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Abstract
We show in this note a simple exercise to overcome a common preconception among Ge-
odesy students about the “best” reference ellipsoid. This helps students to overcome their 
previous ideas based on a purely geometric vision of the reference ellipsoids and advance 
to a more physical point of view, where the Earth’s gravity plays a fundamental role.
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1  Introduction

The search for a mathematical model that adequately represents the surface of the Earth 
and its gravity field has been an intellectual adventure that has occupied the most important 
geodesists of all time (Greenberg 1995; Hoare 2004). The ellipsoid of revolution has been 
identified as a suitable mathematical surface for this purpose and geodesy students from 
around the world are working on this topic.

All students know that an ellipsoid of revolution is determined by two parameters. These 
can be the major and minor semi-axis (a and b, respectively) or the flattening (f) and the 
major semi-axis. However, a reference ellipsoid is not only a representation of the Earth’s 
surface, but it must also generate a representation of the Earth’s gravity field. Therefore, a 
reference ellipsoid is determined by four parameters: the geocentric gravitational constant 
of the Earth including the atmosphere (GM), the dynamical form factor (J2), the mean angu-
lar velocity (ω) and the geopotential on the surface (W0). From these four parameters, the 
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major semi-axis and the flattening can be calculated, determining a particular revolution 
ellipsoid.

In the teaching and learning process, it is important to pay attention to preconceptions, 
that is, those previous ideas that students have about certain aspects of the subjects they 
study (see, for example, the classical work by Clement 1982). Our Geodesy or Geophysics 
students also have preconceptions about these subjects, as in all branches of Earth sciences 
(DeLaughter et al. 1998).

After many years of teaching in Geodesy, we have noticed a very common misconcep-
tion that affects most of our students about the “best ellipsoid”. If we ask them what would 
happen if we represented the values of the semi-major axis of several reference ellipsoids 
against the respective values of the flattening, the most usual answer is that we will see a 
cloud of points centered on one point with the “optimal” values for a and f (Fig. 1). Our 
students are forgetting the gravitational part of the reference ellipsoids and are thinking only 
in geometric terms (surface of the Earth). Let’s take a closer look at this example.

2  A linear relationship between a and f

It is considered that the best representation of the Earth by an ellipsoid is the “mean Earth 
ellipsoid”. It is defined as the ellipsoid that has (i) the same potential W0 as the geoid, (ii) the 
same mass as the Earth M, (iii) the same difference of moments of inertia C − A  (where C 
and A  are the polar and the mean equatorial moment of inertia, respectively), and (iv) the 
same angular velocity ω as the Earth. Namely, the “mean Earth ellipsoid” is defined com-
pletely by the four mentioned constants (or other similar set of constants). This particular 
ellipsoid has very interesting properties and can be considered the best representation of the 
Earth by an ellipsoid.

Heiskanen and Moritz (1993) studied the “mean Earth ellipsoid” showing that there is a 
linear relationship between the parameter a and f:
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W0

(
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1
3
f +

1
3
m

)
(1)

where m is the ratio between the centrifugal force and the gravity at equator. This equation 
can be re-written as:

	
a =

GM

3W0
f +
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)
(2)

Thus, there is a linear relationship between a and f, where the slope is equal to GM/3W0 
and the independent term is equal to (GM/W0) (1 + m/3) .  Taking the values for these 
constants from WGS84 ellipsoid (see Table 1), we obtain the following results for the slope 
and the independent term:

	

GM

3W0
= 2.12 × 106m (3)
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(
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3

)
= 6.37 × 106m (4)

We observe in Eqs. (1) and (2) that there is a relationship between a, a geometrical param-
eter, and the physical magnitudes GM, m, and W0 that are related with the gravity field.

a (m) 6378137
GM (m3/s2) 3986004.418·108

W0 (m2/s2) 62636851.7146
m 0.00344978650684

Table 1  WGS84 ellipsoid 
parameters
 

Fig. 1  Most usual answer of the student if we ask them what would happen if we represented the values of 
the semi-major axis of several reference ellipsoids against the respective values of the flattening: a cloud 
of points (in black) centered on one point with the “optimal” values for a and f (light blue)
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3  Discussion

Now, we can verify the above values by doing a least squares analysis of the values of a and 
f from various determinations of reference ellipsoids. A selection of reference ellipsoids is 
listed in Table 2. Note that the values of the ellipsoids determined in 1738 and 1799 are quite 
far from the typical values of the rest of the ellipsoids. In the late 1700s and the first half of 
the 1800s, an enormous number of ellipsoids were published as better approximations of the 
shape of the Earth. Most of these ellipsoids were determined to fit the geoid very well in a 
relatively small region of the Earth surface. For this reason, they often offered global values 
far removed from the values accepted today (see, for example, the discussion in Chap. 3 of 
the book by Timár and Molnár 2013).

