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Abstract: Forests, including their soils, play an important role since they represent a large reservoir
of biodiversity. Current studies show that the diversity of soil fauna provides multiple ecosystem
functions and services across biomes. However, anthropogenic practices often pose a threat to soil
fauna because of changes in land use and soil mismanagement. In these terms, rangelands in the
southwest of Spain present several problems of soil degradation related to livestock activity and soil
erosion, the intensity of which compromises the soil fauna’s functions in the ecosystem. Therefore,
the aim of this study is to evaluate the response of community metrics and the spatial distribution of
soil microarthropods to livestock activity and vegetation in such ecosystems. A photo interpretation
analysis of an experimental catchment used as a study area was developed to identify and classify
the intensity of livestock pressure. A total of 150 soil samples were collected throughout 2018. Soil
biological (CO2 efflux) and physical-chemical parameters (pH, bulk density, organic matter, and water
contents), and such meteorological variables as precipitation, temperature, and evapotranspiration
were considered as variables affecting the composition of microarthropod communities in terms of taxa
diversity, abundances, and their adaptation to soil environment (evaluated by QBS-ar index). Results
showed higher abundance of microarthropods and higher adaptation to soil environment outside the
influence of trees rather than beneath tree canopies. Moreover, the classification of livestock pressure
revealed by the photo interpretation analysis showed low correlations with community structure, as
well as with the occurrence of well-adapted microarthropod groups that were found less frequently in
areas with evidence of intense livestock activity. Furthermore, abundances and adaptations followed
different spatial patterns. Due to future climate changes and increasing anthropogenic pressure, it is
necessary to continue the study of soil fauna communities to determine their degree of sensitivity to
such changes.

Keywords: arthropod-based soil quality; community structure; environmental filtering; remote
sensed image analysis; spatial heterogeneity; morphological adaptation

1. Introduction

Soils are one of the most important reservoirs of biodiversity in the world [1–6]. Today, problems
such as climate change, an increasing of human population, changes in land use, and land abandonment
compromise the diversity and functions of soil biota [7,8] and, subsequently, the provision of ecosystem
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services [2,4,8–10] by the soil complex. Moreover, soil functions and healthy soil communities are
closely correlated, and, together, they are essential for safe and sustainable food production [9], and they
also maintain ecosystem stability and resilience [8]. Furthermore, the diversity of the soil community is
often used to provide soil quality indicators, such as the composition and abundance of microarthropod
communities [11,12]. Indeed, it is widely accepted that soil microarthropods are very sensitive to
disturbances because of their adaptation to a soil environment [12,13]. Although the contribution of
microarthropods to the total amount of energy fluxes and biogeochemical transformations occurring in
the soil is relatively low [14], they are a key component in enhancing the resilience and resistance of
the soil food web by supporting structural stability [15] since they link microorganisms to macrofauna
in the context of an interconnected network [16]. Such close correlations between bacterial and fungal
channels to mesofauna [9] also determine top-down and bottom-up forces that modify the structure
of the entire community and, therefore, the efflux of CO2 produced by the soil food web during its
metabolic activity [3].

Many ecological functions have been attributed to soil microarthropod communities [17]. However,
the functions they perform can be compromised via the reduction of biodiversity caused by disturbances
in the soil environment [2]. Therefore, the loss of functional groups of microarthropods, such as
detritivores, which are related to the soil carbon cycle could determine the interruption of several steps
in the organic matter degradation chain [18,19]. In such a context, Mediterranean bioclimatic areas
with semi-arid conditions, such as rangelands in the Southwestern Iberian Peninsula, are susceptible
to this fact since they have been catalogued as ecosystems under risk due in future climate scenarios to
land mismanagement and livestock intensification [20].

