaR)
concept from financial risk management (Dhaene et al. 2006). The TVaR at level
p ∈ (0, 1) of an rv X is defined as

TVaRp {X} = 1

1 − p

∫ 1

p
QX (q) dq.

TheTVaR is utilized to aggregate risks governed by an unknown dependence structure,
for it satisfies TVaRp {X} ≥ Qp{X} and is sub-additive (Dhaene et al. 2006). Contrary
to quantiles, weak convergence does not guarantee TVaR convergence. Lemma 4
requires the random variables to be asymptotically uniformly integrable (a.u.i.) (van
der Vaart 1998, p. 17).

Lemma 4 Let {Xn}∞n=1 be an a.u.i. sequence of random variables satisfying Xn � X
for some rv X with a strictly increasing cdf. Then, limn→∞ TVaRp {Xn} = TVaRp {X}
for all p ∈ (0, 1), being the limit finite.

Then, Lemma 4 allows proving the main result.

Theorem 9 Let us fix h ∈ (0, 1). Let En,h[·] and E∗
n,h[·|Xn] be as defined in (15)

and (16) with KDE based on the same kernel K ∈ C2(Rd) with bounded second
derivatives. Taking � = 2, suppose that the class K in (18) is VC type. For any
α ∈ (0, 1), define the margin

ζ̃ α
n,h =

d∑

i=1

d∑

j=1

TVaR1−α

{E∗
n,h[Di j |Xn]

}
,

where Di j denotes second-order partial differentiation in the i and j variables.
Moreover, let us assume the following:

(1) Letting B̄h[Di j ] be the rv such that
√
n En,h[Di j ] P−→ B̄h[Di j ], the sum rv

Z = ∑d
i=1

∑d
j=1 B̄h[Di j ] has a continuous and strictly increasing cdf.

(2) For each pair (i, j), we have:
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� {√n En,h[Di j ]}∞n=1 is a.u.i.
� {√n E∗

n,h[Di j |Xn]}∞n=1 is a.u.i. a.s.

Then, for all α ∈ (0, 1), the asymptotic validity of the inference scheme (14) holds a.s.
for the smoothed version of the concave bump (5) and the convex dip (6).

The assumptions (1) and (2) seem natural. Hypothesis (1) asks a sum of nonnegative
random variables with continuous and strictly increasing cdfs to have a continuous
and strictly increasing cdf too, which should be valid except in pathological cases.
Similarly, knowing both sequences in hypothesis (2) converge weakly, being a.u.i.
amounts to the convergence of their expectations (van der Vaart 1998, Theorem 2.20).

Gaussian bumps. A similar result to Theorem 9 holds for Gaussian bumps (9).

Theorem 10 Consider the same hypotheses in Theorem 9 in the case d = 2. Assume
a Gaussian kernel K . Further, assume that the true pdf f is bounded. Let C be a
constant such that C > (πh4)−1. For any α ∈ (0, 1), define the margin

ζ̃ α
n,h = C

2∑

i=1

2∑

j=1

TVaR1−α

{E∗
n,h[Di j |Xn]

}
.

Then, for all α ∈ (0, 1), the asymptotic validity of the inference scheme (14) holds a.s.
for the smoothed version of the Gaussian bump (9).

4 Application

We will explore a sports analytics application for d = 2 in the National Basketball
Association (NBA). See the SM (Chacón and Fernández Serrano 2023) for additional
applications with d ∈ {1, 3} in two American leagues: the National Football League
(NFL) and theMajor League Baseball (MLB). Each player and team has its own style,
a form of DNA. Following the biological analogy, if a single gene activates a trait in
natural DNA, even minor bumps in data may reveal essential features.

All three sports applications are representative of the use of kernel methods for
exploratory data analysis (EDA). Moreover, our proposal has a marked visual intent,
thus excelling in low dimensions. In this context, the curse of dimensionality that
harms kernel methods, demanding larger sample sizes to retain precision, becomes
less relevant (Chacón and Duong 2018, Section 2.8).

Bivariate made shots in the NBA Most people are familiar with basketball’s three-
point line (3PL), behind which a made shot earns not two but three points. Sports
analytics have demonstrated that attempting more of these shots is well worth the risk,
given the increased efficiency of three-point shooters. This trend has recently changed
the basketball landscape, especially in the NBA.

Chacón exemplified univariate multimodality with shooting distances to the basket
in the NBA (Chacón 2020). We could see that the highest mode in a pdf model of
all shots for the 2014–2015 season peaked beyond the 3PL. Looking at shots from

123



1270 J. E. Chacón, J. Fernández Serrano

a bivariate perspective will reveal the 3PL not as two separate modes but as a ridge
(Chacón and Duong 2018).

