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Abstract A controlled branching process is a stochastic model that is well suited to
describing the probabilistic evolution of populations in which, for various reasons of
an environmental, social, or other nature, there is a mechanism that establishes the
number of progenitors who take part in each generation. For this model, a Bayesian
analysis is described, considering a non-parametric offspring distribution and con-
trol distributions belonging to the power series family that depend on a single pa-
rameter termed the control parameter. Inferences on the offspring distribution, on
the offspring mean, and on the control parameter (or on its parametrization as the
migration parameter) are considered within two sampling schemes: first, the clas-
sical branching theory scheme based on the observation of the entire family tree;
and second, the more realistic situation in which only the generation-by-generation
population size is observed. In this latter case, the Dirichlet process and the Gibbs
sampler are used to estimate the posterior density of the main parameters of inter-
est. Inference on posterior predictive distributions for as-yet unobserved generations
is also considered. Monte Carlo sampling based and analytical approximations are
discussed. The results are illustrated with simulated data.
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1.1 Introduction

The branching model considered in the present work is the controlled branching
process. This model is a generalization of the standard Bienaymé-Galton-Watson
(BGW) branching process, and, in the terminology of population dynamics, is used
to describe the evolution of populations in which a control of the population size
at each generation is needed. This control consists of determining mathematically
the number of individuals with reproductive capacity at each generation through a
random process. In practice, this branching model can describe reasonably well the
probabilistic evolution of populations in which, for various reasons of an environ-
mental, social, or other nature, there is a mechanism that establishes the number of
progenitors which take part in each generation. For example, in an ecological con-
text, one can think of an invasive animal species that is widely recognized as a threat
to native ecosystems, but there is disagreement about plans to eradicate it, i.e., while
the presence of the species is appreciated by a part of the society, if its numbers are
left uncontrolled it is known to be very harmful to native ecosystems. In such a case,
it is better to control the population to keep it within admissible limits even though
this might mean periods when animals have to be culled. Another practical situation
that can be modelled by this kind of process is the evolution of an animal popula-
tion that is threatened by the existence of predators. In each generation, the survival
of each animal (and therefore the possibility of giving new births) will be strongly
affected by this factor, making the introduction of a random mechanism necessary
to model the evolution of this kind of population.

Mathematically, a controlled branching process with random control function
(CBP) is a discrete-time stochastic growth population model {Zn}n≥0 defined recur-
sively as

Z0 = N ∈ N, Zn+1 =

ϕn(Zn)∑
j=1

Xn j, n ≥ 0, (1.1)

where {Xn j : n = 0,1, . . . ; j = 1,2, . . .} and {ϕn(k) : n,k = 0,1, . . .} are two inde-
pendent families of non-negative integer-valued random variables. Moreover, Xn j,
n = 0,1, . . .; j = 1,2, . . ., are independent and identically distributed (i.i.d.) random
variables and, for each n = 0,1, . . ., {ϕn(k)}k≥0, are independent stochastic processes
with equal one-dimensional probability distributions. The empty sum in (1.1) is de-
fined to be 0. Let {pk : k ≥ 0} denote the common probability distribution of the
random variables Xn j, i.e., pk = P(Xn j = k), k ≥ 0, and m = E[Xn j] (assumed finite).

Intuitively, Zn denotes the number of individuals in generation n, and Xni the
number of offspring of the ith individual in generation n. Thus, the probability law
{pk : k ≥ 0} is termed the offspring distribution, and m the offspring mean. The con-
trol variables ϕn(·) could be seen as a random mechanism determining the individual
migration process in each generation depending on its population size.

The probabilistic theory of CBPs, in particular the problem of their extinction
and their limiting behaviour, has been extensively investigated (see for example [1],
[11] and references therein, and [19]). The presence of the control mechanism com-
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plicates the study of this kind of process. Nevertheless, it allows one to model a
much greater variety of behaviours than the BGW branching process. One of its
features that is important for applications is that it overcomes one of the main de-
ficiencies of the BGW process, which is the possibility of an unbounded popula-
tion growth with a supercritical offspring law (i.e., m > 1). Thus, in [10], it was
proved that a CBP with offspring mean greater than unity (and, of course, other
regularity conditions governing the control mechanism) can die out with proba-
bility one. The offspring mean continues to play a key role in the probabilistic
evolution of a CBP, as the above-cited papers show. Indeed, it was established
that the asymptotic mean growth rate of the process denoted by τ and defined by
τ = limk→∞ k−1E[Zn+1 | Zn = k] = limk→∞ k−1ε(k)m, with ε(k) = E[ϕn(k)] (whenever
it exists) is the threshold parameter that determines the behaviour of a CBP in rela-
tion to its extinction. Hence the importance of making inferences on the offspring
mean and on the asymptotic mean growth rate. However, there have as yet been few
papers devoted to this topic. Inferential studies from a frequentist standpoint may
be found in [7], [8], [9], and [20]. A first approach from a Bayesian standpoint was
considered in [14] in a parametric context, and in [5] for the particular case of a
deterministic control function.

