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Abstract 21 

Pasture soils can exhibit a high spatial variability which should be characterised to properly manage 22 

the yield potential of different within-field areas. Thus, with the aim of proposing an objective 23 

methodology to estimate the pasture soil fertility and, later, analyse its spatial pattern, the 24 

formulation of the probabilistic Rasch model constitutes a new approach in pasture fields.  25 

In this research, a case study was perfomed to illustrate the proposed method. Consequently, after 26 

taking some soil samples (34) and measuring different soil properties (sand, silt, and clay content, 27 

organic matter, phosphorus, potassium, moisture content, soil apparent electrical conductivity, 28 

elevation, and slope), the use of the Rasch model provides a integrated measure of pasture soil 29 

fertility at each sampling location, which can be computed using geostatistical algorithms to map its 30 

spatial distribution throughout the field. 31 

After verifying that data fit the model reasonably, the main outputs of the Rasch model were a 32 
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ranking of all sampling locations according to the pasture soil fertility and another ranking of the 33 

soil properties according to their influence on the soil fertility, being the topographical properties 34 

(slope and elevation) the most influential. Later, the ordinary kriging algorithm was utilised to 35 

estimate soil fertility throughout the pasture field and the probability kriging algorithm was used to 36 

provide information for hazard assessment of pasture soil fertility, being both kriged maps the basis 37 

to delineate homogeneos zones. Finally, vegetation indices and pasture yield data at sampling points 38 

were employed to check that two zones previously determined were different. 39 

The analysis of zonal differences in pasture systems can lead to an optimal application of inputs and 40 

a more cost-effective management, with the associated environmental, economic, and energetic 41 

benefits. 42 

 43 

Keywords: spatial pattern; Rasch model; kriging; management zones. 44 
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1. Introduction 46 

Mediterranean evergreen oak woodlands, called montados in Portugal and dehesas in Spain, 47 

have a sparse tree cover, over native grassland (or a dryland grown pasture) that recurrently 48 

develops into a shrubland (Paço et al., 2009). In the Iberian Peninsula, they occupy an area of about 49 

2–2.5 million ha (David et al., 2007), mainly located in areas of southern Portugal and Spain with a 50 

Mediterranean climate (Paço et al., 2009). These ecosystems, result of a long tradition of land use, 51 

are considered a sustainable system adapted to adverse environmental and soil conditions. They are 52 

subject to agrosylvopastoral exploitation in a strongly seasonal climate, and the long-term 53 

sustainability of these ecosystems may be further threatened by the regional effects of global 54 

warming (David et al., 2007), and by the human action (Paço et al., 2009). 55 

Most of these woodlands are anthropogenic ecosystems of high socio-economic and 56 

conservation value, and display high biodiversity, however, they have declined sharply due to 57 

environmental constraints, forest diseases, inappropriate management, including both intensification 58 

and abandonment of agriculture, and socioeconomic issues (Godinho et al., 2016). 59 

Knowledge of on-site and on-time information on soil properties and pasture biomass and its 60 

spatial distribution in pastoral ecosystems is needed for site-specific management and can help 61 

livestock managers in making critical decisions in terms of planning grazing time, grazing period, 62 

grazing interval, stocking rate, and inputs such as fertilizers (Safari et al., 2016; Moeckel et al., 63 

2017). Regardless of the livestock production system, pasture quantity and quality may be limiting 64 

at certain times of the year, usually due to climatic influences. To maximise the efficiency of animal 65 

production in extensive grazing systems, it is important to know the availability of ground cover 66 

and whether livestock can effectively utilise and digest the available forage (Manning et al., 2017).  67 

Traditional soil and crop sampling is based on low sample resolution data collected at typically 68 

one composite sample per 1–3 ha (Nawar et al., 2017). Conventional soil and plant sampling 69 

techniques are costly, destructive, and time-consuming, thereby limiting the number of measured 70 

samples and being impractical for characterising spatial variability in sward characteristics within 71 

fields (Safari et al., 2016; Moeckel et al., 2017). With current advancements in information 72 

technologies, remote and proximal sensing, and geospatial analyses supported by global positioning 73 
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systems, it is increasingly possible to identify and analyse the temporal and spatial variability within 74 

fields to maximise the yield and protect the environment. New proximal sensors allow the collection 75 

of geographically referenced data with high spatial sampling resolution (>1500–2000 readings per 76 

ha), enabling the exploration of spatial variability at fine-scale to generate maps representing both 77 

spatial and temporal variability (Safari et al., 2016) and delineate accurate management zones 78 

(Nawar et al., 2017). 79 

Pastures are highly heterogeneous systems due to variations in sward structure, composition, and 80 

phenology, as well as continuous changes caused by different drivers such as environmental factors 81 

and grazing. Therefore, the application of sensors in complex grazing systems is difficult and there 82 

are some limitations for each specific sensor used for the prediction of sward characteristics 83 

