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A B S T R A C T   

Water vapor is a fundamental component of the Earth’s atmosphere with a high spatial and temporal variability. 
This work studies to what extent low-cost infrared thermometers can infer precipitable water (variable 
commonly used to characterize atmospheric water vapor). In a calibration process, infrared thermometer 
readings recorded at Badajoz (Spain) during the 2015–2018 period are compared against precipitable water data 
measured with reference ground-based Global Navigation Satellite Systems (GNSS) in order to obtain conversion 
factors through regression analyses considering two exponential fits. After this calibration, using the equation of 
the best fit, thermometer readings for the year 2019 are transformed into precipitable water estimates. A vali-
dation analysis in which these estimates are compared with GNSS measurements yields rms differences of 19% 
and 17% when normal and seasonal calibration had been employed, respectively. These results are similar (or 
even better) to those obtained with satellite data. In addition, we explore if certain factors, such as solar 
elevation, precipitable water content, precipitable water measurements used as reference and equations to 
convert temperature readings into precipitable water estimates, can significantly affect the quality of the esti-
mates. In view of our results, low-cost infrared thermometers could be used to create an extensive and dense 
network for a better characterization of the spatial and temporal variability of water vapor.   

1. Introduction 

Water vapor is a trace gas of the atmosphere with a fundamental role 
in the climate system. It is the main absorbent of infrared radiation from 
the Earth’s surface, which makes it responsible for the heating of low 
layers of air. Moreover, water vapor latent heat constitutes a very effi-
cient mechanism for energy transport: water is evaporated at low lati-
tude regions, and then, it is transported to high latitudes, where it 
condenses, releasing high amounts of heat (Myhre et al., 2013). Water 
vapor is the most important natural greenhouse gas, and it is considered 
to generate a positive feedback in the climate system, according to 
general circulation models (Colman, 2003, 2015). 

Water vapor data can refer to different variables, like the relative or 
absolute humidity at certain height (or the whole profile), concentra-
tion, mixing ratio, and so on. In this work, we focus on the precipitable 

water (PW), also known by other names, like precipitable water vapor, 
total column water vapor or integrated water vapor. PW is equivalent to 
the height that all water vapor in a vertical cylinder of unit cross section 
would reach in a vessel of the same cross section if it precipitated. 
Therefore, it is commonly expressed in length units (mm or cm). It must 
be noticed that this height corresponds to units of superficial density if 
liquid water density (~1 g cm− 3) is considered (kg m− 2 or g cm− 2, 
respectively). 

Due to its importance in the climate system, the scientific community 
is interested in obtaining quality data for water vapor. There are several 
kinds of instruments that can measure PW. Radiosondes are typically 
used as reference because of their quality and the fact that their 
measuring technique is direct. However, radiosounding is an expensive 
technique. Therefore, stations with radiosounding are relatively scarce, 
and measurements are taken between 1 and 4 times a day (Negusini 
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et al., 2021; Vaquero-Martínez et al., 2019). 
Ground-based Global Navigation Satellite Systems (GNSS) can pro-

vide measurements of PW, following a technique developed by Bevis 
et al. (1994, 1992), with a high temporal resolution. GNSS networks are 
becoming more dense as they are useful to a wide range of geodetic and 
earth-science interests, and easy to maintain (Guerova et al., 2016; 
Vaquero-Martínez and Antón, 2021). 

Other instruments measuring PW are based on the measurement of 
radiation, such as sun photometers, microwave radiometers, and so on. 
These instruments can measure radiation in specific absorption bands, 
which are sensible to PW. They generally use complex algorithms to 
compute the inversion of the radiative transfer equations for obtaining 
estimates of PW from the radiation observed (Bokoye et al., 2003; 
Buehler et al., 2012). 

