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Abstract

Monitoring Parkinson’s Disease (PD) progression is an important task to im-
prove the life quality of the affected people. This task can be performed by
extracting features from voice recordings and applying specifically designed
statistical models, leading to systems that improve the ability of monitoring
the progression of PD in an objective, remote, non-invasive, fast, and econom-
ically sustainable way. An experiment has been conducted with 36 subjects
to study the progression of the PD over 4 years by using the Hoehn and
Yahr (HY) scale and features extracted from the phonation of the vowel /a/.
The collected dataset had many missing data, which should be addressed
jointly with the non-decreasing nature of the disease and the within-subject
variability due to the use of replicated features. In order to handle these
issues, a Hidden Markov model for longitudinal data was designed and im-
plemented by using a data augmentation scheme based on different latent
variables. Markov chain Monte Carlo methods were used to generate from
the posterior distribution. The proposed approach has been tested on sim-
ulated data, providing good accuracy rates in the context of a multiclass
problem. It also has been applied to the real data obtained from the con-
ducted experiment, providing imputed and predicted HY stages compatible
with the progression of PD. The conducted experiment and the proposed
approach contribute to fill a gap in the scientific literature on experiments
and methodologies for tracking PD progression based on acoustic features



and the HY scale. This would help to derive an expert system that can be
integrated into the protocols of neurology units in hospital centers.

Keywords: Hidden Markov model, Missing data, Non-decreasing process,
Ordinal response, Parkinson’s disease, Replicated measurements

1. Introduction

Parkinson’s Disease (PD) is a long-term neurodegenerative disorder that
mainly affects the motor system with symptoms including tremor, stiffness,
instability, lack of coordination, or difficulty with walking. Non-motor symp-
toms such as cognitive and behavioral problems are also relevant. Besides,
voice production is affected by motor and cognitive problems. These symp-
toms begin gradually and get worse over the time.

According to the Parkinson’s Disease Foundation, it is estimated that
PD currently affects 7 to 10 million people worldwide, being the most rele-
vant neurodegenerative disorder after Alzheimer’s disease, but with a faster
growth. The Global Burden of Disease study projects to reach 13 million
people affected by 2040 [1]. This gives an idea of the magnitude of the prob-
lem and justifies the great effort in research and medical care to improve the
life quality of people suffering from this up-to-now incurable disorder.

The early diagnosis of PD is key to improve the life quality of people who
suffer from it. The diagnosis of this disorder is not evident and takes time
(between 1 and 3 years). Besides, it requires the intervention of specialized
neurologists. Tracking PD progression is also very important. Receiving
continuous monitoring of the progression of the disease is especially inter-
esting, since the symptoms fluctuate significantly throughout the day and,
in general conditions, the neurologist can only assess the patient’s situation
at the specific time of day in which the physical consultation is carried out
(once a year in many public health systems). The dose of medication and its
administration can be customized according to the evolution of the patient’s
symptoms.

In recent years, Computer-Aided Diagnosis (CAD) systems have been
built to aid in the detection and monitoring of many diseases [2], and, in
particular, those detectable by voice [3]. Since voice production is affected
by PD, CAD systems, based on features extracted from voice recordings,
can be used for these tasks. Moro-Velazquez et al. [4] present a recent re-
view of the advances in PD detection and assessment using voice. Many
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approaches have been derived for PD detection, according to different exper-
iments involving different phonation tasks (/a/ sustained phonation [5]; /ka/
syllable phonation [6]; and phonations of isolated words, rapid repetition of
the syllables, sentences, and read texts [7]), feature extraction procedures
(Jitter, Shimmer, MFCCs, HNR, RPDE, DFA, Entropies...[4]), or classifica-
tion approaches (k-nearest neighbor, random forests, gradient boosting...[8]).
However, the number of studies for tracking PD progression is much more
limited, as there is an underlying difficulty in conducting long-term studies.
Furthermore, regression-based approaches for longitudinal studies, address-
ing the difficulties related to the particular experimental designs, are more
difficult to derive and apply than classification models for cross-sectional
studies. Regression analysis is a set of statistical techniques used to evaluate
the relationship among variables, i.e., it tries to determine if one or more
independent variables can explain the variability produced in a dependent
variable (response variable) [9]. Regression models for numerical and ordinal
response are especially interesting in this longitudinal context.

PD can be monitored by using the Unified Parkinson’s Disease Rating
Scale (UPDRS) [10]. UPDRS is a numerical scale used to measure the course
of PD. It enables the quantification of the type, number, and severity of
extrapyramidal signs. This quantification is partially based on subjective
criteria, therefore disagreement among raters in the interpretation of these
criteria may happen [11]. UPRDS contains 45 questions for rating, divided
into four parts: (I) Mental state (16 points); (II) Daily life activities (52
points); (III) Motor aspects (68 points); and (IV) Complication of treatments
(23 points). Some studies have found approximations to UPDRS scores from
regression models applied to features extracted from voice recordings both
from linear and nonlinear regression techniques. Tsanas et al. [12] used clas-
sical least square regression and regression trees, whereas Hemmerling and
Wojcik-Pedziwiatr [13] used multiple linear regression, random forest regres-
sion and support vector machine regression for the same purpose. However,
most of the approaches carried out in the scientific literature have been de-
veloped on the basis of a single multicenter study conducted in the United
States with a total of 52 subjects with PD during a short period of 6 months
[14]. The voice recordings in this study are not publicly available, but the
features, which were extracted for a subgroup of 42 patients, can be down-
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loaded from the UCI Machine Learning Repository1. Based on this dataset,
some approaches have been developed and applied. Besides Tsanas et al.
[12], Eskidere et al. [15] used this dataset for model performance assess-
ment with regression models based on support vector machine, least square
support vector machines, multilayer perceptron neural network, and general
neural network regression methods. Naranjo et al. [16] developed a binary
regression model that addressed voice recording replications. Nilashi et al.
[17] developed an approach based on ensembles of deep belief network and
self-organizing map.