(Moeckel et al., 2017). The most common soil and crop attributes produced by proximal sensing are 84 

soil apparent electrical conductivity (ECa) and normalised difference vegetation index (NDVI), 85 

based on measurements using commercial sensors (Nawar et al., 2017). Optical remote sensing 86 

techniques have the potential to detect physiological and biochemical changes in plant ecosystems, 87 

and non-invasive detection of changes in photosynthetic energy conversion may be of great 88 

potential for managing agricultural production in a future bio-based economy. The content of 89 

chlorophyll is a good indicator of plant nutrition, photosynthesis, and growth conditions (Zhang et 90 

al., 2017). In this sense, NDVI constitutes a good indicator about  photosynthetic activity of forage 91 

plants (Manning et al., 2017). Normalised difference red edge (NDRE) is an index that is computed 92 

when the red edge band is available in a sensor. It is sensitive not only to chlorophyll content in 93 

leaves and variability in leaf area, but also to soil background effects. High values of NDRE 94 

represent higher levels of leaf chlorophyll content than lower values. This index can be used to 95 

estimate the variability in fertilizer requirements in the soil (e.g., Magney et al., 2017). 96 

Since it is known that soil fertility is the main factor that determine pasture yield and quality, the 97 

suitable management of this ecosystem requires the identification of areas with similar permanent 98 

characteristics. According to Serrano et al. (2010), the basis for grazing management is the 99 

measurement of the spatial variability of pasture soil and vegetation; in turn, the physical and 100 

chemical properties of the soil are one of the factors most affecting pasture biomass, so they must 101 
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be taken into account to delimit homogeneous zones.  102 

Although different techniques have been utilised to delineate homogeneous zones (e.g., Shaddad 103 

et al., 2016; Fortes et al., 2015) and to combine layers of information (e.g., Moral et al., 2010), they 104 

have been applied in agricultural fields. Similar research in pasture systems is scarce (Trotter et al., 105 

2014), despite the same approaches can be useful in pasture soils. Moreover, the use of an objective 106 

and probabilistic model, the Rasch model (Rasch, 1980), to integrate data from different soil 107 

properties has been successfully applied in agricultural fields (Rebollo et al., 2017; Moral et al., 108 

2011). 109 

The objectives of this study were to: (1) analyse the use of the the Rasch model as a 110 

measurement tool to determine the pasture soil fertility, considering and integrating some important 111 

soil properties; (2) utilise the Rasch approach to investigate the influence of each soil property on 112 

the pasture soil fertility; and (3) generate homogeneous zones using geostatistical algorithms after 113 

analysing the spatial distribution of the pasture soil fertility. 114 

 115 

2. Materials and methods  116 

2.1. Site description 117 

The experimental field was a farm called Silveira (38º 62.2’ N; 7º 94.8’ W), located  about 5 km 118 

North of Evora, in Southern Portugal. The area of study is 7 ha approximately and an overview of 119 

the boundary of the site is given in Figure 1. 120 

The climate of this area is Mediterranean, modified by the interior location and by oceanic 121 

influences from the Atlantic. Temperature ranges between 0ºC and more than 40°C, minimum in 122 

winter and maximum in summer, respectively. Mean annual precipitation reaches less than 600 mm, 123 

but it is characterised by its interannual variability. Precipitation occurs mainly between October 124 

and March and is practically nonexistent during the summer. According to the Köppen-Geiger 125 

classification, it is a climate type Csa (Peel et al., 2007). 126 

The monthly precipitation and temperature between September 2012 and August 2013 is shown 127 

in Figure 2. Accumulated rainfall between March and May was 219 mm, higher than the average 128 

expected value, 186 mm. Particularly, March was very rainy, exceeding 3.7 times the expected 129 
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rainfall (Serrano et al., 2017). The rainfall in these months are important for maintaining the growth 130 

of the pasture and lengthening its vegetative cycle, and, in June, the productivity and quality of the 131 

pasture is severely affected by the smaller rainfall and higher temperature (Serrano et al., 2017). 132 

The topography is dominated by gentle hills on a slightly sloped area, with elevations between 133 

273 and 282 m, and is crossed by a torrential water line. There are some sparse trees: olive trees, 134 

oak trees, ashes, and mulberries. In the substrate the predominant soil is classified as a Cambisol 135 

derived from granite (FAO, 2006). Cambisols are characterised by slight or moderate weathering of 136 

parent material and by absence of appreciable quantities of illuviated clay, organic matter, 137 

aluminium and/or iron compounds. Acid Cambisols are not very fertile and are mainly used for 138 

mixed arable farming and as grazing and forest land. Cambisols in undulating or hilly terrain are 139 

planted to a variety of annual and perennial crops or are used as grazing land. 140 

 141 

2.2. Soil and pasture sample collection and analysis 142 

Initially, a regular sampling grid of 34 m was defined in March 2013. Forty-three sampling 143 

points (Figure 1) were georeferenced using a real-time kinematic (RTK) GNSS instrument (Trimble 144 