Currently, infrared thermometers are used to detect clouds for 
meteorological and astronomical purposes since these devices act as 
radiometers that respond to infrared radiation emitted by clouds (Morris 
et al., 2006). Atmospheric water vapor also emits infrared radiation. For 
that reason, Idso (1982) proposed the use of an infrared thermometer to 
measure water vapor pressure. Using low-cost devices, Mims III et al. 
(2011) compared readings of commercially available infrared ther-
mometers pointed at the cloudless zenith sky with PW values from 
reference instruments, i.e., sun photometer and GNSS, and proposed the 
equation of the best fit together with the thermometer readings as input 
as a way to obtain PW estimates. However, they did not present, analyze, 
compare or validate PW estimates. Recently, Kelsey et al. (2022), 
following a similar procedure in another region of the US, also took 
cloudless zenith sky readings with low-cost infrared thermometers for 
two years and after a comparison with radiosonde PW values, they used 
the equation of the best fit (a two-coefficient exponential function 
instead of a three one as the previous authors) to compute PW estimates. 
Then, the estimates were compared with sun photometer PW measure-
ments and GNSS ones. 

The present work studies daily zenith sky infrared thermometer 
readings (T) taken under cloudless conditions with a low-cost device for 
a period of 5 years in Badajoz (Spain). They are compared against PW 
measurements recorded by GNSS (PWG) through regression analyses. 
Two exponential fits to the data (two and three coefficients) are 
employed in order to assess differences in the results. Unlike previous 
studies, an independent period of common measurements thermometer- 
GNSS has been used to validate the PW estimates from the infrared 
thermometer (PWt), and the dependences that the estimates present 
with some factors such as the seasonal behavior, PW content and solar 
zenith angle are examined. 

2. Instruments and data 

The device used in the present study was the commercial infrared 
thermometer Powerfix IAN 100042 (Fig. 1) with an approximate cost of 
20 euros. The device gave measurements in degrees Celsius with one 
decimal point. However, according to the manufacturer, the measure-
ment accuracy is 3%. In addition, the device has a temperature mea-
surement range from − 40 ◦C to 220 ◦C and a field of view of 14.3◦. Daily 
measurements from the flat roof of our workplace (Physics Department 
of the University of Extremadura, 38.9◦ N, 7.0◦ W, 184 m above sea 
level) in Badajoz (Spain) were performed with it from December 2014 to 
March 2020. The procedure to obtain measurements consists in pointing 
the thermometer straight up at the zenith sky from a place in which the 
device does not receive direct solar radiation, such as the shadow of an 
object or the observer. The pointing procedure is carried out manually 
by an operator (always the same person). The zenith and its vicinity 
must be free of clouds, Sun or obstacles because we only want to mea-
sure the infrared radiation emitted by the atmospheric water vapor in 
the field of view of the device. Each reading of the instrument was 
written down together with the universal time, date and sky condition 
near the zenith in the field of view of the device. Note that, in contrast to 

previous works, for the present study, two readings a day were per-
formed. The first one was taken immediately when the operator arrived 
at the flat roof carrying the thermometer (set 1). Then, the thermometer 
was left 1 h in the flat roof to adjust to the ambient climatic conditions 
and, after that, the second reading was taken (set 2). The usual time for 
readings was 9:00 UTC for the set 1 and 10:00 UTC for the set 2 so that 
the Sun was not too near the zenith. 

It must be taken into account that the infrared thermometer is a 
device designed to average the surface temperature of nearby objects 
located in its field of view. In the present study, the thermometer is 
pointed at the zenith sky free of obstacles. Therefore, the readings do not 
represent the ambient temperature or sky temperature. Rather, they can 
be considered as a proxy for the downwelling infrared radiation emitted 
by the atmospheric water vapor. 