The application of UPDRS scale (or MDS-UPDRS [18]) requires the pres-
ence of the patient in a hospital center, as well as extensive physical exam-
inations by qualified medical personnel. Besides, the inter-rater agreement
is not as good as desirable [19]. The Hoehn and Yahr (HY) scale is simpler
and used very often to assess the level of disability produced by PD [20].
Originally, it contained 5 stages on an ordinal scale, but later was modified
by including two more stages to help in describing the intermediate course of
the disease [21]. Skodda et al. [22] conducted a longitudinal study to assess
the progression and speech impairment in the course of PD based on the UP-
DRS motor and HY scales, although they simplified the HY scale to only 3
stages. They focused on analyzing the correlation between perceptual speech
scores (articulation, fluency, prosody...) and basic linear speech parameters,
and they made a comparison between PD and control groups. They did not
try to make predictions based on the acoustic features.

There is a lack of longitudinal studies to predict HY stages based on acous-
tic features. This kind of prediction can be performed based on a regression
model for ordinal response. This has motivated conducting an experiment
with 36 people suffering from PD over 4 years, with stages ranging from 1
to 4 (no subject reached stage 5). Carrying out this experiment led to some
challenges that required the construction of a specific approach. The first
challenge was the existence of non-response. The experiment was conducted
in the headquarters of the Regional Association for Parkinson’s Disease of
Extremadura (Spain), and the participating subjects were volunteers, which
were invited to participate every year. Some of them were not available dur-
ing some periods of time (illness, travels...) or even permanently. Therefore,
missing data were obtained in the following rates: 11% after one year, 22%

1https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
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after two years, and 39% after three years. In spite of that, a great amount
of informative data was collected and it was needed to build appropriate
statistical methodology to address it. Besides, PD is a neurodegenerative
disorder, so the people that suffer from it get progressively worse over the
time. This situation also requires to address the problem as a non-decreasing
process. Many diseases have been modelled taking this fact into account such
as caries experience [23], aortic aneurysm [24], or even PD [25].

Addressing the issues of non-response and non-decreasing process should
be completed with managing the within-subject variability produced by the
use of replicated voice recordings. There exists a relevant variability between
features extracted from two or more voice recordings of the same subject
at a particular time, so using only one utterance per subject may provide
different results depending on the voice recording that has been selected.
Imperfections in technology and the very biological variability result in values
that are similar (but not identical) for voice recordings from a particular
subject, rather than for recordings from different individuals. Some authors
have ignored this issue and have treated the data as if they were independent
when there exists a clear dependent nature (see, e.g., the treatment given by
Tsanas et al. [12] or Nilashi et al. [17]). However, this within-subject
variability can be properly addressed [25]. The experiment involved in this
article considers three replications per subject at each time point.

In this article, a Hidden Markov Model (HMM) has been developed and
applied to address the lack of response in the HY ordinal scale for tracking
PD progression, non-decreasing process, and within-subject variability pro-
duced by the voice recording replications. Due to the difficulty of addressing
these issues, latent variables have been introduced in the model, which has
allowed to solve the model by using Markov chain Monte Carlo (MCMC)
methods. The resulting approach has been applied to the data collected
from the previously described long-term experiment, which has been con-
ducted specifically for this task. Therefore, the proposed approach is part
of a CAD system that contributes to improve the ability of monitoring the
progression of PD in an objective, remote, non-invasive, fast, and economi-
cally sustainable way. This is in line with the development and use of tools,
technologies and digital solutions for health and care, as an essential pillar of
modern medicine. Although the approach has been derived for monitoring
the progression of PD, it is applicable to other problems that share these
characteristics.

The outline of the rest of the article is as follows. Section 2 presents the

5



data collection through the description of the participants, speech recordings,
recording devices, and feature extraction procedures. Section 3 describes the
HMM, including the details about dealing with the missing ordinal response,
non-decreasing process, and replicated covariates. Also, the posterior distri-
bution is explored. Section 4 presents the results obtained from a simulation-
based case and from real data obtained with the conducted experiment. Next,
conclusions are shown in Section 5. Finally, imputed and predicted stages
are presented in an Appendix.

2. Data collection

2.1. Participants

A total of 36 subjects having PD have been involved in this study, being
12 women (33.3%) and 24 men (66.7%). The mean (standard deviation)
age was 69 (7.93) years at the beginning of the study. All had a definitive
diagnosis by their neurologists and were medicated with levodopa. They
attended different activities at the headquarters of the Regional Association
for Parkinson’s Disease of Extremadura in Cáceres and Mérida (Spain) during
the years 2016 to 2019.