RTK/PP-4700 GPS, manufactured by Trimble Navigation Limited, USA). 145 

Soil spatial variability of the experimental field was characterised by 34 samples (Figure 1) 146 

collected in April 2013 using a gouge auger and a hammer, in a depth range of 0–0.30 m. The soil 147 

was characterised in terms of texture, organic matter (OM) content, phosphorus (P2O5), and 148 

potassium (K2O). Each composite sample was the result of five sub-samples taken inside of an 149 

imaginary circle with a 3-m radius around each georeferenced point. The soil samples were kept in 150 

plastic bags, air-dried, and analysed for particle-size distribution using a sedimentographer 151 

(Sedigraph 5100, manufactured by Micrometritics, Norcross, GA 30093-2901, USA), after passing 152 

the fine components through a 2 mm sieve. These fine components were also analysed using the 153 

following methods (Egner et al., 1960): (i) OM was measured by combustion and CO2 154 

measurement, using an infrared detection cell; P2O5 and K2O were extracted by the Egner-Riehm 155 

method, and (ii) P2O5 was measured using colorimetric method, while (iii) K2O content was 156 

measured with a flame photometer. 157 
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In April and June 2013, at each sampling point (Figure 1), a pasture sample was taken using a 158 

portable electric grass shear at 1-2 cm above ground level. The pasture of each 0.25 m2 area 159 

delimited by a metallic rim were stored in marked plastic bags and weighed to determine the green 160 

matter production per hectare (kg ha-1). The samples were placed in an oven at 65ºC for 48 hours to 161 

determine the moisture content, which was used to calculate dry matter yield (DM, kg ha-1). 162 

 163 

2.3. Soil apparent electrical conductivity survey 164 

A Dualem 1S non-contact sensor (Dualem, Inc., Milton, ON, Canada), equipped with a global 165 

positioning system (GPS) antenna, was used to measure the soil apparent electrical conductivity 166 

(ECa) in all sampling points of the experimental field in April 2013. The sensor, manually 167 

transported by an operator 0.20 m above ground surface, measured the ECa from 0-0.30 m and 0-168 

1.30 m soil layers along an imaginary circle with a 3-m radius around each georeferenced sampling 169 

point (Figure 1). This work uses the data referent to the soil layer to 0.30 m depth, corresponding to 170 

soil sampling depth. The ECa sensor was programmed to register measurements every second. 171 

Average ECa at each sampling point was obtained using the values registered from a 2-min 172 

sampling measurements. 173 

On the same day, soil samples for soil moisture content (SMC) determination were taken with a 174 

gouge auger and a hammer in a depth range of 0-0.30m. To calculate the SMC, these soil samples 175 

were weighed, dried at 70°C for 48h, and then weighed again. 176 

 177 

2.4. NDVI and NDRE survey 178 

It was utilised a OptRx active crop sensors (Ag Leader, 2202 South River Side Drive, Ames, 179 

IOWA 50010, USA) with its associated power source. The OptRx crop sensors measurements were 180 

registered and point positioned by means of a Trimble GNSS GeoExplorer 6000 series, model 181 

88951 with sub-meter precision (Trimble: GmbH, Am Prime Parc 11, 65479 Raunheim, Germany). 182 

This sensor simultaneously measures three infrared bands: (i) RED- 670 nm with a range of 20 nm; 183 

(ii) Red Edge- 728 nm with a range of 16 nm; and (iii) NIR- 775 nm with basically everything 184 

under 750 nm being filtered out. NDVI and NDRE were calculated based on these spectral bands 185 
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as: 186 

NDVI = (NIR – RED)/(NIR + RED)                     (1) 187 

NDRE = (NIR – RED EDGE)/(NIR + RED EDGE)        (2) 188 

Multispectral information was collected before cutting the pasture in all sampling points (Figure 189 

1), four times during Spring of 2015 (between March and May). The OptRx crop sensor was 190 

manually transported by an operator 0.75 m above ground surface (about 0.50 m above the pasture, 191 

considering an average pasture height of 0.25 m), along an imaginary circle with a 3-m radius 192 

around each geo-referenced point and then stood still at the area within the circle previously defined 193 

as being representative of the vegetation. Average NDVI and NDRE of each point were obtained 194 

using the values registered from 2-min sampling measurements. 195 

 196 

2.5. The Rasch model 197 

One of the simplest and powerful Item Response Theory model for measurement is the 198 

probabilistic Rasch model. It constitutes the most viable approach for practical testing, as it can be 199 

applied in the context in which individual, soil samples in this case, interacts with items, soil 200 

properties. 201 

Different data, with different units, can be integrated into a uniform analytical framework. The 202 

Rasch model has only one measurement parameter, in a single dimension and scale to measure the 203 

classification of both the subjects, soil samples, and the considered items, soil properties. All data 204 

are synthesised by means of a commom adimensional referent, defining the construct or latent 205 

variable. Thus, in this case study, measures related to some soil properties taken at different 206 

locations should be consolidated into a global variable which highlighted the interpretation of 207 

pasture soil fertility (latent variable).  208 

With the aim of achieving an adimensional characterization, the first phase in the formulation of 209 

the Rasch model is the categorisation of data, corresponding to the individual soil properties at each 210 

location. Particularly, five categories were considered for all soil properties and, in consequence, a 211 

measure assigned to class 1 corresponds to the lowest contribution to pasture soil fertility and, on 212 

the contrary, the assignment of a measure to class 5 corresponds to the highest contribution to 213 
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pasture soil fertility. As it was performed in previous studies in agricultural fields (e.g., Moral and 214 