PWG measurements from a nearby GNSS receiver (in the same city, 2 
km away and 11 m higher with respect to the thermometer observation 
site) recorded on the same days at practically the same time are used as 
reference to calibrate the infrared thermometer readings. Note that the 
GNSS measurements closest in time to T readings are chosen. GNSS 
measurements with a 5-min latency are available on http://geodesy.unr. 
edu/. Information about the GNSS technique to derive these PWG data 
can be found in the work by Blewitt et al. (2018). In summary, the 
technique is based on the method described by Bevis et al. (1992). In the 
GNSS position processing, the zenith total delay (ZTD), which is the 
contribution of the lower atmosphere to the delay of the signal, is ob-
tained as one of the unknowns together with the position and other 
variables. The ZTD can be separated into a hydrostatic part, dependable 
only on the surface pressure, and the wet delay (ZWD), which is related 
to the water vapor exclusively. This ZWD can be converted into PWG 
through a multiplication factor that only depends on the mean tem-
perature of the atmosphere weighted by the water vapor profile, also 
known as Davis temperature. 

3. Methodology 

First of all, we filtered our dataset of zenith sky temperature readings 
from the infrared thermometer (T) to keep only situations of clear sky, 
without clouds, haze, smoke or dust in the field of view of the device. 
Then, T measurements of the period 2015–2018 are compared against 
PW measurements taken at approximately the same time from a nearby 
GNSS receiver (PWG) through a regression analysis considering an 
exponential fit of the form: 

PW = b⋅exp(T / c) (1) 

as done by Kelsey et al. (2022). However, this fit has a problem: there 

Fig. 1. Commercial infrared thermometer used in the present study.  
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can be a systematic error in the data that is not represented in the 
equation. Therefore, it is suggested a slightly more sophisticated version 
of the form: 

PW = a+ b⋅exp(T / c) (2) 

following Mims et al. (2011). In both expressions, PW is in mm and T 
in ◦C. a, b and c are regression coefficients. To calculate these, a 
non-linear regression is performed with the R function nlm. This func-
tion needs a starting value of the coefficients, as it uses an iterative 
method to find the best fit. The starting coefficients are calculated using 
a linear regression of the form of Equation (1) taking logarithms in both 
sides of the equation with same c, b multiplied by 1.5 and a set to 0. 

Both equations are tested and used to “calibrate” the thermometer 
with data of the period 2015–2018, i.e., to obtain an expression that 
converts T readings into PW estimates (PWt). The calibration co-
efficients a, b and c are obtained for set 1, set 2, and all the measure-
ments of both sets together. After evaluation, the equation and set with 
the best results are selected. In addition, a seasonal calibration is carried 
out, that is, the calibration coefficients are calculated season-wise and 
compared against the full-period calibration. For the seasonal analyses, 
spring comprises the months March, April and May, summer the months 
June, July and August, autumn the months September, October and 
November, and winter the months December, January and February. 

Finally, we obtain PWt estimates by substituting the values of the 
calibration coefficients a, b and c (calculated with data of the period 
2015–2018) and measurements of T for the year 2019 in Equation (1) or 
Equation (2). Subsequently, a validation analysis with data of the year 
2019 is carried out by comparing PWt with PWG using both full-period 
and season-wise models. Some statistics are considered: mean bias 
error (MBE), which is defined as the mean of the differences PWt – PWG; 
root mean squared differences (rms diff) which is the root mean of the 
squared differences; determination coefficient (r2), which gives the 
fraction of the variance that is explained by the model. These statistics 
assesses the quality of the fits, the quality of the PWt estimates and helps 
to decide whether a seasonal model is necessary or it is better to use the 
full-period model. Equations (3)–(5) show the definition of MBE, rms 
diff and r2, respectively: 

MBE=
1
n
∑(

PWt,i − PWG,i
)

(3)  

rmsdiff =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑(
PWt,i − PWG,i

)2
√

(4)  

r2 =

( ∑(
PWG,i − PWG

)(
PWt,i − PWt

))2

∑(
PWG,i − PWG

)2 ∑(
PWt,i − PWt

)2 (5)  

4. Results and discussion 

4.1. Calibration 

Fig. 2 displays scatter plots of PWG vs T for the period January 
2015–December 2018. As explained in the previous section, two data-
sets are shown in this plot: measurements performed immediately when 
the operator arrived at the flat roof (set 1 as red dots) and those per-
formed after the thermometer have adjusted to the ambient climatic 
conditions after 1 h (set 2 as green triangles). 