Dehesas are traditionally-managed rangelands commonly characterized by a two-layered
vegetation structure: a savanna-like open tree layer (15–40 trees/ha) with an understorey pasture
in the same land unit [21–24]. Moreover, pools of soil nutrients are frequently limited due to poor
parent material and extremely arid conditions during the Mediterranean summer [21,24]. It is a system
particularly subject to abandonment [22,25], soil degradation [22,24,26], and subsequent loss of soil
biodiversity because of the increase of livestock density and the progressive abandonment of land by
farmers. However, patches of vegetation are important for dehesas to maintain biodiversity associated
with spatial heterogeneity [27]. In this context, trees play an important role in regulating environmental
features such as soil temperature [28,29] and moisture [23]; the modification of chemical characteristics,
such as availability of nutrients [30], and the direct promotion of the development of detritivorous
microarthropod communities via the reduction of sunlight availability and litter inputs [31]. Moreover,
such habitat heterogeneity at multiple spatial scales [22,30] could represent areas for the conservation of
biodiversity in farmlands, as indicated by Moreno et al. [27] in which the authors used the term “habitat
condition” to refer to areas that sustain certain levels of aboveground biodiversity in rangelands [32].
We adapted this concept to our study area in trying to define combinations of environmental features
and elements of the landscape (mostly in reference to vegetation and livestock pressure) that could
also drive the spatial distribution, structure, abundances, and adaptation to soil of microarthropod
communities. In order to clearly define such combinations of factors in this work, we used the term
“soil habitat condition” (SHC) [32].

Thus, the central questions of our study are: do different intensities of livestock activity induce
changes in soil microarthropod communities? Is the structure of a microarthropod community affected
by niche environmental factors associated with the presence of the tree? Do the adaptations and
abundances of microarthropods follow different spatial patterns? With regard to these questions,
we defined mainly three aims: (i) determining changes on microarthropod communities associated
to seasonality, proximity to trees, and intensity livestock pressure; (ii) identifying the most sensitive
biological forms of the microarthropod group to livestock pressure; and (iii) exploring the spatial
patterns of microarthropod abundances and the occurrence of morphological traits that indicate high
adaptation to the soil environment.
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2. Study Area

Research was conducted on a farmland with agro-silvo-pastoral land use located in the province
of Cáceres, in the southwest of Spain, where an experimental catchment was delimited (Figure 1).
The study area (151.6 ha) is representative of a traditionally-managed system, commonly known as a
dehesa, which is dominated by several vegetation layers including scattered oak trees (Quercus ilex L.),
a shrub layer (Retama sphaerocarpa L.), and a herbaceous layer composed of annual species (grasses
such as Vulpia bromoides L. [Gray], Bromus sp., Aira caryophyllea L., and legumes such as Ornithopus
compressus L., Lathyrus angulatus L., and several species of Trifolium) [21,23]. Climate (Table A1 in
Appendix A) is typical of the Mediterranean area, with semi-arid conditions characterized by cold
winters and a period of hydric stress during the summer. Mean annual precipitation is about 524.2 mm.
Rainfall events are common in autumn and spring; however, dry seasons and longer dry periods are
frequent. Mean annual temperatures oscillates from 14◦ to 16 ◦C.

Geomorphologically, the study area is in old erosion surfaces (Figure 1A), which are formed by
schist and greywacke of the Precambrian age [26]. Soils are shallow with a thickness of usually less
than 50 cm [24,26]; soil textures are sandy-loam in low-slope areas and silty-loam in areas with a higher
slope. Soils reactions oscillate from 4.3 to 7.3, and they are poor in organic matter (mean values are
about 3% in the A horizon) [26]. They are classified as Luvisols and Cambisols [33].