Rebollo, 2017), for soil texture properties, the ideal percentage of each texture class was about a 215 

third of the total; in consequence, the maximum categorical value, 5, was assigned for an interval 216 

around 33% of clay, silt or sand content. For the other soil properties, the highest categorical values 217 

correspond to the classes with highest measures. The rest of categories were associated with classes 218 

in which their amplitude depends on the maximum and minimum values of each soil property. All 219 

data are arranged in a matrix in which each cell, Xij, reflects the category for the soil property i (i 220 

varies from 1 to 10) at the sampling location j (j varies from 1 to 34).  221 

One simple assumption of the Rasch model is that some items, soil properties in this case, are 222 

more important to subjects, sampling locations in this case, than other items. The sum of item 223 

ratings is the starting point for estimating response probabilities and, consequently, a line of 224 

measurement is generated with items placed hierarchically according to their importance to 225 

subjects. To estimate soil property and sample location positions, this approach was formally 226 

implemented in a Rasch model for rating scales (Andrich, 1988). 227 

A stochastic Guttman model is applied to convert scale observations into linear measures with 228 

the aim of generating the Rasch measurement. Linear statitics can be applied to these measures and 229 

some tests for goodness-of-fit can be used to validate the correct formulation of the Rasch model. In 230 

this case study, the Rasch model combines calibrations of some soil properties additively to 231 

sampling location measures to define pasture soil fertility probabilities. This stochastic conjoint 232 

additivity determines a Guttman scale of probabilities to which the data are fitted (Rasch, 1980). 233 

Chi-square fit statistics, known as Infit and Outfit Mean-Square (Infit and Outfit MNSQ), ratios 234 

of observed residual variance to expected residual variance, should be computed to estimate how 235 

well each item contributes to the measurement of pasture soil fertility. According to Bond and Fox 236 

(2007), items with Infit and Outfit MNSQ values between 0.6 and 1.5 are accepted, taking into 237 

account that their expectation is 1.  238 

The Rasch model was formulated with the Winsteps v. 4.0 computer program (Linacre, 2009), 239 

allowing to obtain values of the pasture soil fertility for all sample points, incorporating information 240 

of the soil properties considered. The different contribution of the 10 soil properties to determine a 241 
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measure of pasture soil fertility at each sample point was achieved through the stages shown in 242 

Figure 3. Consequently, considering the sampling locations (34 in this case study) and choosing the 243 

soil properties (10 in this case study) which exert influence on the latent variable, pasture soil 244 

fertility, values of all soil properties at each sampling location were computed and, later, this 245 

information was processed with the previously mentioned software to obtain the Rasch measures, as 246 

well as some fit measures. More information about the mathematical formulation of the Rasch 247 

model can be obtained, for instance, in Tristán (2002). 248 

 249 

2.6. Estimates at unsampled locations 250 

Values of the pasture soil fertility, expressed as the Rasch measure, for all locations in which a 251 

soil sample was taken, were obtained with the formulation of the Rasch model, considering 252 

information from 10 soil properties. However, since the spatial distribution of the soil fertility has to 253 

be determined, it was necessary to estimate the value of this latent variable throughout the field, that 254 

is, at other locations where no direct measurements were conducted. 255 

There are many algorithms to interpolate from known data but it is widely recognised the 256 

advantages of using geostatistical tecniques (e.g., Webster and Oliver, 2007), as they take into 257 

account the spatial variation of the studied variable, pasture soil fertility in this case. 258 

Usually, semivariograms quantify the spatial correlation of the variable, being estimated, for 259 

discrete sampling, as: 260 

where (h) is the semivariance value at distance h, Z(xi) are the sample values at points xi, with data 261 

at xi and xi+h, and N(h) is the total number of sample pairs within the distance h. 262 

After computing the experimental semivariogram, that is, some points of a plot are displayed by 263 

calculating semivariogram values at different lags, a model (known as theoretical semivariogram) is 264 

fitted to the points. 265 

The basis of all geostatistical estimators is the linear regression estimator Z*(x): 266 

 



)(

1

2)()(
)(2

1
)(

hN

i
ii hxZxZ

hN
h                        (3) 



 
 

11

)]()([)()()(
1

*
i

n

i
ii xmxZxwxmxZ  



               (4) 267 

where each datum, Z(xi), has a weight, wi(x), and m(x) and m(xi) are the expected values of Z*(x) 268 

and Z(xi) respectively, determining the weights to minimise the estimation variance, Var[Z*(x) – 269 