Firstly, regression analyses are carried out considering an exponen-
tial fit of two coefficients (Equation (1)) and other of three ones 
(Equation (2)). The coefficients a, b, c, the determination coefficient and 
root mean square differences are listed in Table 1 and Table 2. 

Fig. 2 reveals that temperature from set 1 (T1) is associated with 

Fig. 2. Scatter plot of precipitable water measured by 
a nearby GNSS receiver (PWG) vs zenith sky temper-
ature readings performed with an infrared thermom-
eter (T) for the period 2015–2018. Red dots represent 
measurements performed immediately when the 
operator arrived at the flat roof (set 1) whereas green 
triangles represent those performed after the ther-
mometer have adjusted to the ambient climatic con-
ditions (set 2). Best fits considering set 1 (red line), set 
2 (green line), both sets (blue line), a two-coefficient 
function (Equation (1), left panel) and a three- 
coefficient function (Equation (2), right panel) are 
presented.   

Table 1 
Coefficients of the fit equation PWG = b•exp(T/c), determination coefficients, 
rms differences and percent rms differences for 3 cases: all the measurements are 
considered (both sets); those taken immediately when the operator arrived at the 
flat roof (set 1); those taken after the thermometer have adjusted to the ambient 
climatic conditions (set 2).   

Both sets Set 1 Set 2 

b (mm) 27.38 31.04 25.42 
c (◦ C− 1) 0.05 0.05 0.04 
r2 0.755 0.790 0.783 
rms diff (mm) 2.98 2.72 2.84 
rms diff/mean (%) 19.86 18.35 18.72  
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slightly higher PWG values than those temperatures from set 2 (T2). 
Tables 1 and 2 show that the regression results improve when the dataset 
is divided considering set 1 and set 2 separately. Furthermore, the results 
improve very slightly using a three-coefficient exponential fit instead of 
a two-coefficient one. Statistical parameters for set 1 and set 2 are 
similar to those of Mims et al. (2011) in their 2-year infrared ther-
mometer study using GNSS measurements as reference and a 
three-coefficient exponential fit. In fact, those of set 1 using Equation (2) 
are even slightly better (same r2 and lower rms diff). Note that, in 
comparison with the study of the above authors, our T dataset covers a 
longer period, our thermometer has a lower measurement threshold 
allowing not to miss winter measurements, our GNSS receiver is just 2 
km away from the thermometer observation site (instead of 31 km), the 
latency of our associated GNSS measurements is 5 min (instead of 30 
min), and our T dataset is filtered by discarding measurements under 
conditions of haze, smoke or dust in the field of view of the device. With 
respect to the study of Kelsey et al. (2022), who also studied the rela-
tionship between cloudless zenith sky readings by a low-cost infrared 
thermometer and PW, they used a two-coefficient exponential fit and 
obtained a rms difference of 3.64 mm (percentage rms difference and 
determination coefficient are not stated in their work). Due to differ-
ences in climates, we cannot use the above absolute value for a com-
parison. We cannot compute percentage rms difference from rms 
difference because the average value of the sample is not stated either. 
Looking at the figure of our fit (Fig. 2) we can see that our measurements 
comprise an approximate range of 30 mm, being approximately homo-
geneously distributed. By dividing the rms difference by the PWG value 
of the center point of the range we can obtain an approximate value of 
the percentage rms difference (it is not the exact value shown in the 
tables of this work, but an approximation). By making this calculation 
with the data of the above authors (see Fig. 5 by Kelsey et al., 2022), a 
percentage rms difference of 23.5% is obtained. Note that the real per-
centage is higher because the lower half of the range contains more PW 
values than the upper one. One can see that this value is higher than ours 
considering our two-coefficient exponential fit. This higher value may 
be due to the fact that the above authors used as reference PW mea-
surements from very distant radiosonde stations, i.e., weighted mean 
values of a station located 110 km away and 200 m higher in elevation 
and another 240 km away and 250 m lower with respect to the ther-
mometer observation site, and the latency of their reference PW mea-
surements was 12 h, whereas our reference PWG station is 2 km away 
(11 m higher in elevation) and provide measurements with a 5-min la-
tency. Note that comparing the results of Mims et al. (2011), who used a 
three-coefficient exponential fit, with those of Kelsey et al. (2022), who 
used a two-coefficient one, one may get the misleading impression that 
the former obtained more accurate results simply because they used a 
three-coefficient exponential fit. The present work (see Tables 1 and 2) 
demonstrate that, other factors being equal, the improvement that a 
three-coefficient exponential fit produces over a two-coefficient one is 
very slight. The key to obtaining accurate PWt estimates is to use as 
reference PW measurements that are close in time to the T measure-
ments from a station close in distance and elevation to our thermometer 