The modified HY scale was used to measure how Parkinson’s symptoms
progress and the level of disability. It has the following stages:

• Stage 0 - No signs of disease.

• Stage 1 - Symptoms on one side only (unilateral).

• Stage 1.5 - Symptoms unilateral and also involving the neck and spine.

• Stage 2 - Symptoms on both sides but no impairment of balance.

• Stage 2.5 - Mild symptoms on both sides, with recovery when the ’pull’
test is applied (the doctor stands behind the person and asks her/him
to maintain the balance when pulled backwards).

• Stage 3 - Balance impairment, mild to moderate disease, physically
independent.

• Stage 4 - Severe disability, but still able to walk or stand unassisted.

• Stage 5 - Needing a wheelchair or bedridden unless assisted.
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Table 1 shows the gender, age (at baseline), and HY stages of the sub-
jects involved in this study. All the subjects were volunteers and signed an
informed consent to participate in this study.

2.2. Voice recordings

The task was the sustained phonation of /a/ vowel. This phonation was
performed as constantly as possible at comfortable pitch and loudness, and
was kept for 5 seconds on one breath. The task was repeated three times per
subject in each recording session.

The phonations were recorded using a portable computer with an exter-
nal sound card (TASCAM US322) and a headband microphone (AKG 520)
featuring a cardiod pattern. The sampling rate was 44.1 KHz and the reso-
lution was 16 bits/sample. Version 2.0.5 of Audacity software was used for
the voice recordings.

The research protocol was approved by the Bioethical Committee from
the University of Extremadura (Spain).

2.3. Feature extraction

A reduced number of acoustic features (concretely, four) have been consid-
ered to describe different aspects on voice impairment in PD. Also, a gender
feature has been taken into account. The reasons for the selection of these
variables are explained in the following paragraphs.

Hypokinetic dysarthria is a common speech disorder experienced by peo-
ple with PD [26]. It is caused by neurologic damage affecting one or several
of the motor components of speech. Therefore, it may involve impaired func-
tioning of any or all processes of voice production, including respiration,
phonation, articulation, resonance, and prosody. Sustained vowel phonation
is a simple vocal task that allows for considering some of these aspects.

Cepstral peak prominence (CPP) has been reported to be a reliable fea-
ture to characterize PD [27]. Classical perturbation and noise features (such
as jitter, shimmer or harmonic-to-noise ratio) have been proposed to detect
phonatory impairment in PD [4]. However, voices with severe disorders may
compromise the reliability of these traditional measures. In comparison to
jitter or shimmer, CPP has the advantage that it does not require the iden-
tification of individual cycles. High CPP values correspond to a well-defined
harmonic structure, whereas disturbed periodicity can decrease the ampli-
tude of the cepstral peak.
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Table 1: Gender, age (at baseline), and HY stages of the involved subjects. NA represents
missing data.

Subject Gender Age Stages by year
2016 2017 2018 2019

1 M 60 3.0 3.0 3.0 3.0
2 M 67 3.0 NA 4.0 NA
3 M 46 1.0 1.5 2.0 2.0
4 M 69 2.0 2.0 2.0 2.0
5 M 69 1.0 1.5 2.0 2.0
6 F 65 2.0 2.0 2.5 2.5

7 F 70 2.5 3.0 NA 3.0
8 M 70 2.0 NA 2.0 NA
9 M 83 4.0 4.0 4.0 NA
10 M 69 3.0 3.0 NA NA
11 M 75 1.0 1.5 1.5 2.0
12 F 82 3.0 3.0 3.0 NA

13 F 74 3.0 3.0 3.0 4.0
14 M 72 3.0 3.0 NA NA
15 M 80 1.0 1.0 3.0 3.0
16 F 75 3.0 3.0 3.0 3.0
17 M 69 2.5 3.0 NA 3.0
18 M 66 2.5 3.0 3.0 3.0

19 F 73 2.5 2.5 NA NA
20 M 77 3.0 3.0 NA NA
21 M 53 1.0 1.5 2.0 2.0
22 F 73 3.0 3.0 NA NA
23 M 60 2.0 2.0 3.0 NA
24 F 72 3.0 4.0 4.0 NA

25 F 58 4.0 4.0 4.0 4.0
26 M 79 2.0 3.0 3.0 3.0
27 M 72 1.0 2.0 2.0 2.0
28 M 69 2.0 2.0 2.5 2.5
29 M 71 3.0 3.0 4.0 NA
30 F 55 1.0 1.5 2.0 3.0

31 M 74 2.0 2.0 2.0 2.0
32 M 71 3.0 3.0 3.0 3.0
33 F 65 3.0 NA 4.0 NA
34 F 69 2.0 2.5 2.5 2.5
35 M 62 1.0 NA NA 3.0
36 M 70 1.5 2.5 2.5 NA8



Mel Frequency Cepstral Coefficients (MFCCs) are also relevant features.
They allow for detecting differences in the resonant characteristics of the vo-
cal tract. They have been previously proposed as a robust feature for PD
diagnosis [28] and also for estimation of PD severity [13]. According to Bang
et al. [29], patients with PD present an asymmetric centralization of tongue
position during the phonation of sustained vowels, which produces a remark-
able decrease in the vowel space area in comparison to healthy controls. Vowel
space area depends on the two first formant frequencies, therefore features
that capture basic properties of the spectral envelope (such as the MFCCs)
are a suitable choice to describe these phenomena. In order to avoid multicol-
inearity problems, only the 5th coefficient is used, since it showed the highest
predictive capability in previous experiments of automatic PD detection.