Z(x)], while ensuring the unbiasedness of the estimator, E[Z*(x) – Z(x)] = 0. The weights are 270 

generated solving a system of linear equations, with the theoretical semivariogram controling the 271 

spatial variability of the variable (e.g., Webster and Oliver, 2007). 272 

The model for the trend, m(x), of the random function, Z(x), differentiates the chosen 273 

geostatistical approach. The ordinary kriging algorithm was selected in this study; in consequence, 274 

it is assumed that m(x) is unknown but maintains the stationarity within local neighbourhoods.   275 

The extension Geostatistical Analyst of ArcGIS (version 10.3, ESRI Inc, Redlands, California, 276 

USA) was utilised to perform the geostatistical study and maps of kriged estimates were generated 277 

with the ArcMap module of ArcGIS. 278 

 279 

2.7. Delineation of homogeneous zones 280 

Kriged maps from the estimated values show the spatial pattern of the pasture soil fertility in the 281 

field. Later, homogeneous zones can be delimited using a classification technique in ArcGIS. From 282 

a practical perspective, few homogeneous zones should be delineated. Thus, two different zones 283 

were characterised in the experimental field and the mean value of the pasture soil fertility was 284 

considered as the limit value. 285 

With the aim of evaluating the proposed delimitation, the differences on the mean values for DM 286 

yield, NDVI, and NDRE in both zones were analysed using a means comparison with t-test for 287 

independent samples in the IBM SPSS statistical package (version 24, IBM Corp, Armonk, NY, 288 

USA). 289 

 290 

3. Results and discussion 291 

3.1. Data response to the Rasch model 292 

The matrix of categorical values was processed by the Winsteps program and the output was 293 
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many results in tables and diagrams. Firstly, the Infit and Outfit statistics were analysed and, 294 

according to the Infit and Outfit MNSQ values (Table 1), which are close to one (the expected 295 

value), there is an initial evidence of the overall fitting between the data and the model. 296 

Furthermore, the mean standardized (ZSTD) Infit and Outfit (the sum of squares standardized 297 

residuals given as a Z-statistics) are expected to be 0 (Edwards and Alcock, 2010). Since they are 298 

very close to this value for both sampling locations and soil properties (Table 1), the data fit the 299 

model better than expected. Additionally, misfits for samples and soil properties are unimportant 300 

because the standard deviations of the Infit MNSQ, are lower than 2 (Bode and Wright, 1999), as it 301 

is shown in Table 1. 302 

It is also necessary to check how the assigment sale was used. Table 2 shows the parameters that 303 

have to be verify (Linacre, 2009): the “Observed Average” and the “Structure Calibration” increase 304 

by category value, the Infit and Outfit MNSQ values are between 0.6 and 1.5, and the “Observed 305 

Average” values are similar to the “Sample Expected” ones. The probability curves (Figure 4), 306 

which represent the likelihood of category selection against the Rasch measure, also confirm the 307 

correct selection of five categories because each category value is the most likely at some point on 308 

the continuum and there is not category inversions, that is, a higher category is more likely at a 309 

higher point than a lower category. For example, if the Rasch measures are -1 and 1, the most likely 310 

category assignments are 2 and 4 repectively. There is no a general rule to define the correct 311 

number of categories, although five has been successfully utilised in other case studies (e.g., Moral 312 

and Rebollo, 2017).  313 

Finally, the last previous analysis consists in examining if each soil property fits the general 314 

pattern of the model and contributes to support the underlying latent variable, pasture soil fertility. 315 

Acceptable fit of each item implies that the Infit and Outfit MNSQ have to be between 0.6 and 1.5, 316 

and the infit and outfit ZSTD between -3 and 2. Table 3 shows how all values are in the intervals, 317 

except K2O. Consequently, all considered soil properties have an important influence and support 318 

the latent variable, pasture soil fertility, with the exception of K2O. This soil property could be 319 

removed without affecting the results. 320 

 321 
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3.2. Analysis of the Rasch measure: pasture soil fertility 322 

The sum of points of all categories for each soil property (raw score) and the measure value 323 

computed with the Winsteps program are shown in measure order in Table 3, from the higher to the 324 

lower measure, that is, from the location with a higher to the lower pasture soil fertility. 325 

The relative influence of each soil property on the pasture soil fertility is also established 326 

according to the raw score and, consequently, the measure value. Table 3 shows that the highest raw 327 

score, and the lowest measure, corresponds to slope, being the most influential property on the 328 

pasture soil fertility in the field. Elevation is the next most influencial. Thus, topographical variables 329 

are the most important to explain the soil fertility in this case study, possibly due to the fact that 330 

they determine the level of other soil properties, such as the textural components (e.g., Collins and 331 

Foster, 2008; Ceddia et al., 2009). Unlike elevation and slope, P2O5 has the lowest raw score and 332 

the highest measure, that is, it exerts the lowest influence on the soil fertility in this field. Silt, sand, 333 

clay content, and OM have also a low influence on the latent variable. Textural components are not 334 

important in this soil to define the most fertile zones since the high sand content determines that the 335 

finer soil fractions, particularly clay, are very low to be related to other basic soil properties, from a 336 

pasture soil fertility perspective. Previous research in different agricultural fields where clay content 337 

is higher has shown its influence on the soil fertility (e.g., Moral and Rebollo, 2017; Rebollo et al., 338 