The present study is a continuation of this line of research by developing the
inferential theory in a non-parametric framework for the offspring law and in a
parametric setting for the control distributions, depending on a single parameter
termed the control parameter. Notice that, in relation to [5], random control rather
than deterministic one introduces much more uncertainty in the model becoming its
behaviour richer, but adding a considerable difficulty on the estimation of its param-
eters. Moreover, another important novelty is that we assume an upper bound of the
support of the offspring law is unknown. We model this uncertainty considering the
support potentially infinite. Although this could seem a strong condition, the gain
in flexibility makes the model more attractive and realistic. In this case, to deal with
the inference procedure we shall use as prior a Dirichlet process on the space of the
nonnegative integers. Consequently, in this paper, we address the inference of the
control parameter, of the offspring distribution, and of the offspring mean, as well as
the asymptotic mean growth rate and the prediction of future sizes of the population.
To this end, Section 1.2 begins by assuming that the entire family tree up to some
given generation can be observed. A Dirichlet process is introduced to model the
prior distribution of the offspring law, avoiding assumptions on the cardinality of its
support. However, actually, in most populations, it is not possible to observe these
data, and only the population size at each generation can be recorded. To deal with
the Bayesian inference in this case, a Markov chain Monte Carlo (MCMC) method
is used, in particular, the Gibbs sampler algorithm, to approximate the posterior dis-
tribution of parameters of interest. The present implementation of this algorithm
generalizes the results in [5] and [6] and represents the Bayesian analogy of the
given in [9].

Section 1.2 also deals with the problem of approximating the predictive poste-
rior distributions. As illustration, in Section 1.3 a simulated example is presented.
Finally, some concluding remarks are given in Section 1.4.



4 M. González et al.

1.2 Bayesian Analysis

For the purpose of this paper, we consider a CBP with an offspring distribution
p = {pk : k ≥ 0}, without assuming any knowledge about the cardinality of its sup-
port. With respect to the random control mechanism, note that one has different
probability distributions for each population size k ≥ 0, that corresponding to ϕn(k).
Consequently, from a finite sample, it is not possible to deal with the inference prob-
lems arising from this model (at least for the control distributions) without assuming
that there exists some stable structure. We therefore consider a parametric scheme
for the control process. In particular, we take a CBP with control distributions be-
longing to the power series family. Formally, for each k ≥ 0,

P(ϕn(k) = j) = ak( j)θ j/Ak(θ), j = 0,1, . . . ;θ ∈ Θk, (1.2)

with ak( j) known non-negative values, Ak(θ) =
∑∞

j=0 ak( j)θ j, and Θk = {θ > 0 : 0 <
Ak(θ) < ∞} being an open subset of R. We also assume that the sets Θk are in-
dependent of k. Hence, we shall henceforth drop the index k from Θk, the control
parameter space. This implies a certain stability in the probability laws of the control
variables ϕn(k), for k ≥ 0, depending on a single parameter θ, the control parameter,
and on the size of the population, k. Let us write ϵ(k, θ) = E[ϕn(k)], and assume the
following regularity condition:∏

k∈B

Ak(θ) = A∑k∈B k(θ), for every B ⊆ N, θ ∈ Θ. (1.3)

Condition (1.3), satisfied by a wide family of probability distributions, is a
technical hypothesis that allows the theory of conjugate families to be made use
of in the Bayesian analysis to be developed below. Moreover (1.3) implies that
Ak(θ) = (A1(θ))k, so that

ϵ(k, θ) = θA′k(θ)(Ak(θ))−1 = kθ(A1(θ))k−1A′1(θ)(A1(θ))−k = kϵ(1, θ).

This allows the family of distributions verifying (1.3) to be reparametrized by µ =
µ(θ)= ϵ(1, θ). It also guarantees the existence of the limit τ and its parametrization in
terms of the two mean-value parameters, the offspring mean m and µ, with τ = mµ.

Unlike the parameter θ, µ has the same interpretation for all the power series fam-
ilies of distributions satisfying (1.3). We refer to µ as the migration parameter since,
whenever µ < 1, one can use such control distributions to model processes with ex-
pected emigration, whereas µ > 1 can model processes with expected immigration.
For µ = 1 neither emigration nor immigration is expected.

Remark 1. Some interesting particular cases of control distributions verifying (1.2)
and (1.3) are the following:

a) Consider for each k that ϕn(k) follows a binomial distribution with parameters
k and 0 < q < 1. In such a case θ = q(1− q)−1. It is easy to see that conditions
(1.2) and (1.3) hold, and in particular that µ = θ(1+ θ)−1(= q). From a practical
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standpoint, this control mechanism could be reasonable to model situations in
which, in each generation, each individual can be removed from the population
with probability 1−q, not participating in its subsequent evolution, and can sur-
vive and give birth to offspring in the next generation with probability q. The
value of q is considered to be independent of the total population size in each
generation. These control functions always take into account the possibility of an
emigration phenomenon in each generation (µ < 1). A CBP with this family of
control distributions can be useful to model predator effects in a population.

b) Consider for each k that ϕn(k) has a Poisson distribution with parameter kθ. Again
conditions (1.2) and (1.3) hold, and one deduces that µ = θ. Depending on the
value of µ, a CBP with these control functions can model either expected immi-
gration or expected emigration processes.

c) Consider for each k that ϕn(k) has a negative binomial distribution with parame-
ters k and q, with 0 < q < 1. Now θ = 1−q. It is easy to see again that conditions
(1.2) and (1.3) hold. In this case µ = θ(1− θ)−1. The associated CBP can also be
used to model different migratory movements.

To infer the posterior distribution of the main parameters of interest, we consider
initially that the entire family tree up to the current nth generation can be observed.
After studying this case, we consider a more realistic requirement that only the
total population size at each generation can be sampled. To deal with this second
situation, we shall need the Gibbs sampler.