Furthermore, some studies demonstrate that vocal fold vibration is highly
influenced by nonlinearities in tissue and air movement. In the case of patho-
logical voice from PD patients, some physiological conditions such as incom-
plete vocal fold closure emphasize this nonlinear behavior [30]. These phe-
nomena often challenge traditional methods based on the Fourier transform.
Two features based on nonlinear analysis have been selected to capture these
nonlinear aspects of speech: Recurrence Period Density Entropy (RPDE)
and correlation dimension (D2) [31]. The former is based on the notion of
nonlinear recurrence, which can be considered as a generalization of period-
icity. D2 gives an idea of the complexity of a voice signal. Signals with a
well-defined harmonic structure show a simple oscillation pattern which leads
to a low D2 value. However, in the case of dysphonic voices, the oscillation
patterns are more difficult to predict, the value of D2 increases and this value
is associated to complex dynamics.

Regarding gender aspects, it is worth noting that there are more men
than women diagnosed with PD, and the disease affects men and women
differently. Although our experiment is not based on a simple random sam-
pling, the proportion is 2:1 favoring the men, which reflects the proportion
at the headquarters of the Regional Association for Parkinson’s Disease of
Extremadura, where the patients were recruited. Besides, it has been pre-
viously shown that gender may have an influence on which features have
more potential to provide a good performance in the discrimination between
PD participants and controls [32]. Therefore, gender has been included as a
feature.

After feature extraction, a spreadsheet with 36 rows (36 subjects) and 49
columns (gender + 4 acoustic features × 3 replications × 4 years) constitute
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the dataset to feed the proposed model.

3. Approach

In this section, the HMM-based approach is proposed. It is composed of
several parts. Firstly, the ordinal regression model is formulated. Then, a
data augmentation framework is considered to address the monotone non-
decreasing process. Next, it is explained how the replications in the ex-
planatory variables are integrated in the model, and how the missing data
are addressed. Finally, the prior distribution is presented and the poste-
rior distribution is derived. Using MCMC methods to solve the problem is
proposed.

3.1. Ordinal response model

Let Yit be the ordinal response for the subject i at time t, for i = 1, . . . , N
and t = 1, . . . , T, where Yit takes one of K categories, having covariates xit

and zit. Let

pitk = P[Yit = k|xit, zit]

be the probability that the ith subject at time t is classified in the kth
category, for k = 1, . . . , K. The covariates xit and zit are used in the linear
predictor ηit, where

ηit = x′itβ + z′itγ, (1)

for i = 1, . . . , N and t = 1, . . . , T, with β being an L-dimensional coefficient
vector for xit, and γ being an M -dimensional coefficient vector for zit.

For ordered response categories, the ordinal model can be defined by
cutpoints κ0, κ1, . . . , κK . These cutpoints and linear predictor make that the
probabilities pitk are defined as:

pitk = Ψ (κk − ηit)−Ψ (κk−1 − ηit) ,

where Ψ(·) is a cumulative distribution function (see Albert and Chib [33]).
The cumulative distribution function of a Gaussian distribution will be con-
sidered. The vectors of unknown cutpoints are defined as: κ = (κ1, . . . , κK−1)

′,
where κ1 is set to 1 to avoid parameter identifiability problems. Besides, by
convention κ0 = −∞ and κK = +∞.
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3.2. A monotone non-decreasing process

Based on the data augmentation framework for the ordinal regression
model proposed by Albert and Chib [33] and Cowles [34], let Wit be the
continuous response for the subject i at time t. They are related to Yit by:

Yit = k if κk−1 < Wit ≤ κk, for k = 1, . . . , K. (2)

Assume that {Wit} is a monotone non-decreasing continuous process, i.e.,

Wi1 ≤ Wi2 ≤ · · · ≤ WiT ,

and then,

Wi1 ∼ N (ηi1, 1) , t = 1, (3)

Wit

∣∣Wi,t−1 = wi,t−1 ∼ N (ηit, 1) I [Wit ≥ wi,t−1] , t = 2, . . . , T.

Note that the first-order Markov chain property has been assumed.

3.3. Replications in the explanatory variables

Assume that the covariates zi are exactly known, but the covariates xi

have been measured with J replicates. Now, instead of the covariates X it,
their replicates X∗itj are recorded, and

X∗itj = X it + δitj,

δitj ∼ NormalL (0,Λ) ,

for j = 1, . . . , J, where the covariates X it represent the acoustic features,
and they are latent variables having distributions X it ∼ NormalL(µ,Σ).
This assumption is related to the classic additive error model [35].

3.4. Missing response data

Missing data are presented in the response variables. Therefore, if a
response Yit is missing, then the notation Y miss

it will be used. For a missing
data point Y miss

it its corresponding latent variable Wit is computed from (3).
The missing data Y miss

it could be imputed by using (2), i.e., by randomly
simulating the response variable Y imputed

it by:

Y imputed
it = k if κk−1 < Wit ≤ κk, for k = 1, . . . , K.
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If no covariates X∗itj are available, it is possible to simulate Wit from (3)
by using ηit ∼ N (0, 1000) .