2017). 339 

The previous information is also displayed in graphic format, visualising both sampling 340 

locations and soil properties (in the upper and lower half of the diagram, respectively) in the same 341 

scale, classified according to the pasture soil fertility (Figure 5). As it was aforementioned, P2O5 is 342 

the property with the highest measure, more to the right in the straight line. On the contrary, slope 343 

and elevation are situated more to the left, with the lowest measures. As SMC and K2O are at the 344 

same position in the straight line, it could be possible to consider dropping one of them as 345 

redundant, and, in this case, K2O is the property to be removed because, as it was previously 346 

indicated, it does not support the latent variable (see Table 4). 347 

Figure 5 shows how some soil samples are aggregated and most of them have very low score, 348 

indicating a low pasture soil fertility. A ranking of the sampling locations according to their Rasch 349 
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measure was obtained, indicating where the most fertile places for pasture are located and, 350 

consequently, those which got lower measure, less fertile, are also determined. Only 5 samples 351 

reached half of the maximum score (50 points), that is, around 15% of all sample locations. 352 

Additionally, the mean Rasch measure for samples is more to the left than the mean Rasch measure 353 

for soil properties, indicating that pasture soil fertility is not optimum at many locations. Although 354 

globally this field is not very fertile, there are differences between zones and site-specific 355 

management could be performed according to particular soil conditions related to potential for 356 

pasture yield. Therefore, the most suitable conditions of pasture soil fertility can be expected in 357 

areas where soil samples have achieved higher measure. Similar spatial differences have been 358 

highlighted in agricultural fields (e.g., Moral and Rebollo, 2017) in which the more suitable zones 359 

for crops were selected using the same approach. 360 

Another evidence of the good agreement between the data and the model is the fact that there are 361 

few misfits (soil samples which do not follow the general pattern of the model). Table 4 shows the 362 

soil samples that displayed misfit at least in one soil property. Seven samples displayed misfits and 363 

only one (sample 11, Table 4) had two misfits, for K2O and P2O5, with positive residuals in both 364 

cases, that is, the score for this sample related to these soil properties is higher than expected. Other 365 

samples have misfists only for K2O, but two of them (samples 8 and 20, Table 4) with positive 366 

residuals and another one (sample 31, Table 4) with negative residual (the score for this sample 367 

related to this soil properties is lower than expected). There are two soil samples (samples 5 and 27, 368 

Table 4 in which misfits for P2O5 are evident, with positive residuals. Finally, sample 32 (Table 4) 369 

has a negative residual in elevation. The main deficiencies of any soil location, which could affect 370 

pasture soil fertility, can be analysed by the misfit study and this information can be visualised in a 371 

geographical information system. If it is convenient, any work to amend both soil properties could 372 

be performed in these particular zones. 373 

 374 

3.3. Spatial analysis and mapping of pasture soil fertility 375 

The initial exploratory analysis of the Rasch measures at sampling locations revealed the 376 

similarity of the mean (-1.61) and median (-1.73). Moreover, the coefficient of skewness and 377 
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kurtosis are 0.92 and 3.62, respectively, suggesting that data fit a normal distribution. The 378 

coefficient of variatios is 45.68%; in consequence, it is expected a high spatial variability of the 379 

pasture soil fertility in the experimental field. 380 

An omnidirectional experimental variogram was computed and a spherical theoretical variogram 381 

(range = 71.35 m; sill = 0.59; nugget effect = 0.03) was fitted to its points. The ratio of nugget to sill 382 

is 5.09%, indicating the existence of a strong spatial dependence since it is lower than 25% 383 

(Cambardella et al., 1994). 384 

The ordinary kriging algorithm was chosen to estimate at unsampled locations. Thus, the spatial 385 

distribution of pasture soil fertility in the experimental field can be visualised. Figure 6 shows two 386 

zones which were delineated from the mean value of the pasture soil fertility (Rasch measure), -387 

1.61. They can be regarded as the lower and higher soil fertility areas in the experimental field. The 388 

reliability of the kriged map was assessed by means of a cross-validation process, estimating the 389 

variability of the predictions from the true values. Some prediction error statistics (Webster and 390 

Oliver, 2007) were used as diagnostics: the root mean square error was 0.66, the mean standard 391 

error was 0.69, the mean standardized error was -0.02, and the the root mean squared standardized 392 

error was 0.96. Since all these statistics are very low and the root mean square error is close to the 393 

mean standard error, the kriged map is appropriate. Moreover, the assessment of uncertainty was 394 

completed with some additional information: since the mean standard error is close to the root mean 395 

squared prediction error and the root mean squared standardized error is close to one, the variability 396 

in predictions is correctly assessed.  397 

It is also possible to use the probability kriging algorithm to generate a map in which two zones 398 

are determined. Thus, considering the mean value (-1.61), the probability map of pasture soil 399 

fertility higher than this value is delineated. In this map, probabilities provide a measurement of 400 

confidence for hazard assessment of pasture soil fertility. Figure 6 shows the map with zones above 401 

and below 0.75 as the probability value threshold, that is, more and less fertile zones, respectively. 402 