observation site. 
Regarding the value of the calibration coefficients, we can compare 

those of our three-coefficient fit with those of Mims et al. (2011) and 
those of our two-coefficient fit with those of Kelsey et al. (2022). 
Different values are observed in both comparisons. In fact, Mims et al. 
(2011) performed a 5-month study with several infrared thermometers 
and different calibration coefficients were found. Therefore, the cali-
bration procedure must be carried out for each infrared thermometer. 
The different value of the calibration coefficients reflects the different 
spectral responses of the devices. 

Unlike previous works, for the present study, two types of T mea-
surements a day were performed, i.e., the first one immediately when 
the operator arrived at the flat roof carrying the thermometer (set 1) and 
the second one when the device had been left 1 h in the flat roof and was 
adjusted to the ambient climatic conditions (set 2). Tables 1 and 2 show 
that the regression results for set 1 are similar (even better) than those 
for set 2. This implies that the temperature compensation circuitry of the 
infrared thermometer that corrects for changes in ambient temperature 
works quickly and, thus, a period leaving the thermometer to adjust to 
the ambient climatic conditions is not necessary. 

Note that, as the best results of the present study have been obtained 
for set 1 using Equation (2), this dataset and this equation are the ones 
used for the following analyses. 

We now investigate whether a seasonal calibration could signifi-
cantly improve the results of a normal one. Thus, calibration coefficients 
are obtained for each of the four seasons. Results of this analysis can be 
seen in Fig. 3 and Table 3. Note that, for comparison purposes, the sixth 
row of Table 3 contains the same data as the third column of Table 2. As 
expected, the lowest values of T and PWG are in winter and the highest 
ones in summer. It is observed that both seasonal and total models, in 
general, show similar results. It must be noted that similar curves can be 
obtained with rather different coefficients and, therefore, it is not a 
surprise that coefficients can have quite different values. It is worth 
noting that the rms difference in the case of the full-period calibration is 
similar to the seasonal values, and that r2 is better for the former 
probably because of the higher number of data. 

Fig. 4 and Table 4 show the scatter plot and statistical values with 
confidence intervals of the model fit, which involves set 1, Equation (2) 
and full-period calibration. It can be observed that, despite the quite 
broad confidence intervals (we cannot forget that we are using a 20€ 
instrument), most of the points fall within the said intervals and the fit is 
quite accurate, within satellite measurement standards. 

4.2. Validation 

Once the calibration process is completed, a temperature reading T 
can be transformed into a PWt value using the exponential function 
given by Equation (1) or Equation (2). As mentioned above, at this point 
we employ Equation (2), although both equations yield similar results. 
In order to check to what extent the calibration works, in the present 
work, a validation analysis between PWt and PWG is carried out using 
data from set 1 for the year 2019, which were not used in the calibration 
process. 