1.2.1 Analysis based on the entire family tree

We consider that the entire family tree up to the current nth generation can be ob-
served, i.e., {Xl j : j = 1, . . . ,ϕl(Zl); l = 0,1, . . . ,n−1}, or at least the variables

Z∗n,k =
n−1∑
l=0

Zl(k), where Zl(k) =
ϕl(Zl)∑

j=1

I{Xl j=k}, k ≥ 0,

with IA standing for the indicator function of the set A. Intuitively, Zl(k) represents
the number of progenitors at the lth generation with exactly k offspring, and there-
fore Z∗n,k is the accumulated number up to generation n of progenitors that give rise
to exactly k offspring. Let us write Z∗n = {Zl(k), k ≥ 0, l = 0,1, . . . ,n−1}, and intro-
duce the following variables:

Yn =

n−1∑
l=0

Zl and Y∗n =
n−1∑
l=0

ϕl(Zl),

i.e., Yn and Y∗n represent, respectively, the total number of individuals and progeni-
tors in the population up to the (n−1)th generation. Using (1.2) and (1.3), one can
deduce that the likelihood based on the sampleZ∗n verifies
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f (Z∗n | p, θ) ∝
∏
k≥0

p
Z∗n,k
k θ

Y∗n /AYn (θ). (1.4)

Hence, since no restriction has been imposed on the cardinality of support of
the reproduction law, and the offspring and control distributions are independent, an
appropriate conjugate class of prior distributions for (p, θ) is π(p, θ) = π(p)π(θ), with
π(p) being the distribution corresponding to

p ∼ DP(p(0),α), (1.5)

where DP denotes the Dirichlet process, with p(0) = {pk(0), k ≥ 0} being the base
measure and α the concentration parameter, α > 0, and π(θ) the distribution given
by the density

φ(a,b)−1θa/Ab(θ), (1.6)

with
φ(a,b) =

∫
Θ
θa/Ab(θ)dθ,

where a,b ≥ 0.
Then, using (1.4)–(1.6), one has that the posterior distribution

π(p, θ | Z∗n) ∝ π(p | Z∗n)π(θ | Z∗n), (1.7)

with π(p | Z∗n) being the distribution corresponding to

p | Z∗n ∼ DP

 αα+Y∗n
p(0)+

1
α+Y∗n

∑
k≥0

Z∗n,kδk,α+Y∗n

 ,
with δk a Dirac delta at k, k ≥ 0, and

π(θ | Z∗n) = φ(a+Y∗n ,b+Yn)−1θa+Y∗n /Ab+Yn (θ).

From (1.7), using Dirichlet process properties and considering the squared error
loss function, it follows straightforwardly that the Bayes estimator for the offspring
distribution and θ are, respectively:

p̂k = (αpk(0)+Z∗n,k)/(α+Y∗n ), k ≥ 0,

and
θ̂ = φ(a+Y∗n +1,b+Yn)/φ(a+Y∗n ,b+Yn).

As a consequence, one obtains that the Bayes estimator for the offspring mean
based on the sampleZ∗n, under squared error loss, is given by

m̃ = (αm(0)+Yn+Zn−Z0)/(α+Y∗n ), (1.8)

with m(0) being the mean of p(0), and for µ and τ one has µ̃ =
∫
Θ
µ(θ)π(θ | Z∗n)dθ and

τ̃ = m̃µ̃, respectively.
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Remark 2. In particular, for the examples considered in Remark 1, using (1.6), one
has that the beta distribution family is an appropriate conjugate class of prior distri-
butions for q in the binomial control case and for θ when the control distributions
are negative binomial. For the Poisson control distribution case, an appropriate con-
jugate class of priors for θ is the gamma distribution family.

Remark 3. The theoretical approach to dealing with the inference issues related to
a CBP is to assume that the control law belongs to a power series distribution fam-
ily. This is an exponential family that includes many important distributions. It is
worth noting that, from a practical standpoint, in most situations the choice of the
control process, whether it is governed by a Poisson, binomial, negative binomial,
or some other scheme, should be a prior specification based on knowledge of the
development of the population.

1.2.2 Analysis based on population size in each generation: Gibbs
sampler

In real situations, it is difficult to observe the whole family tree up to the current gen-
eration or even the random variables Zl(k), k ≥ 0, l = 0, . . . ,n−1. Hence, in this sub-
section we shall assume the more realistic requirement that these are unobservable,
with the observable data beingZn = {Z0, . . . ,Zn}. Given the definition of the model,
an expression of the posterior distribution for (p, θ) after observing Zn can not be
displayed in a closed form. Consequently, we shall describe an algorithm based on
the Gibbs sampler (see e.g., [2]) to approximate it only by observingZn. To this end,
it is necessary to take the unobservable variables Zl(k), k ≥ 0, l = 0,1, . . . ,n− 1 as
being latent variables, and consider the augmented parameter vector (p, θ,Z∗n). Let
π(p, θ | Zn) denote the posterior distribution of (p, θ) after observing Zn. We shall
approximate the posterior distribution of (p, θ,Z∗n) after observing Zn, denoted by
π(p, θ,Z∗n | Zn), and from this obtain an approximation for its marginal distribution
π(p, θ | Zn). To use the Gibbs sampler, first, it is necessary to obtain the condi-
tional posterior distribution of (p, θ) after observing Zn and Z∗n, which is denoted
by π(p, θ | Zn,Z

∗
n), and the conditional posterior distribution of Z∗n after observing

(p, θ,Zn), denoted by f (Z∗n | p, θ,Zn).
Taking into account that, for l = 0, . . . ,n−1,

Zl+1 =
∑
k≥0

kZl(k), (1.9)

π(p, θ | Zn,Z
∗
n) is the same as π(p, θ | Z∗n) given in (1.7). Let us now consider

f (Z∗n | p, θ,Zn). Denoting by P(·) the conditional probability given an offspring
distribution p and control distributions governed by θ (the explicit indication of
the conditioning on p and θ is dropped for notational clarity), since the individ-
uals reproduce independently and the control distributions are independent of the
offspring distribution, one has that, for zl(k) ∈ N ∪ {0}, k ≥ 0, l = 0,1, . . . ,n − 1,
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zl ∈ N, l = 0, . . . ,n, satisfying the constraints zl =
∑

k≥0 kzl−1(k), l = 1, . . . ,n,

P(Zl(k) = zl(k), k ≥ 0, l = 0,1, . . . ,n−1 | Z0 = z0, . . . ,Zn = zn)

=

n−1∏
l=0

P (Zl(k) = zl(k), k ≥ 0 | Zl = zl,Zl+1 = zl+1) .