NDVI and NDRE data at sampling locations (Figure 6) were utilised to analyse differences 403 

between the two zones. When the zone with higher pasture soil fertility was considered, the mean 404 

NDVI and NDRE were 0.55 and 0.20, respectively. These values in the zone with lower pasture soil 405 
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fertility were 0.52, for NDVI, and 0.18, for NDRE, that is, 5.4% and 10% lower, respectively. 406 

Although differences between both zones are moderate, they are sufficient to manage them 407 

according to the expected pasture yield. Particularly, this is important in fields like the one 408 

considered in the present case study, where in general soil properties have inappropriate levels to 409 

reach an optimum soil fertility but zonal differences are apparent. This fact was highlighted after 410 

comparing the pasture yield in both zones. The mean DM yield in the zone with higher pasture soil 411 

fertility was 1641.83 kg ha-1 and in the zone with lower soil fertility was 1370.42 kg ha-1, that is, 412 

around 16.5% lower. Additional means comparison with t-test showed that mean values for DM 413 

yield, NDVI, and NDRE in both zones were statistically significant under a confidence level of 414 

99%. 415 

Table 5 shows the mean values of the soil properties in both zones of the field. Significant 416 

differences were also obtained, with better levels of all soil properties in the zone where the pasture 417 

soil fertility is higher. This is in accordance with the NDVI and NDRE values measured and, 418 

accordingly, with the DM yield differences. 419 

 420 

4. Conclusions 421 

The formulation of a probabilistic and objective model (the Rasch model) to estimate a measure 422 

of pasture soil fertility, integrating different soil variables (texture, SMC, OM, phosphorus, 423 

potassium, ECa, elevation, and slope), has been successful. Data reasonably fit the model and, in 424 

general, the considered soil properties have an important influence on the latent variable, pasture 425 

soil fertility. 426 

A classification of all soil samples according to their soil fertility level was obtained and, moreover, 427 

it was analysed the influence of the soil variables on the pasture soil fertility in the experimental 428 

field, obtaining how topographical variables, elevation and slope, are the most determining in this 429 

particular field. 430 

The use of geostatistical algorithms to interpolate at unsampled locations can provide an accurate 431 

representation of the spatial distribution of the pasture soil fertility, which can be utilised to 432 

delineate homogeneous zones in the field. This is very important in pasture fields like the one 433 
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considered in the present case study, where pasture soil fertility has a general low level but zonal 434 

differences are apparent. 435 

Although initially the combination of the Rasch model and geostatistical techniques had been 436 

proposed in agricultural fields as a tool to developing an objective strategy to define management 437 

zones, it can also be used in pasture systems to analyse zonal differences. Thus, application of 438 

inputs can be optimised and a more cost-effective field management, with the associated 439 

environmental, economic, and energetic benefits, can be achieved. 440 

 441 
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FIGURE CAPTIONS 592 

 593 

Fig. 1. Study site. Sampling locations are indicated as black squares and locations in which soil 594 

samples were taken are indicated as black dots. 595 

 596 

Fig. 2. Monthly rainfall and monthly mean temperature between September 2012 and August 2013. 597 

 598 

Fig. 3. Schematic diagram of the stages involved in the formulation of the Rasch model. 599 

 600 

Fig. 4. Probability curves for the five categories considered in the case study. 601 

 602 

Fig. 5. Straight line that represents the latent variable: pasture soil fertility. Distribution of soil 603 

samples (points) is above the line: to the right those more fertile; to the left less those less fertile. 604 

Soil properties are below the line: to the right less common (rare) properties, with lower influence 605 

on pasture soil fertility; to the left more common (frequent) properties, with higher influence on 606 

pasture soil fertility; ms and mp are the mean values of the Rasch measure for soil samples and 607 

properties, respectively. 608 

 609 

Fig.6. a) Homogeneous zones map based on the kriged map of pasture soil fertility. Both zones are 610 

delineated considering the mean Rasch measure (-1.61) as the limit value. Dark zone is the more 611 

fertile and light zone is the less fertile. b) Homogeneous zones map based on the probability map of 612 

pasture soil fertility higher than -1.61. Dark zone could be considered as very fertile (probability to 613 

exceed -1.61 is higher than 0.75). 614 

In both maps, black dots are the locations in which soil samples were taken and black squares are 615 

the locations in which pasture samples were taken and NDVI and NDRE were measured. 616 

617 
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TABLES 618 

 619 

Table 1 

Overall model fit information; summary of all 34 soil samples and all 10 soil properties. Total 