Scatter plots between PWG and PWt are presented in Fig. 5 (left panel 
with the season-wise calibration and right panel with the full-period 
calibration) showing excellent agreements. Table 5 presents the inter-
cept, slope and coefficient of determination derived from the linear 
regression, and, in addition, the MBE and rms difference parameters are 
also included in this table. These results point out that the process of 
calibrating an infrared thermometer with an initial set of readings and 
then using the equation of the best fit with subsequent readings to infer 
values PWt yields good estimates. It can be seen that the values using the 
season-wise calibration are similar to those of the full-period calibration 
(they just improve slightly). Therefore, there is not a great improvement 
in the estimates of PWt when the calibration is done considering seasons 
separately. As water vapor presents a high temporal variability (seasonal 

Table 2 
Coefficients of the fit equation PWG = a + b•exp(T/c), determination co-
efficients, rms differences and percent rms differences for 3 cases: all the mea-
surements are considered (both sets); those taken immediately when the 
operator arrived at the flat roof (set 1); those taken after the thermometer have 
adjusted to the ambient climatic conditions (set 2).   

Both sets Set 1 Set 2 

a (mm) − 3.22 − 4.37 2.66 
b (mm) 29.71 33.42 23.58 
c (◦ C− 1) 28.84 28.54 18.53 
r2 0.757 0.793 0.784 
rms diff (mm) 2.95 2.68 2.82 
rms diff/mean (%) 19.66 18.09 18.57  
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one included), the above result indicates that GNSS and infrared ther-
mometers track this variability similarly, which adds more value to the 
PWt estimates. The result also indicates that our selection of T readings 
keeping only situations of clear sky without clouds, haze, smoke or dust 
seems to improve PWt estimates. Said elements, which present a sea-
sonal behavior, would have influenced T readings hampering the 
detection of the water vapor footprint by the infrared thermometer. 

Regarding previous works, as stated in Section 1, Mims et al. (2011) 
did not include, compare or validate PWt estimates in their study. Kelsey 
et al. (2022), who also obtained PWt estimates from low-cost infrared 
thermometer measurements, compared their PWt values with PW mea-
surements from two stations using GNSS and sun photometer data. Note 
that the same T measurements that these authors used to calibrate their 
thermometers were then used to compute estimates, that is, they did not 
use an independent period of measurements to validate their estimates. 
They obtained rms differences of 2.43 and 2.79 and r2 values of 0.569 

Fig. 3. Scatter plots of PWG vs T for the period 2015–2018 and best fits with a season-wise calibration using set 1 and Equation (2). Winter includes the months 
December, January and February, spring the months March, April and May, summer the months June, July and August, and autumn the months September, October 
and November. 

Table 3 
Coefficients of the fit equation PWG = a + b•exp(T/c) of the season-wise and 
full-period (total) calibrations using set 1 of data. The table also contains 
determination coefficients, the rms differences and the percent rms differences.   

a (mm) b 
(mm) 

c (◦

C− 1) 
r2 rms diff 

(mm) 
rms diff/ 
mean (%) 

Winter − 4.80 45.50 22.90 0.688 2.02 21.21 
Spring − 70.13 98.05 114.05 0.752 2.41 18.47 
Summer − 20.43 49.99 38.96 0.663 2.75 14.59 
Autumn − 5.54 37.52 27.37 0.754 2.64 15.81 
Total − 4.37 33.42 28.54 0.793 2.68 18.09  