Hence,

f (Z∗n | p, θ,Zn) =
n−1∏
l=0

f (Zl(k),k ≥ 0|p, θ,Zl,Zl+1),

where f (Zl(k),k ≥ 0|p, θ,Zl,Zl+1) denotes the conditional distribution of the random
sequence {Zl(k),k ≥ 0} given p, θ, Zl, and Zl+1. Now, writing ϕ∗l =

∑
k≥0 zl(k),

P(Zl(k) = zl(k), k ≥ 0 | Zl = zl,Zl+1 = zl+1)

=
1

P(Zl+1 = zl+1 | Zl = zl)
ϕ∗l !∏

k≥0 zl(k)!

∏
k≥0

pzl(k)
k azl

(
ϕ∗l

)
θϕ
∗
l /Azl (θ).

Thus, computationally, an appropriate way to obtain a sample from f (Z∗n | p, θ,Zn)
is as follows. Given the known sample {z0, . . . ,zn} and known values of θ and p, one
samples, for each l= 0,1, . . . ,n−1, a value ϕ∗l (zl) from the distribution of the variable
ϕl(zl) given by (1.2). Then, for each l = 0,1, . . . ,n−1, one samples a sequence {zl(k),
k ≥ 0} from the multinomial probabilities

ϕ∗l (zl)!∏
k≥0 zl(k)!

∏
k≥0 pzl(k)

k , k ≥ 0, normalized by
considering the constraint zl+1 =

∑
k≥0 kzl(k). Notice that, although the cardinality of

the support of the reproduction law may be infinite, once zl+1 is known, only a finite
number of coordinates of sequence {zl(k), k ≥ 0} are non-null. Indeed, zl(k) = 0 for
all k ≥ zl+1.
Once it is known how to obtain samples from the distributions π(p, θ | Zn,Z

∗
n) and

f (Z∗n | p, θ,Zn), the Gibbs sampler algorithm works as follows:

Initialize l = 0

Generate p(0) ∼ DP(p(0),α)

Generate θ(0) from (1.6)

Iterate

l = l+1

Generate Z
∗(l)
n ∼ f (Z∗n | p

(l−1), θ(l−1),Zn)

Generate (p(l), θ(l)) ∼ π(p, θ | Z∗(l)n )

Notice that, given the sample Zn, the maximum number of coordinates of p(l),
for all l ≥ 0, involved in the algorithm is 1+max1≤k≤n{Zk}. Hence, in the last step
of the algorithm, bearing in mind Equation (1.7) and the properties of the Dirichlet
process, one obtains these probabilities from the Dirichlet distribution.

The sequence {(p(l), θ(l),Z∗(l)n )}l≥0 is an ergodic Markov chain, and the station-
ary distribution of that Markov chain is just the sought-after joint distribution,
π(p, θ,Z∗n | Zn). Several practical implementation issues must be taken into account
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for success with the sample obtained by the method described above. Common ap-
proaches to reaching the equilibrium distribution as well as to reducing the autocor-
relation in the sample are to choose a sufficient burn-in period, N, and to thin the out-
put by storing only every Gth value after the burn-in period (G is known as the batch
size). Thus, for a run of the sequence {(p(l), θ(l),Z∗(l)n )}l≥0, one chooses Q+ 1 vec-
tors {(p(N), θ(N)), (p(N+G), θ(N+G)), . . ., (p(N+QG), θ(N+QG))}. These vectors are approx-
imately independent sampled values of the distribution π(p, θ|Zn) if G and N are
large enough (see [21]). Since they could be affected by the initial state (p(0), θ(0)),
the algorithm is applied T times, obtaining a final sample of length T (Q+ 1). To
determine N, G, and T in practice, we shall make use of the Gelman-Rubin-Brooks
and autocorrelation diagnostics (see [3] and[4]). From this sample one can estimate
π(p, θ | Zn) and its marginal distributions, π(p | Zn) and π(θ | Zn), by making use of
kernel density estimators. These posterior densities can be used to calculate numer-
ically highest-probability-density (HPD) credible sets for the respective parameters,
yielding sets in which there is a high probability of finding those parameters. In
general, if Ψ (p, θ) denotes a function of the offspring law and the control parameter
(we shall be interested below in m, µ, and τ) then

π(Ψ | Zn) =
∫
π(Ψ | Zn, p, θ)π(p, θ | Zn)dpdθ.

Again using kernel density estimators, one can also approximate π(Ψ | Zn) and
calculate its HPD sets.

1.2.3 Approaches to prediction

A very important problem from a practical standpoint is to infer the size of future
generations from currently available information. Thus, from a sample {Z0, . . . ,Zn},
one desires inferential statements about unobserved Zn+l, l ≥ 1. Few results related
to this topic can be found in the branching process theory literature (see [13] and
[15] for BGW processes). From a Bayesian standpoint, any inferential statement
about Zn+l, l≥ 1, given known population sizes until generation n, is contained in the
posterior predictive distribution f (Zn+l | Zn). Of course, the inferential content of the
predictive distribution may be appropriately summarized to provide an estimator of
Zn+l as the mean of f (Zn+l | Zn), and interval estimates of Zn+l such as the class of
HPD sets which may be derived from f (Zn+l | Zn). For simplicity, we shall focus on
the set {Zn+l > 0}, avoiding approximating the density of the mass point {Zn+l = 0}
whose estimation is obvious. The difficulty lies in finding a closed form for this
distribution.