We will examine bumps from shot data by the three best scorers in the 2015-
2016 NBA season: Stephen Curry, James Harden and Kevin Durant. Figures 3 and
4 present different perspectives on concave and Laplacian bumps. Setting the near-
the-rim shots aside, the three players have different shooting DNAs. Stephen Curry
(Fig. 4a) operates beyond the 3PL, covering the entire ridge. He also demonstrates
good range with even some half-court shots. However, he barely uses the mid-range
area. His shooting patterns aremostly symmetrical. JamesHarden (Fig. 4b) has similar
trends to Curry’s. He almost covers the 3PL while leaning towards some mid-range
areas without half-court shots. Some notable asymmetries are present. Kevin Durant
(Fig. 4c) has a more balanced game between mid and long shots. He shoots facing the
basket mainly, with lower usage of lateral shots.

Figure 5complements the previousfigureswith confidence sets.As refers to concave
bumps, a wholly or partially ring-shaped area around the basket can be excluded with
confidence for the three players. Apart from the shots near the rim, we cannot find
other spots likely contained in the concave bumps. Regarding Laplacian bumps, the
lower-bound confidence sets become more relevant, even far apart from the rim. For
Curry, up to four high-confidence spots appear beyond the 3PL, including the left-
field corner; for Harden, the number of outside high-confidence spots decreases to
two, while for Durant, there is only one.

5 Discussion

Our curvature BH methodology represents the next step in density BH techniques,
a path opened by Good and Gaskins (1980) and consolidated with Hyndman (1996)
and Chaudhuri and Marron (1999). Rather than sticking to a purely probabilistic view
on pdfs, our proposal thrives on sound geometry principles that have produced good
results in applied areas like image processing (Haralick and Shapiro 1992).

Our work strongly relies on KDDE, continuing the exploration of applications for
higher-order partial derivatives of the pdf (Chacón and Duong 2013). On the other
hand, we bring to curvature BH some cutting-edge techniques for level set estimation
and inference that extend the pointwise-oriented initial works by Godtliebsen et al.
(2002) and Duong et al. (2008).

The presented curvature framework shows great applicability from a theoretical
standpoint. Under mild assumptions, the mean curvature, Laplacian and Gaussian
bumps are consistent with affordable convergence rates. The confidence regions for
Laplacian bumps are also asymptotically valid and consistent. The cases for Gaussian
bumps (inference), concave bumps and convex dips (consistency and inference) are
slightly more technical. Notwithstanding, pathological cases should not often appear
in practice.

The NBA application shows promise for EDA and clustering. Figure 4a presents
a most pleasing result, identifying the 3PL area and the most relevant shooting spots.
Both bumps are valuable and combine to produce insightful visualizations. Comparing
the pictures in Fig. 4, we see that curvature bumps capture the players’ rich shooting
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Fig. 3 Concave and Laplacian bumps for Stephen Curry, James Harden and Kevin Durant. The three sub-
figures have the same structure. On the left are concave bumps (5); on the right are Laplacian bumps (8).
On either side, the two-dimensional surface is the fitted KDE pdf. The area colour refers to the curvature
functional value at each point. The bump boundaries appear as lines on a flat basketball court at the top
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Fig. 4 Shot scatter data with concave and Laplacian bumps for Stephen Curry, James Harden and Kevin
Durant. The three sub-figures have the same structure. Each point corresponds to a made shot location. The
number of observations is 804, 710 and 698 for Stephen Curry, James Harden and Kevin Durant. The lines
represent bump boundaries: magenta for concave bumps (5); blue, Laplacian bumps (8). The colour of the
dots in the scatter plot conveys the value of the KDE pdf at each point

DNAs. Despite the ultimately unavoidable threat of the curse of dimensionality in
KDE settings (Chacón and Duong 2018), the relatively small sample sizes did not
detract from the accuracy of the results.

Our methodology’s apparent least impressive achievement is confidence regions
despite asymptotic guarantees. In Fig. 5, the upper-bound confidence sets tend to be
conservative. This was not wholly unexpected, as Chen, Genovese, and Wasserman
warned (Chen et al. 2017). The margin is especially coarse for the concave bumps. In
practice, we can mitigate this effect by splitting the bump and calculating the margin
over smaller domains, employing a pilot estimation for guidance. Nonetheless, further
research followingMammen and Polonik’s universal approach (Mammen and Polonik
2013) should yield even better results.

123



Bump hunting through density curvature features 1273

Fig. 5 Confidence sets for Stephen Curry, James Harden and Kevin Durant’s bumps. The three sub-figures
have the same structure. On the left, 90%-confidence sets for concave bumps (5); on the right, 90%-
confidence sets for Laplacian bumps (8). The confidence margins are based on 200 bootstrap samples, each
with the same resample size as the original one. On either side, the area colours convey the same meaning.
The non-blue sandy areas fall outside the confidence set bounds; the blue-coloured areas lie inside the
confidence region. The darkest blue corresponds to the lower-bound confidence set: a set that is likely
contained in the bump. The remaining blue areas cover the upper-bound confidence set: a set that likely
contains the bump. Finally, the mid-light blue colour points out the estimated bump
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