Using the values of Table 2, the best linear fit is obtained with a value for the slope equal 
to (10.1 ± 0.2)·106 m and a value for the independent term equal to (6.3440 ± 0.0006)·106 m. 
If the ellipsoids determined in 1738 and 1799 are excluded (because their values are 
very different from the rest of the set), the results for the slope and independent term are 
(13 ± 1)·106 m and (6.333 ± 0.004)·106 m, respectively, with a correlation coefficient equal 
to 0.9. Figure 2 shows these last results. The values of the constants of the different ellip-
soids differ in the precision with which they were calculated and, therefore, there is some 
scatter around the linear regression. This is consistent with the fact that the ellipsoid is a first 
order approximation to the geoid.

If we compare the values obtained from the linear regression with the ones calculated 
by applying the Eqs. (3) and (4), we observe that the slope is slightly higher than expected. 
We also observe it excluding the 1738 and 1799 ellipsoids. The values of the independent 
terms are very similar. In any case, the results agree with the expected order of magnitude.

4  Conclusions

We have found a simple test to show a preconception of Geodesy students. We asked our 
students for the expected result when they plotted the semi-major axis of a set of reference 
ellipsoids against their respective flats. They usually respond that they expect a point cloud 
centered on the “optimal values” of semi-major axis and flattening, corresponding to the 
“best” reference ellipsoid. However, this answer is incorrect, as we have seen.

We have analyzed the major semi-axis and the flattening values for different ellipsoids 
(Table 2). Although one could think that there is no relation between the two parameters, a 
linear regression is plausible. This linear relationship agrees with Eq. (2) because the GM, 
W0 and m values are similar for all the reference ellipsoids. From the linear regression, we 
have obtained that the values of slope and independent term present a magnitude order that 
is equal to the values obtained from Eqs. (3) and (4). In particular, the independent term 
value is very close to the one calculated for WGS84 ellipsoid.

It is important to note that we have found this preconception mainly in undergraduate 
students in Geomatics. In Spain, the organization of these degrees contemplates that the 
students receive a geometrical geodesy course in the first years. Only later, in the last years 
of those degrees, the students receive a geophysics course that includes a part devoted to 
physical geodesy. This may be one reason that explains the prevalence of this preconception 
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Ellipsoid a (m) 1/f
Airy 1830 6377563.396 299.3249613
Andrae 1876 (Denmark included) 6377104.43 300
Applied Physics 1965 6378137 298.25
Australian National Spheroid 6378160 298.25
Bessel 1841 6377397.155 299.1528128
Bessel 1841 (Namibia) 6377483.865 299.1528128
Clarke 1866 6378206.4 294.9786982
Clarke 1880 modified 6378249.145 293.465
Commission des Poids et Mesures 1799 6375738.7 334.29
Delambre 1810 (Belgium) 6376428 311.5
Engelis 1985 6378136.05 298.2566
Everest (Sabah and Sarawak) 6377298.556 300.8017
Everest 1830 6377276.345 300.8017
Everest 1948 6377304.063 300.8017
Everest 1956 6377301.243 300.8017
Everest 1969 6377295.664 300.8017
Fischer (Mercury Datum) 1960 6378166 298.3
Fischer 1968 6378150 298.3
GRS 80 (IUGG 1980) 6378137 298.2572221
GRS 67 (IUGG 1967) 6378160 298.2471674
Hayford 1909 6378388 297
Heiskanen 1919 (*) 6378400.00 298.20
Helmert 1906 6378200 298.3
Hough 1960 6378270 297
IAU 1976 6378140 298.257
Indonesian 1974 6378160 298.247
International 1924 6378388 297
Jeffreys 1948 (*) 6378099.00 297.10
Kaula 1961 6378163 298.24
Krassovsky 1940 6378245 298.3
Lerch 1979 6378139 298.257
Maupertuis 1738 6397300 191
Modified Airy 6377340.189 299.3249655
Modified Fischer 1960 6378155 298.3
MERIT 1983 6378137 298.257
Naval Weapons Laboratory 1965 6378145 298.25
New International 1967 6378157.5 298.2496154
Oxford 1959 (*) 6378201.00 297.65
Plessis 1817 (France) 6376523 308.6409971
South America 1969 Spheroid 6378160 298.25
Southeast Asia 6378155 298.3000002
Soviet Geodetic System 1985 (SGS 85) 6378136 298.257
Struve 1860 (*) 6378297.00 294.73
Walbeck 6376896 302.7800002
WGS 60 6378165 298.3

Table 2  A selection of reference ellipsoids, including the major semi-axis (a) and the reciprocal flattening 
(1/f)
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(that only takes into account the geometry of the ellipsoid and forgets its gravitational field) 
among our students.

We think that this simple exercise can help students to move from a purely geometric 
view of the reference ellipsoids to a more physical one where the Earth’s gravity is more 
protagonist.
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Fig. 2  Major semi-axis versus flattening of the reference ellipsoids from Table 2 (except for the two el-
lipsoids whose name is in bold in Table 2). The dashed line shows the best linear fit

 

Ellipsoid a (m) 1/f
WGS 66 6378145 298.25
WGS 72 6378135 298.26
WGS 84 6378137 298.2572236
Data from Meyer (2010) (except those ellipsoids marked with (*) that were taken from Bomford 1985). 
Ellipsoid with name in bold were excluded in our final analysis

Table 2  (continued) 
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