The full model is an inhomogeneous HMM that comprises the equations
defined along this section. Figure 1 displays the probabilistic graphical model
representation, showing the dependencies among the variables. The proposed
model follows conditional independence assumptions, similar to those defined
by Naranjo et al. [36].

Yi1 NA Yi3 · · · YiT

Wi1 Wi2 Wi3 · · · WiT

X i1 NA X i3 · · · X iTZi1 Zi3 ZiT

X
∗

i1j X
∗

i3j · · · X
∗

iT j

Figure 1: Graphical representation of an example of the proposed HMM with missing data
at time t = 2. Square boxes represent observed variables, ovals represent latent variables,
and the directions of the arrows indicate conditional dependence.

3.5. Exploring the posterior distribution

The prior distribution has been chosen in the following way, having se-
lected some components to have conditionally conjugate distributions. For
the regression coefficients in the linear predictor, normal distributions are
considered, i.e., β ∼ NL(b,B) and γ ∼ NM(c,C). For the cutpoints κ, flat
prior distributions are used, i.e., π(κ) ∝ 1. For the covariance matrix of the
replicated covariates, the prior distribution is specified as an inverse Wishart,
Λ ∼ InverseWishart(V , ν).
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The likelihood function of the proposed model has the following form:

L
(
W ,β,γ,κ,Λ | Y ,Y miss,X, z

)
(4)

=
N∏
i=1

{
P (Yi1|Wi1,κ) P

(
Y miss
i1 |Wi1,κ

)
P (Wi1|X i, zi1,β,γ)

×

[
T∏
t=2

P (Yit|Wit,κ) P
(
Y miss
it |Wit,κ

)
P (Wit|Wi,t−1,X i, zit,β,γ)

]

×

[
T∏
t=1

{
J∏

j=1

P
(
X∗itj|X it,Λ

)}
P (X it)

]}
.

Therefore, from the likelihood (4) and the prior distributions, the joint pos-
terior distribution is given by:

π
(
W ,β,γ,κ,Λ | Y ,Y miss,X, z

)
∝ L

(
W ,β,γ,κ,Λ | Y ,Y miss,X, z

)
π (β) π (γ)π (κ)π (Λ) .

Note that to make posterior inferences, the relationship between the co-
variates and the latent variables jointly with the prior distributions are used.
Figure 2 shows a graphical representation of the proposed model. This is
based on doodle objects of WinBUGS [37].

The posterior distribution (5) is not directly tractable due to the com-
plexity of the model. Applying MCMC methods is required [38].

4. Results

Firstly, a simulation-based case is presented to show the model perfor-
mance. Then, the approach is applied to the real data coming from the
conducted experiment and the results are displayed as well as discussed.

4.1. Simulation-based case

A simulation-based procedure to generate the datasets for testing the ap-
proach is described. A total of 100 datasets are simulated. Each dataset has
N = 75 subjects, L = 4 covariates, each one measured J = 3 times (repli-
cations) at each one of the T = 4 time points, and K = 4 categories. The
covariates xit are simulated from uniform distributions, i.e. xitl ∼ U(0, 1), for
i = 1, . . . , N, t = 1, . . . , T, l = 1, . . . , L. Then, their replications are simulated
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yi1 yit

wi1 wit

zi1 zitηi1 ηit

xi1 xit

x∗

i1j x∗

itj

t = 2, . . . , T

i = 1, . . . , N

j = 1 : J

β γ Λ

κ

Figure 2: Flowchart for the proposed model.

from the normal distributions, xitlj ∼ Normal(0, λl), where the variances are
λ = (0.22, 0.252, 0.32, 0.352). The covariates zi = (zi1, zi2) are simulated from
zi1 ∼ Bernoulli(0.5) and zi1 ∼ Poisson(5), considering they could refer to
the gender and another variable that is not subject to replications. Linear
predictors in Equation (1), ηi1 and ηit, are computed by using the mean
of the replicated covariates and regression parameters γ = (0.4, 0.2)′ and
β = (1.0, 0.5,−1.5,−2.0)′.

The latent variables Wit, that follow the monotone non-decreasing con-
tinuous process, are simulated by using Equation (3). Then, the ordinal
response variables Yit are generated by using Equation (2), where the cut-
points are κ = (0, 1.5, 3.0)′.

The following prior distributions have been used: (i) for the regression
parameters, βl ∼ N(0, 10000) for l = 1, . . . , L, γ1 ∼ N(0, 10000), γ2 ∼
N(0, 10000); (ii) for the cutpoints, κk ∼ N(0, 1) where κk < κk+1, for k =
2, . . . , K − 1; (iii) for the covariates, X∗itjl ∼ N(xitjl, λl), Xitjl ∼ N(0, 1),
λl ∼ InvGamma(0.001, 0.001), where i = 1, . . . , N, t = 1, . . . , T, j = 1, . . . , J.

The proposed approach has been implemented in JAGS2 through the

2http://mcmc-jags.sourceforge.net/
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R3 platform. Source code and instructions to replicate the simulated data
and estimate the parameters can be downloaded from the GitHub repository
through the link https://github.com/lizbethna/HMMprogressionOrdinalMiss-
ing.git.