Score, sum of points of the common scale considering all soil properties; Measure, logit 

position of the soil properties along the straight line that represents the latent variable, soil 

fertility potential; Infit and Outfit MNSQ, mean-square fit statistics to verify if items fit the 

model; Infit and Outfit ZSTD, standardized fit statistics to verify if items fit the model 

 
Total 
Score 

Measure 
Infit               

        MNSQ         
Outfit            

          MNSQ      

Mean 20 -1.61 0.95 0.1 0.95 0.1 

Standard Deviation 4 0.74 0.36 0.7 0.49 0.7 

Maximum 33 0.52 1.82 1.5 2.88 2.1 

Minimum 15 -2.79 0.39 -1.4 0.39 -1.2 

Summary soil samples 

Mean 215.5 0.00 0.99 -0.2 0.99 -0.1 

Standard Deviation 33.2 0.61 0.23 1.5 0.25 1.6 

Maximum 262.0 0.96 1.36 2.0 1.40 2.2 

Minimum 164.0 -0.85 0.56 -3.3 0.56 -3.2 

Summary soil properties 

 620 

 621 

 622 

 623 
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Table 2 

Response scale use. Observed Count, number of times the category was selected considering 

all samples and soil properties; Observed Average, mean value of logit positions modelled in 

the category; Sample Expected, optimum values of the average logit positions for the data; 

Infit and Outfit MNSQ, mean-square fit statistics to verify if items fit the model; Structure 

Calibration, logit calibrated difficulty of the step representing the transition points between 

one category and the next 

Category 
Observed 

Count 
Observed 
Average 

Sample 
Expected 

Infit 
MNSQ 

Outfit 
MNSQ 

Structure 
Calibration 

1 153 -2.66 -2.68 1.00 1.01 None 

2 99 -1.72 -1.63 0.96 1.02 -1.70 

3 42 -0.42 -0.59 0.93 0.77 -0.27 

4 27 0.72 0.63 1.03 1.04 0.46 

5 19 1.54 1.68 0.95 0.92 1.52 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 
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Table 3 

Item fit statistics. Influence of each soil property on the pasture soil fertility in the 

experimental field (10 soil properties are considered). Total score, sum of points of the 

common scale for each soil property considering all samples (34); Measure, position of 

each soil property along the straight line that represents the latent variable, soil fertility 

potential; Infit and Outfit MNSQ, mean-square fit statistics to verify if items fit the 

model; Infit and Outfit ZSTD, standardized fit statistics to verify if items fit the model 

Item 
Total 
Score 

Measure 
Infit 

MNSQ 
Infit 

ZSTD 
Outfit 

MNSQ 
Outfit 
ZSTD 

P2O5 38 2.44 1.01 0.2 1.10 0.4 

Silt 44 1.37 0.73 -0.7 0.73 -0.6 

Sand 49 0.86 0.59 -1.5 0.68 -1.0 

OM 51 0.69 0.67 -1.2 0.64 -1.3 

Clay 59 0.15 0.63 -1.5 0.68 -1.3 

SMC 65 -0.18 0.82 -0.7 0.77 -0.9 

K2O 66 -0.23 1.71 2.5 1.68 2.3 

ECa 70 -0.43 1.54 2.0 1.52 1.9 

Elevation 95 -1.42 0.81 -0.8 0.86 -0.6 

Slope 143 -3.25 0.80 -0.8 0.87 -0.4 

Mean 68 0.00 0.93 -0.3 0.95 -0.1 

S.D. 29.3 1.48 0.37 1.3 0.35 1.2 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 
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 645 

Table 4 

Misfits for those soil samples in which they have 

been computed. The score indicates the points for 

each soil property. Positive and negative misfits are 

indicated by the sign 

 K2O P2O5 Elevation Sample 

Score: 3 2  11 

Misfit: 2 4   

Score: 3   8 

Misfit: 3    

Score: 4   20 

Misfit: 2    

Score: 1   31 

Misfit: -2    

Score:  2  5 

Misfit:  2   

Score:  2  27 

Misfit:  2   

Score:   3 32 

Misfit:   -2  

 646 

 647 

Table 5  

Mean values of each soil property for samples in the less productive zone (Zone_less) and the most productive 

zone (Zone_more) according to the delineation of the homogeneous zones. Differences are significant for a 99% 

confidence level 

 Sand 
(%) 

Clay 
(%) 

Silt 
(%) 

OM 
(%) 

EC 
(mS/m) 

SMC 
(%) 

K2O  
(mg kg-1) 

P2O5  
(mg kg-1) 

Elevation 
(m) 

Slope 
(%) 

Zone_less 70.06 16.01 13.91 1.29 2.96 10.20 88.54 18.18 275.85 1.67 

Zone_more 64.38 19.55 16.09 1.68 8.42 16.07 98.17 24.67 274.98 1.28 
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FIGURES  653 

Fig. 1 654 

 655 

 656 

Fig. 2 657 

 658 
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Fig. 3 659 

 660 

 661 

Fig. 4 662 

 663 
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Fig. 5 666 

 667 
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Fig. 6 670 
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