Fig. 4. Scatter plot of PWG vs T for the period 2015–2018 for the full-period 
(total) calibration with set 1. The line represents the best fit considering a 
three-coefficient function (Equation (2)) with confidence interval as shad-
owed area. 
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and 0.624 from GNSS and sun photometer linear regression compari-
sons, respectively (percentage rms differences are not stated in their 
work). Making a calculation to infer approximate percentage rms 

differences similar to that explained in subsection 4.1, values of 22.1% 
and 21.5% are obtained from GNSS and sun photometer, respectively 
(see Fig. 6 by Kelsey et al., 2022). Note that the real percentages are 
higher because there are many more values in the lower half of the in-
terval than in the upper half, especially for the GNSS station. It can be 
checked that the validation analysis of the present work yields signifi-
cantly better results (Table 5, row “total”, percentage rms difference of 
19.0% and r2 of 0.796). Several factors may have contributed to the 
different results between works. In the stage of calibration, as mentioned 
in subsection 4.1, the reference PW measurements for the calibration 
used by the above authors came from very distant stations with large 
differences in altitude and in observation time with respect to the 
thermometer observation site and time. Regarding the stage of valida-
tion, the above authors used as reference two stations with differences in 
location with respect to the thermometer measurement site: the GNSS 
station was just 2 km away, but 750 m higher, and the sun photometer 
station was 30 km away (the altitude is not stated). In addition, a dry 
bias in comparison to radiosonde PW is documented in the sun 
photometer station. 

In view of our results and the comparison with previous works, we 
can state that the key to obtaining good PWt estimates is to have a 
dataset with as many T readings as possible to calibrate the thermometer 
and use as reference the closest PW station with similar conditions of 
altitude and measurement time. 

It must be noted that intercomparison works of GNSS and satellite 
instruments for the region of the thermometer observation site 
(Extremadura, western Spain) yielded similar (or even worse) results 

Fig. 5. Scatter plot of precipitable water derived from an infrared thermometer (PWt) using set 1 and Equation (2) vs PWG with data of the year 2019. Left panel 
contains estimates obtained from a season-wise calibration and right panel those from a full-period calibration. Red lines represent the fits of linear regressions. 

Table 4 
Coefficient values and their confidence interval to the 95% level of the fit 
equation PWG = a + b•exp(T/c) of the full-period (total) calibration using the set 
1 of data.   

Value Confidence interval 

a (mm) − 4.37 − 15.79–0.92 
b (mm) 33.42 29.10–43.60 
c (◦C− 1) 28.54 20.58–46.13  

Table 5 
Statistics of the comparison PWt – PWG. The intercept, slope and determination 
coefficient are the ones of the linear regression between the two datasets. The 
mean bias error, rms difference and rms difference/mean are also included. The 
numbers in parenthesis are the uncertainties associated to these values. Second 
row statistics correspond to PWt data obtained from a season-wise calibration 
and third row ones to those from a full-period calibration.   

Intercept 
(mm) 

Slope r2 MBE 
(mm) 

rms diff 
(mm) 

rms diff/ 
mean (%) 

Seasonal 0.04 (1.50) 0.97 
(0.09) 

0.829 0.35 2.55 17.48 

Total − 0.39 
(1.71) 

1.01 
(0.11) 

0.796 0.29 2.78 19.02  

Fig. 6. Temporal evolution of T (red triangles), PWt (blue dots) and PWG (black dots) over the whole study period (2015–2018 calibration period, 2019 validation 
period). Light blue bars are the 95% confidence intervals associated with each PWt estimate. 
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than those presented here. For instance, Bennouna et al. (2013) 
compared MODIS satellite instruments against GNSS obtaining rms 
differences of 20.45–23.84% and r2 of 0.740–0.903. Román et al. (2015) 
validated GOME-2 against GNSS, also in this region, showing an rms 
difference of 31.80% and r2 of 0.656. 

Lastly, Fig. 6 displays our time series of temperature readings T, our 
precipitable water estimates PWt and GNSS precipitable water mea-
surements PWG over the whole study period (2015–2019). From Fig. 6 
we can appreciate that T can work as a proxy for PWG since they both 
present similar annual variations. In addition, it can be seen that, in 
general, the values of the estimates from the thermometer are similar to 
those of the GNSS measurements. In fact, almost all the GNSS mea-
surements are within the confidence intervals associated with each PWt 
estimate. The few data points lying out of the intervals appear both 
below and above the intervals, and are evenly distributed over the year, 
thus, a significant seasonal influence is not detected. Finally, the data of 
the validation period show a behavior similar to that of the data of the 
calibration period. Therefore, again, the results confirm that the infrared 
thermometer produces good estimates of precipitable water. 