Table 2 summarizes the means and standard deviations of the model
parameters based on the 100 generated datasets. The estimated means of
the posterior distributions of the model parameters associated to each time
point can be compared to the true values from which the datasets were
generated. It can be observed how the model parameters are reasonable well
recovered, reporting small biases. Note that the model parameters can be
estimated without using external information about the missing data.

Table 2: Means and standard deviations (SD) of the posterior estimates of the model
parameters based on the 100 generated datasets.

Variable Parameter True Mean SD
Z1 γ1 0.4 0.4384 0.2063
Z2 γ2 0.2 0.2174 0.0461
X1 β1 1.0 1.1234 0.3440
X2 β2 0.5 0.5044 0.3034
X3 β3 -1.5 -1.6135 0.3306
X4 β5 -2.0 -2.2783 0.3746
Cutpoints κ1 0 0 —

κ2 1.5 1.6082 0.1628
κ3 3.0 3.1791 0.2273

Variances λ1 0.0400 0.0390 0.0001
λ2 0.0625 0.0617 0.0001
λ3 0.0900 0.0906 0.0001
λ4 0.1225 0.1125 0.0001

Data were simulated for a future time t5 in relation with the 100 datasets.
Since data were simulated, the responses are exactly known and the model
can be applied to assess the predictive capability. Table 3 shows the confusion
matrix of the observed data versus the estimated predictions for a future time
t5. Results show a global accuracy rate of 78.29%. This accuracy rate is very

3https://cran.r-project.org/
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close to 80%, which is a relevant threshold given the fact that there are 4
classes and the decision boundaries are more complex than in the binary
case.

Table 3: Relative frequencies between observed and predicted stages in time t5.

Time t5 Predicted
Observed Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.0000 0.0016 0.0000 0.0000
Stage 2 0.0000 0.0678 0.0324 0.0000
Stage 3 0.0000 0.0433 0.4138 0.0233
Stage 4 0.0000 0.0012 0.1150 0.3013

In order to support the previous results in terms of accurate predictions,
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for or-
dinal regression are calculated by following the proposal by Baccianella et
al. [39]. Firstly, the cumulative probabilities are calculated for the observed

values Pit and the predictions P̂it, i.e.:

Pit = P [Yit ≤ yit|xit, zit,β,γ] ,

P̂it = P
[
Yit ≤ ŷit|xit, zit, β̂, γ̂

]
.

Then, MAE and RMSE are calculated by:

MAE =
1

N · T

N∑
i=1

T∑
t=1

∣∣∣Pit − P̂it

∣∣∣ ,
RMSE =

√√√√ 1

N · T

N∑
i=1

T∑
t=1

(
Pit − P̂it

)2
.

Finally, for time t5 both criteria were calculated and the means and standard
deviations based on the 100 datasets are presented in Table 4. It can be
observed that both mean values are small as well as the standard deviations.
This also supports the idea that the prediction accuracy is good.

As a summary, the recovering of model parameters and the values ob-
tained for accuracy rate, MAE and RMSE are indicative of the good perfor-
mance of this multiclass classification approach.
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Table 4: Means and standard deviations of MAE and RMSE based on 100 datasets for
time t5.

Criterion Mean Standard deviation
MAE 0.035449 0.005178
RMSE 0.080724 0.012229

4.2. Real data-based case

The proposed model is applied to the experiment described in Section 2.
A total of 36 PD patients with missing responses and covariates were used to
impute responses and predictions during the time that the experiment lasted.
Conducting this experiment has been difficult due to the amount of missing
data. When the recruitment took place (2016), there were 36 respondents;
the next year only 32 (89%) were available; the next year, this number was
reduced to 28 (78%), and the last year 22 (61%) finished the experiment. In
2020, the experiment was not performed due to the coronavirus pandemic.
This virus especially affects to the elder people, and the access to the head-
quarters of the Regional Association for Parkinson’s Disease of Extremadura
(Spain) was limited. The great amount of valuable data collected is used to
impute data for 2017-2019 and to make predictions for 2020.

Relevant acoustic features were extracted from the collected voice record-
ings. These features had been previously proven to work properly for PD de-
tection and monitoring progression. They are CPP, D2, RPDE, and MFCC5.
Including more features did not improve the predictive capacity and may in-
troduce multicollinearity problems.

The following prior distributions have been used: (i) for the regression
parameters, βl ∼ NL(0, 10000), for l = 1, . . . , L with L = 4 covariates, γ ∼
N(0, 10000); (ii) for the cutpoints for all times κk ∼ N(0, 1) where κk < κk+1,
for k = 2, . . . , K−1, with K = 6 categories; (iii) for the replicated covariates,
X∗itjl ∼ N(xitjl, λl), Xitjl ∼ N(0, 1), λl ∼ InvGamma(0.001, 0.001), where
i = 1, . . . , N, t = 1, . . . , T, j = 1, . . . , J, with N = 36 subjects, T = 4 time
points, and J = 3 replications.

A total of 10,000 iterations with a burn-in of 1,000 and a thinning period
of 5 generated values was used, yielding a sample of length 2,000. With these
specifications, the chain generated by using the MCMC sampling algorithm
appears to have converged.

Table 5 presents the posterior estimates of the regression parameters of
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the proposed model, summarizing their corresponding posterior means, stan-
dard deviations, and 2.5% and 97.5% quantiles (95% intervals).