We shall present two ways of approximating the predictive distribution, both
applying a Monte Carlo procedure. The first is a sampling-based method, and the
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second is based on approximating E[Zn+l | Zn] and Var[Zn+l | Zn] and then seeking
a parametric model.

Method A. We consider a random sample {(p(1), θ(1)), . . . , (p(r), θ(r))} from
π(p, θ | Zn). In particular, we shall use the one obtained with the Gibbs sampler
in Subsection 1.2.2, i.e., r = T (Q+1). It is clear that

f (Zn+l | Zn) =
∫

f (Zn+l | Zn, p, θ)π(p, θ | Zn)dpdθ.

On the basis of this formula, for each (p(i), θ(i)), i = 1, . . . ,r, one can simulate s
processes until the lth generation, which started with Zn individuals, obtaining the
values z(i)

n+l,1, z(i)
n+l,2, . . ., z(i)

n+l,s from Zn+l > 0, and use them to approximate f (Zn+l |

Zn, p(i), θ(i)) by a Gaussian kernel estimator

f (i)(x) =
1
s

s∑
j=1

1
b(i) K

 x− z(i)
n+l, j

b(i)

 , x ∈ R,

with b(i) an appropriate bandwidth and K(x) the density of the standard normal
distribution. Thus, f (Zn+l | Zn) is estimated by

f̂ (x) =
1
r

r∑
i=1

f (i)(x), x ∈ R. (1.10)

Method B. We consider a random sample {(p(1), θ(1)), . . ., (p(r), θ(r))} (again the
sample obtained in Subsection 1.2.2) from π(p, θ | Zn), and for each i = 1, . . . ,r
one simulates s processes until the lth generation, which started with Zn, reproduc-
tion law p(i), and control distribution governed by θ(i). One calculates the mean and
the variance of the s−values z(i)

n+l, j > 0, j = 1, . . . , s, obtaining an approximation to
E[Zn+l | Zn, p(i), θ(i)] and to Var[Zn+l | Zn, p(i), θ(i)]. Finally,

E[Zn+l | Zn] ≈
1
r

r∑
i=1

E[Zn+l | Zn, p(i), θ(i)],

and, considering that

Var[Zn+l | Zn] = E[Var[Zn+l | Zn, p, θ]]+Var[E[Zn+l | Zn, p, θ]],

with the mean and the variance in the right term of the previous equality considered
with respect to the distribution π(p, θ | Zn), then
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Var[Zn+l | Zn] ≈
1
r

r∑
i=1

Var[Zn+l | Zn, p(i), θ(i)]+

+
1

r−1

r∑
i=1

E[Zn+l | Zn, p(i), θ(i)]−
1
r

r∑
i=1

E[Zn+l | Zn, p(i), θ(i)]

2 .
As was already proposed in Mendoza and Gutiérrez-Peña (2000) for BGW pro-

cesses, we also use a gamma distribution with mean and variance E[Zn+l | Zn] and
Var[Zn+l | Zn], respectively, (justified by the minimum logarithmic divergence cri-
terion) to approximate f (Zn+l | Zn).

1.3 Simulated Example

In this section, we shall illustrate the methods described above by analysing an
example with simulated data.
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Fig. 1.1 Evolution of the simulated population sizes.

We simulated 20 generations of a CBP with Z0 = 1, offspring law p0 = 0.0778,
p1 = 0.2592, p2 = 0.3456, p3 = 0.2304, p4 = 0.0768, p5 = 0.0102, and ϕn(k) having
a Poisson distribution with parameter 0.51k. Thus the offspring mean is m = 2, the
control and the immigration parameters coincide, being µ= θ = 0.51, and in this case
the asymptotic mean growth rate is τ = mµ = 1.02. As µ < 1, we are considering a
CBP with expected emigration. Figure 1.1 shows the evolution of the simulated
population sizes. In an emulation of the classification of standard BGW processes,
it was established in [11] that one refers to a subcritical, critical, or supercritical
CBP depending on whether τ is less than, equal to, or greater than unity. Despite the
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expected emigration, using the results in [10], one can deduce that this supercritical
CBP process has a positive probability of non-extinction.

We now focus on the estimation of p, µ, m, and τ based on the population size
in each generation, by using the Gibbs sampler. We specify a Dirichlet process on
the non-negative integers to model the prior distribution of the offspring law, avoid-
ing any assumption about the cardinality of its support. Initially we choose α = 1
as concentration parameter, and a Poisson distribution as base measure. It is well
known that the Poisson distribution models the number of events occurring within
a given time interval when those events occur at a known average rate and indepen-
dently of the time since the last event. It is thus appropriate for modeling a generic
offspring process. We propose that the average rate of the Poisson distribution will
be initially estimated by considering that no control is imposed on the population.
Therefore, the maximum likelihood estimator of the offspring mean corresponding
to a BGW process can be used, i.e., we propose the Poisson base distribution with
mean (Z1+ . . .+Zn)/(Z0+ . . .+Zn−1), in this example, 1.06. Recall that for a Poisson
control distribution –see Remark 1, b)– µ = θ, so that we shall henceforth refer in
the analysis to µ. With respect to the prior for the parameter µ, as one does not know
a priori what kind of expected migration is taking place, one can take the value of µ
to be 1, and set as a prior distribution for µ a gamma distribution with mean 1 (the
shape parameter is chosen to be unity). How the choices of prior elicitation affect
the inferences will be evaluated below.