4.3. Dependence analysis 

This subsection studies the influence of the precipitable water con-
tent and solar zenith angle (SZA) on rms differences. This is achieved by 
grouping data of similar PWt or SZA into bins and calculating the rms 
difference for each bin. Fig. 7 exhibits rms differences on bins of 2 mm of 
PWt. Only representative bins (more than 5 data) are shown. The results 
among the datasets are comparable (~3 mm), with rather stable values. 
Precipitable water content dependence does not present a clear pattern. 
Values typically change in the 2–4 mm range. Two local maxima appear 
around 12–14 mm and 22 mm with minima at the extremes of the in-
terval and at 18 mm. 

SZA dependence is studied using bins of 2◦. The rms differences for 
each SZA bin are represented in Fig. 8. Again, only representative bins 
(more than 5 data) are shown. The general behavior is to decrease rms 
differences as SZA increases. The reason for this behavior may be that 
direct sunlight reaching the thermometer sensor can induce noise in the 

measurements. As the thermometer must be pointed at the zenith, the 
smaller the SZA the easier direct sunlight can enter the thermometer 
sensor. This effect could explain why the set 1 of T measurements pro-
duces slightly better results than the set 2 (set 1 includes measurements 
taken 1 h earlier than those of the set 2, both before midday, thus 
involving larger SZA). 

5. Conclusions 

The present work compares daily measurements (T) taken by a low- 
cost infrared thermometer pointed at the cloudless zenith sky in Badajoz 
(Spain) for 5 years with precipitable water vapor measurements recor-
ded by a nearby GNSS station (PWG). Through regression analyses for 
the data period 2015–2018 (calibration period) equations of exponential 
fits are obtained. These equations together with thermometer readings 
for the year 2019 as input yield PW estimates (PWt), which are 
compared with PWG measurements in a validation analysis. This anal-
ysis proves that the thermometer yields PWt estimates with rms differ-
ences of 19% when the calibration was performed in a normal way, i.e., 
considering one equation, and 17% when the calibration was performed 
seasonally, i.e., one equation per season. These estimates are of an ac-
curacy similar (or even better) to that of satellite measurements. 

Our results, when compared with those of previous works, indicate 
that, in order to obtain good estimates, it is important to have a sufficient 
number of thermometer readings and to use PW measurements close in 
time to the T readings from a nearby station with a similar elevation as 
reference for the calibration. We have also demonstrated that the use of 
a three-coefficient exponential equation to convert T readings into PWt 
estimates produces hardly any improvement with respect to the use of a 
two-coefficient one. In contrast, a dependence analysis have shown that 
solar elevation affects the quality of the estimates. This highlights the 
importance of keeping the thermometer field of view as far away from 
direct solar radiation as possible. 

We hope that this study will contribute to encourage people to create 
a dense network that improves the spatial and temporal variability of 
water vapor. Even students and non-expert weather observers can 
employ the procedure tested in the present work. They only need an 

Fig. 7. Rms differences of different PWt bins (2 mm width) with set 1 (top 
panel), set 2 (middle panel) and both sets (bottom panel). The size of the points 
indicate the number of data. 

Fig. 8. Rms differences of different solar zenith angle (SZA) bins (2◦ width) 
with set 1 (top panel), set 2 (middle panel) and both sets (bottom panel). The 
size of the points indicate the number of data. 
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inexpensive infrared thermometer, PW measurements from a nearby 
station (the website we provide in this work contains GNSS data from 
stations around the world), and a basic knowledge of a simple software, 
e.g., a spreadsheet, to calculate de calibration coefficients of their 
infrared thermometer. 
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