Table 5: Means, standard deviations (SD), and 95% intervals of the posterior estimates of
the model parameters.

Variable Parameter Mean SD 95% interval
Gender γF 1.3425 0.2993 (0.7493, 1.9276)
CPP βF

CPP -0.7630 0.2747 (-1.3220, -0.2415)
D2 βF

D2 0.0386 0.2485 (-0.4570, 0.5248)
RPDE βF

RPDE 0.1933 0.3452 (-0.4806, 0.8641)
MMFCC5 βF

MMFCC5 -0.4294 0.1981 (-0.8194, -0.0494)
Cutpoints κ1 0 — —

κ2 0.3102 0.0982 (0.1478, 0.5306)
κ3 1.2043 0.1460 (0.9350, 1.5053)
κ4 1.6312 0.1657 (1.3196, 1.9600)
κ5 3.3099 0.2556 (2.8064, 3.8023)

Variances λ1 0.2197 0.0139 (0.1933, 0.2490)
λ2 0.3372 0.0215 (0.2981, 0.3824)
λ3 0.3042 0.0199 (0.2672, 0.3452)
λ4 0.2261 0.0145 (0.1995, 0.2573)

The observed HY stages, imputed HY stages for years 2017 to 2019, and
predicted HY stages for year 2020 are presented in Table 6.

Years from 2017 to 2019 contain a certain amount of missing data, but
in 2020 the experiment did not continue and the proposed approach has
provided a full prediction based on the previous observed data (features and
HY stages). The impact of COVID-19 on older people and, particularly, on
people suffering from PD has had devastating consequences in terms of deaths
and worsening of life quality. The headquarters of the Regional Association
for Parkinson’s Disease of Extremadura (Spain) were partially closed in 2020,
and the activities were reduced. In order to analyze the model performance,
we compare the HY stage predictions obtained with the proposed approach to
the actual HY stage in 2020. From the 36 subjects that began the experiment,
9 subjects were not available due to their decease, 13 subjects abandoned the
activities (7 in a definitive way and 6 with the intend of going back later), and
only 14 continued the activities in 2020 and had a medical evaluation with
the HY stage. A total of 10 out 14 predictions performed by the proposed
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Table 6: Gender, age ( at baseline), and HY stages of the involved subjects. Imputed
(2017-2019) and predicted stages (2020) are presented in bold.

Subject Gender Age Stages by year
2016 2017 2018 2019 2020

1 M 60 3.0 3.0 3.0 3.0 3.0
2 M 67 3.0 3.0 4.0 4.0 4.0
3 M 46 1.0 1.5 2.0 2.0 2.5
4 M 69 2.0 2.0 2.0 2.0 2.5
5 M 69 1.0 1.5 2.0 2.0 2.5
6 F 65 2.0 2.0 2.5 2.5 3.0

7 F 70 2.5 3.0 3.0 3.0 3.0
8 M 70 2.0 2.0 2.0 2.5 3.0
9 M 83 4.0 4.0 4.0 4.0 4.0
10 M 69 3.0 3.0 3.0 3.0 4.0
11 M 75 1.0 1.5 1.5 2.0 2.5
12 F 82 3.0 3.0 3.0 3.0 4.0

13 F 74 3.0 3.0 3.0 4.0 4.0
14 M 72 3.0 3.0 3.0 3.0 4.0
15 M 80 1.0 1.0 3.0 3.0 3.0
16 F 75 3.0 3.0 3.0 3.0 3.0
17 M 69 2.5 3.0 3.0 3.0 3.0
18 M 66 2.5 3.0 3.0 3.0 3.0

19 F 73 2.5 2.5 3.0 3.0 3.0
20 M 77 3.0 3.0 3.0 3.0 4.0
21 M 53 1.0 1.5 2.0 2.0 2.5
22 F 73 3.0 3.0 3.0 3.0 4.0
23 M 60 2.0 2.0 3.0 3.0 3.0
24 F 72 3.0 4.0 4.0 4.0 4.0

25 F 58 4.0 4.0 4.0 4.0 4.0
26 M 79 2.0 3.0 3.0 3.0 3.0
27 M 72 1.0 2.0 2.0 2.0 2.5
28 M 69 2.0 2.0 2.5 2.5 3.0
29 M 71 3.0 3.0 4.0 4.0 4.0
30 F 55 1.0 1.5 2.0 3.0 3.0

31 M 74 2.0 2.0 2.0 2.0 2.5
32 M 71 3.0 3.0 3.0 3.0 3.0
33 F 65 3.0 3.0 4.0 4.0 4.0
34 F 69 2.0 2.5 2.5 2.5 3.0
35 M 62 1.0 2.0 3.0 3.0 3.0
36 M 70 1.5 2.5 2.5 3.0 3.019



approach were accurate (71.43%), whereas the other 4 only differed in one
stage. Specifically, two subjects were predicted to have stage 2.5, whereas
the true stage was 3, one subject was predicted to have stage 3 and had 2.5,
and finally one subject was predicted as having stage 3 and had stage 4. The
results are reasonably good for a multiclass ordered problem, given the great
amount of missing data and the small size of the sample.