In the simulation, we set T = 50 and ran the algorithm described in Subsection
1.2.2 20 000 times for each chain. Using the Gelman-Rubin-Brooks diagnostic plots
for (p,µ), we took N = 5000. Table 1.1 lists the values of the estimated potential
scale reduction factor together with 97.5% confidence upper bounds and the auto-
correlation values for µ and the first values of p. That the values of the estimated
scale reduction factor are close to unity suggests that further simulations will not
improve the values of the listed scalar estimators (see [3] and [4]). Finally, for the
autocorrelation study, we chose G = 600, and consequently Q= 25. The final sample
size was therefore 1 300.

Potential Scale Reduction Autocorrelation
Est. 97.5% lag1 lag100 lag600

µ 1.04 1.06 0.9894 0.6669 0.0577
p0 1.03 1.04 0.9937 0.6558 0.0776
p1 1.02 1.03 0.9925 0.5538 0.0446
p2 1.02 1.02 0.9895 0.4922 0.0326
p3 1.02 1.04 0.9893 0.5055 0.0302
p4 1.02 1.02 0.9684 0.1478 0.0020
p5 1.03 1.04 0.9337 0.0500 0.0000
p6 1.06 1.06 0.7524 0.0059 -0.0016

Table 1.1 Potential scale reduction factor and autocorrelation for µ and the first values of p.

To evaluate the algorithm’s efficiency, Table 1.2 presents some summary statistics
for the posterior distributions of µ, m, and τ. Note that, due to the batch procedure,
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the time-series standard errors (TSSE) are very close to the Monte Carlo standard er-
rors (MCSE). Also, for the three parameters, the standard errors (MCSE and TSSE)
are less than 5% of the posterior standard deviation (SD), indicating that the number
of observations considered seems to be a reasonable choice.

MEAN SD MCSE TSSE
µ 1.0187 0.6015 0.0167 0.0155
m 1.2751 0.4987 0.0138 0.0127
τ 1.0597 0.0728 0.0020 0.0018

Table 1.2 Summary statistics for the posterior distributions of µ, m, and τ.

Figures 1.2 and 1.3 show the estimated posterior density for µ, m, and τ together
with their Bayes estimates under squared error loss, and the 95% HPD sets. The
contour plot of the estimated posterior density for (µ,m) is also shown. One observes
that the 95% HPD sets contain the true values of the parameters. It is particularly
noteworthy that the method is not very accurate at identifying the parameters m
and µ, although P(µ < 1 | Z20) is estimated at 0.662, identifying the process as
having expected emigration, and P(m > 1 | Z20) is estimated at 0.711, identifying a
mean reproduction capacity of greater than unity. The method also provides a good
estimate of the process’s asymptotic mean growth rate, τ, which is the parameter
that determines the limiting behaviour of the process. In this case, P(τ > 1 | Z20)
is approximated by 0.80, identifying a supercritical CBP. The contour plot shows
clearly the interdependence of the parameters m, µ, and τ.
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Fig. 1.2 Estimated posterior density for µ (left) and m (right).

Figure 1.4 illustrates the long-term behaviour of the estimates of τ, showing for
each generation their Bayes estimates under squared error loss and their respective
95% HPD sets. Note that one has estimates closer to the real value and narrower
HPD intervals as the generations advance.
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5 10 15 20

1
2

3
4

5
6

Fig. 1.4 Evolution of the squared error loss estimates of τ with 95% HPD bands. The horizontal
line represents the true parameter value.

Using the information on the population sizes until generation 20, we obtained
via the methods described in Subsection 1.2.3 the predictive distributions of Z21,
Z23, and Z25 on their respective non-extinction sets. Methods A and B were applied
by simulating s= 1000 processes, started with Z20 = 23 until the 5th generation, and
reproduction law and control parameter (p(i), θ(i)), i = 1, . . . ,1300.

MEAN 95% prediction HPD

Method A/Method B Method A/Method B
Z21 24.3844/24.3840 11.2112–38.2382 /11.6116–38.7387
Z23 27.8852/27.8475 2.8028–57.8579 / 4.6046–58.9590
Z25 31.7907/32.6389 3.9039–86.9870 / 1.1011–84.4845

Table 1.3 Mean and 95% prediction HPD sets for Z21,Z23,and Z25.
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Fig. 1.5 Histogram of the data from the true distribution together with estimated posterior densities
for Z21, Z23, and Z25. Method A: dotted line; Method B: discontinuous line.

Figure 1.5 shows the predictive posterior distribution of Z21, Z23, and Z25 esti-
mated by the two methods described above, together with the histogram of the data
from the true distribution. The sampling-based approach and the gamma model lead
to similar estimates for Z21,Z23, and Z25. Table 1.3 presents estimates for Z21,Z23,
and Z25 together with the 95% HPD sets. The accuracy of these approximations,
assessed by comparison with the true distribution, is reasonable. In spite of the fact
that the estimation of m and µ are not so precise as desirable, the combination of
both to estimate τ is quite good, as shown Figure 1.3 (left) and this leads to the esti-
mation of the forecast values of the process are accurate. Nevertheless, according to
Figure 1.3 (right), the estimated values of τ tend to be slightly greater than the true
value, so that the predictive values also show this tendency.