Figure 3 shows the observed stages and estimated trajectories for six sub-
jects with the median imputed and predicted responses. The shades represent
the 2.5% and 97.5% quantiles of the estimated trajectories. Subjects 1, 21,
and 35 got accurate predictions, whereas subjects 8, 10, and 36 abandoned
the activities and were not assessed for HY stages in 2020.

These six subjects represent several profiles that are found in the exper-
iment. The same plots are presented for the rest of the subjects involved in
the experiment in tables A.4, A.5, and A.6 of Appendix A. Subject 1 is a
typical case of PD subject, where the symptoms are stabilized through the
years, and all the observations are available. The prediction suggested that
the patient would keep in stage 3 in t5 and it was right. Subject 8 only pro-
vides two observed stages (t1 and t3), then stages for t3 and t4 are imputed
by the model. An HY increase is imputed for t4, and another increase is
projected for t5. In these two last years, the quantile bands suggest that the
imputation and prediction are performed with more uncertainty. The next
subject to analyze is number 10. This patient only has data for the first two
years. He was estimated to keep in stage 3 during two years more and was
predicted to be in stage 4 in t5. The slope of the trajectory suggests that the
symptoms may worsen in the last year. Subject 21 is a typical case where the
disease advances faster than in the previous patient. The prediction for t5 is
accurate and captures the essence of this increase with a larger uncertainty
provided by the quantile bands. Now, the subject 35 represents patients
with a very fast advance of PD, since he goes from stage 1 to stage 3 in three
years. The imputations for time t2 and t3 capture this increase with a large
uncertainty since 4 stages are involved in this increase. The prediction for t5
is accurate for this subject. Finally, subject 36 has data for the first three
years and the approach imputes the stage for time t4 and predicts the one
for time t5. An increase to stage 3 is imputed, which is maintained for the
last year.

The very few studies addressing the problem of tracking PD progression
based on acoustic features are based on the UPDRS scale, as commented
in the introduction section. Most of them are based on short-term studies.
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Figure 3: Observed stages (blue circle) and estimated trajectories for six typical subjects
with imputed and predicted data (red square).
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Arias-Vergara et al. [40] showed the difficulty of conducting long-term exper-
iments, since they began with 62 subjects at the first year and finished with
only 7 in the fourth year (also considering the UPDRS scale). This confirms
the need of developing and using methodologies addressing missing data to
make imputations and predictions. To the best of the author’s knowledge,
the conducted experiment and the proposed approach are the only ones in the
scientific literature considering HY scales and acoustic features for long-term.
Pérez et al. [41] conducted a pilot experiment to track PD severity based on
the HY scale with 32 patients in two years, which was clearly insufficient to
make any conclusion.

5. Conclusion

Tracking the progression of PD can be addressed with the use of acoustic
features in an objective, remote, non-invasive, fast, and economically sustain-
able way. Some approaches have been used for the UPDRS scale, but there is
a lack of studies and approaches for the HY scale. The conducted experiment
provided challenging data that must be addressed with a specific approach
that is able to manage missing data, the non-decreasing nature of the disease,
and replicated covariates obtained from repeated voice recordings.

An HMM for the longitudinal data has been derived to manage these
three issues. Latent variables have been included in the approach, leading to a
data augmentation scheme, which has been solved by using MCMC methods.
The proposed approach has been tested on simulated data, providing good
results, and also has been applied to the data coming from the experiment.
The imputed data and predictions for future year are compatible with the
progression of the disease and provide profiles that usually appear under this
disease. The conducted experiment and the proposed approach fill a gap in
the scientific literature on experiments and methodologies for tracking PD
progression based on acoustic features and the HY scale.

In spite of the recruitment difficulties, it would be very interesting to
conduct long-term studies with many more participants and even more years
to which the proposed approach can be applied. Learning from past data is a
key aspect in this context. Also, it would be interesting to apply the proposed
approach to features extracted from other recording protocols different from
the /a/ sustained phonation, such as continuous speech and/or those based
on diadochokinetic tests. This would help to derive an expert system that
can be integrated into the protocols of neurology units in hospital centers.
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Appendix A. Observed, imputed and predicted stages
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Figure A.4: Observed stages (blue circle) and estimated trajectories for twelve subjects
with imputed and predicted data (red square).
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Figure A.5: Observed stages (blue circle) and estimated trajectories for twelve subjects
with imputed and predicted data (red square).
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Figure A.6: Observed stages (blue circle) and estimated trajectories for six subjects with
imputed and predicted data (red square).
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[36] L. Naranjo, E. Lesaffre, C. J. Pérez, A mixed hidden Markov model for
multivariate monotone disease processes in the presence of measurement
errors, Statistical Modelling(In press) (2020).

[37] D. J. Lunn, A. Thomas, N. Best, D. Spiegelhalter, WinBUGS - A
Bayesian modelling framework: Concepts, structure, and extensibility,
Statistics and Computing 10 (4) (2000) 325–337.

[38] W. R. Gilks, S. Richardson, D. J. Spiegelhalter, Markov Chain Monte
Carlo in Practice, Chapman and Hall, London, 1996.

[39] S. Baccianella, A. Esuli, F. Sebastiani, Evaluation measures for ordinal
regression, in: Ninth International Conference on Intelligent Systems
Design and Applications, 2009, pp. 283–287.

[40] T. Arias-Vergara, J. C. Vasquez-Correa, J. R. Orozco-Arroyave,
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