Base measure m(0) = 1.06
Concentration Poisson Geometric

parameter MEAN HPD 95% MEAN HPD 95%
0.25 1.0629 0.9244 1.2060 1.0584 0.9164 1.2107
0.50 1.0646 0.9258 1.2136 1.0626 0.9251 1.2122
0.75 1.0616 0.9195 1.2118 1.0618 0.9187 1.2180

1 1.0597 0.9244 1.2073 1.0585 0.9053 1.2129
5 1.0583 0.9249 1.2104 1.0618 0.9062 1.2271
10 1.0613 0.9204 1.2081 1.0610 0.8980 1.2194
20 1.0554 0.9099 1.2041 1.0642 0.9065 1.2391

Table 1.4 Sensitivity analysis for τ|Z20.

Finally, we examine the sensitivity of inferences of the main parameters of inter-
est to the choice of the priors (in particular, focusing on the concentration param-
eter, the base distribution, and the gamma parameters). For simplicity, we present
the analysis focussing on the asymptotic mean growth rate, τ, a parameter that de-
termines the future evolution of the process. First, we analyse the influence on the
choices of the concentration parameter and of the kind of base distribution (setting
its mean to 1.06). With the prior on µ assumed to be a gamma distribution with mean
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1 (its shape parameter taken as unity), the results in Table 1.4 show the estimation of
τ not to be very sensitive to such changes. Second, with the same prior on µ and the
concentration parameter equal to unity, the results in Table 1.5 show the estimation
of τ neither to be very sensitive to the choice of the base distribution or of its mean.
Finally, we analyse the influence of the choice of the shape and mean parameters of
the gamma distribution. Taking the previous study into account, we took the con-
centration parameter to be equal to unity, and the base distribution to be a Poisson
distribution with mean 1.06. The results in Table 1.6 again allow one to conclude
that the estimation of τ is not very sensitive to the prior parameters.

Base measure α = 1
Poisson Geometric

m(0) MEAN HPD 95% MEAN HPD 95%
0.25 1.05592 0.93007 1.19095 1.05441 0.92359 1.19157
0.50 1.05687 0.92847 1.19287 1.05850 0.92709 1.19397
0.75 1.05983 0.93648 1.19943 1.06178 0.91882 1.21939

1 1.05664 0.91961 1.21131 1.05850 0.91213 1.20456
1.5 1.06283 0.91825 1.22327 1.06127 0.90646 1.22152
2 1.06270 0.90100 1.21972 1.06129 0.91375 1.21722

2.5 1.06631 0.91151 1.22647 1.06287 0.90328 1.24079
3 1.06887 0.90780 1.23867 1.06043 0.90816 1.23099

3.5 1.06978 0.89095 1.24436 1.06787 0.90444 1.25410

Table 1.5 Sensitivity analysis for τ|Z20.

In most of the situations, as was noted in Remark 3, one has prior knowledge of
the kind of the control distribution, and this was indeed our approach in the simu-
lated example where we assumed the control to be applied through a Poisson control
distribution. We next examined how the method works when assuming complete ig-
norance of the control law. To this end, we implemented the method by considering
prior binomial, negative binomial, and Poisson control laws. Thus, besides the data
already simulated and presented in Figure 1.1 which corresponded to an expected
emigration, we also considered a new sample from a CBP with Poisson control dis-
tributions with the same asymptotic mean growth rate as the previous example but
now with an expected immigration (with parameters m = 0.51 and µ = 2). The re-
sults in Table 1.7 illustrate how well (or now poorly) the fitted models, in both the
expected emigration and the expected immigration examples, identify the asymp-
totic mean growth rate of the process as well as a supercritical or a subcritical re-
production mean (i.e., m > 1 or m < 1, respectively). To assess whether the fitted
models detect an expected emigration or immigration, we calculated P(µ < 1 | Z20)
or P(µ > 1 | Z20), respectively. The approximations of these probabilities are also
given in the table. The results in the table show the asymptotic mean growth rate
of the process to usually be well identified whichever situation is considered. This
is because the generation-by-generation population sizes provide enough informa-
tion to estimate this value. However, the estimates of the offspring mean and of the
migration process are not generally appropriate in the absence of prior knowledge
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about the type of control. Analysing the fitted model considering a prior Poisson
control (the genuine control distribution), we obtained acceptable results for the es-
timates of the offspring mean and of the expected migration process in both the
emigration and the immigration examples. Considering a prior binomial control, we
found a tendency to overestimate the offspring mean for the two simulated data sets.
This was especially so in case of the expected immigration situation, precisely to
compensate for the effect of the immigration (recall that the binomial control only
allows for emigration). Finally, with a negative binomial control, one deduces from
the results in Table 1.7 that, despite both the simulated and the fitted models allow-
ing for any kind of migration, the fitted model identifies well neither the offspring
mean nor the emigration process when the latter is expected. The conclusion to be
drawn from these simulated examples is thus that, to obtain reliable estimates of the
parameters of interest, one should have some prior knowledge of the kind of control
law.

Remark 4. For the computation of the examples, we used the statistical software
R, a language and environment for statistical computing and graphics (see [17]),
performing the simulations by parallel computing using the Rmpi ([12]) and snow
(see [22]) packages, and the convergence diagnostics using the coda package (see
[16]).

1.4 Concluding Remarks

As was noted in the Introduction, nowadays controlled branching processes are one
of the most relevant branching models for study. Apart from their inherent interest,
this current relevance is due to the fact that they generalize many important branch-
ing processes – migration models, for instance. Moreover, beyond the framework
of population dynamics, these models cover and generalize popular models for the
analysis of count-data time series, such as the INAR(1) models (see [23] and [24]
for reviews). Consequently, the development of the inferential theory of CBPs is an
important task to provide a guarantee for their application to many real-world prob-
lems. Some contributions to this theory have already been made from a frequentist
standpoint, either for the general model itself ([7] and [20]) or for some of its par-
ticular cases, such as the models with immigration (see, e.g., [18] and the references
therein) or INAR(1) (see [25]).

Respect to a Bayesian perspective, this paper extends in several senses the pre-
liminary contributions established in [5] and [6]. In particular, we have focused on a
CBP with non-parametric offspring law and with random control variables instead of
deterministic ones, assuming these belonging to a parametric family of distributions
that depend on a single parameter, termed the control parameter (or its equivalent,
the migration parameters). To avoid any assumption about the cardinality of the
support of the offspring law, a Dirichlet process was introduced. The classical appli-
cation of this methodological approach to a branching context in a non-parametric
framework for the offspring law requires the observation of the entire family tree



18 M. González et al.

Gamma distribution
Mean Shape parameter

parameter 0.25 0.50 0.75 1 2.5 5 7.5
0.25 MEAN 1.0607 1.0546 1.0563 1.0506 1.0408 1.0293 1.0207

95% HPD lower bound 0.9234 0.9021 0.9138 0.9023 0.8980 0.8841 0.8665
95% HPD upper bound 1.2075 1.2219 1.1988 1.2153 1.1848 1.1860 1.1937

0.5 MEAN 1.0597 1.0524 1.0570 1.0523 1.0518 1.0466 1.0453
95% HPD lower bound 0.9168 0.9189 0.9052 0.9152 0.9047 0.9101 0.8998
95% HPD upper bound 1.2128 1.1997 1.2160 1.2063 1.2066 1.1950 1.1911

0.75 MEAN 1.0638 1.0660 1.0632 1.0598 1.0571 1.0596 1.0575
95% HPD lower bound 0.9242 0.9242 0.9198 0.9233 0.9177 0.9055 0.9194
95% HPD upper bound 1.2065 1.2315 1.2136 1.2043 1.2042 1.2133 1.2075

1 MEAN 1.0617 1.0613 1.0606 1.0597 1.0620 1.0629 1.0689
95% HPD lower bound 0.9193 0.9146 0.9164 0.9244 0.9191 0.9219 0.9268
95% HPD upper bound 1.2132 1.2144 1.2119 1.2073 1.2121 1.2125 1.2058

5 MEAN 1.0599 1.0609 1.0652 1.0662 1.0628 1.0596 1.0657
95% HPD lower bound 0.9042 0.9247 0.9302 0.9289 0.9241 0.9185 0.9250
95% HPD upper bound 1.2102 1.2045 1.2124 1.2083 1.2107 1.2102 1.2145

10 MEAN 1.0617 1.0660 1.0620 1.0641 1.0607 1.0659 1.0634
95% HPD lower bound 0.9179 0.9225 0.9188 0.9273 0.9212 0.9319 0.9240
95% HPD upper bound 1.2101 1.2128 1.2089 1.2037 1.1952 1.2101 1.2073

20 MEAN 1.0590 1.0630 1.0644 1.0603 1.0632 1.0633 1.0662
95% HPD lower bound 0.9232 0.9323 0.9195 0.9131 0.9259 0.9355 0.9354
95% HPD upper bound 1.2109 1.2084 1.2042 1.2082 1.2099 1.1960 1.2092

Table 1.6 Sensitivity analysis for τ|Z20.

Simulated model Fitted models
Poisson control P control B control NB control

Expected emigration τ | Z20

m = 2; τ = 1.02 Mean Variance Mean Variance Mean Variance
1.060 0.005 1.054 0.005 1.062 0.007

P(m > 1 | Z20)
0.711 0.995 0.400

P(µ < 1 | Z20)
0.662 0.317

Expected immigration τ | Z20
m = 0.51; τ = 1.02 Mean Variance Mean Variance Mean Variance

1.061 0.006 1.056 0.007 1.064 0.012
P(m < 1 | Z20)

0.626 0.013 0.735
P(µ > 1 | Z20)

0.767 0.801

Table 1.7 Sensitivity analysis: control prior distribution. P control = Poisson control; B control =
binomial control; NB control = negative binomial control.
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(up to some generation). Although we developed this approach -with the novelty of
using the Dirichlet process-, we reckon that from a practical standpoint it is more
realistic and relevant to avoid the need for observation of the complete family tree
and we only consider the record of the total generation sizes. On the basis of this
kind of sample, and making use of the Gibbs sampler and kernel density estimators,
we proposed a method to approximate the posterior density of the control parameter
(or of its parametrization as the migration parameter), of the offspring law, and con-
sequently the posterior densities of the offspring mean and asymptotic mean growth
rate, regardless of the nature of the offspring law (whether subcritical, critical, or su-
percritical) and the kind of migration. It is worth noting that the frequentist methods
given until now depend strongly on this nature, making a Bayesian method prefer-
able in this sense. In fact, one can make inferences on the nature of the offspring law
or the kind of migration (immigration or emigration) from the posterior density of
the offspring mean or of the migration parameter, respectively.

Furthermore, the above method also allows one to approximate the predictive
posterior densities. Two methods were proposed to make inferences on the size of
future generations.

We considered a simulated example in some depth to illustrate our findings, and
included a detailed sensitivity analysis regarding the choices of the priors. This
showed the methodological approach to not be unduly influenced by the choice of
priors of the control parameter or the priors of the concentration parameter or the
base distribution. However, it revealed the need for prior knowledge of the kind of
control being applied. With respect to the comparison of the two methods for pre-
dictions, the simulated example showed the two approaches to lead essentially to
the same results.

As an overall conclusion, we would state that the proposed procedure allowing
inference based only on total generation sizes constitutes the main contribution of
the present work.
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