Farm management is conventional: livestock walk freely inside the farm, which means that
livestock charges per hectare inside the study area are not equally distributed. Moreover, the presence
of several “points of reunion,” such as eating zones and water reservoirs, influence the frequency of
trampling and grazing of surrounding areas close to them. In 2018, the livestock at the farm comprised
1200 sheep and goats (southeast area), 50 pigs (northwest area), 37 cows, and one bull (southwest and
central areas of the farm).Forests 2020, 11, x FOR PEER REVIEW 4 of 25 
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Figure 1. (A) Study area within the Extremadura region (blue boundaries) in the Iberian Peninsula and (B) the result of the object-based image analysis (OBIA) 
classification for the entire experimental catchment. Red indicates the ensemble of characteristics defining the SHChigh area, yellow represents SHCmedium, and SHClow 
is indicated by green. Sampling point distribution across the SHC categories is also shown: points sampled in spring are black and points added in autumn are 
indicated by dark red. A tree symbol (in-C; black or dark red) indicates the geographic location of a sampling point beneath the tree canopy; a grass symbol (out-C; 
black or dark red) indicates the geographic position of sampling points outside the canopy. 

Figure 1. (A) Study area within the Extremadura region (blue boundaries) in the Iberian Peninsula
and (B) the result of the object-based image analysis (OBIA) classification for the entire experimental
catchment. Red indicates the ensemble of characteristics defining the SHChigh area, yellow represents
SHCmedium, and SHClow is indicated by green. Sampling point distribution across the SHC categories
is also shown: points sampled in spring are black and points added in autumn are indicated by dark
red. A tree symbol (in-C; black or dark red) indicates the geographic location of a sampling point
beneath the tree canopy; a grass symbol (out-C; black or dark red) indicates the geographic position of
sampling points outside the canopy.



Forests 2020, 11, 628 4 of 21

3. Materials and Methods

3.1. Determination of the Intensity of Livestock Pressure

The study involved a description of the farm management by interpreting orthoimages (0.5 MP size)
taken in 2016 by the Spanish National Information Center [34]. Parameters such as the density of the
vegetation cover and the bare soil area were identified and related to livestock activity (mostly trampling
and grazing) [30]. For the identification of zones with different grazing and trampling intensities,
a supervised object-based image analysis (OBIA) classification [35,36] was used. The procedure was
developed in the eCognition Developer 9 software (Trimble Germany Gmbh, Munich, Germany),
avoiding the “salt and pepper effect” that occurs with pixel-oriented classifications [37,38].

Broadly, three categories were defined by OBIA based on the effects of livestock activity and the
characteristics of the vegetation cover (Figure 1B). We then confirmed the field classifications: (1) SHClow:
characterized by a shrub-encroached herbaceous layer, typically 40%–70% Retama sphaerocarpa L. cover
with a dense tree layer, absence of bare soil and no signs of livestock pressure (i.e., defecation, trampling,
or grazed vegetation); (2) SHCmedium: herbaceous layer, mostly 10%–40% of R. sphaerocarpa L. cover
with a sparse tree layer, <10% of bare soil, and slight indicators of livestock presence, and (3) SHChigh:
herbaceous layer with a sparse tree layer but no shrub cover, 50% or more bare soil, and evident signs of
livestock pressure. See Figure 2 for an example of the general characteristics of each SHC on the field.
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Figure 2. A picture taken in the study area showing the general characteristics of the environments
classified as SHChigh, SHCmedium, and SHClow.

3.2. Soil Sampling

Two sampling campaigns were carried out in 2018. A total of 60 points were sampled in spring
(April), and 90 in the late fall (December). In both campaigns, points were equally distributed among
the three SHC categories previously identified by OBIA (Figure 1B). Inside each SHC, half of the points
were established beneath the oak canopies (in-C) on the northern cardinal point in relation to the stem.
The other half were located outside the canopy (out-C), at least 8 m far away from every tree (stem) [18].
Both in-C and out-C points were established considering the presence of herbaceous vegetation cover
and avoiding bare soil because it is widely accepted that low densities of soil fauna occur in absence of
vegetation [13,39]. We made this choice to accurately compare the different SHCs because bare ground
was only present in SHChigh.
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For the spring sampling, 60 PVC cylinders (21 cm ø and 15 cm height) were embedded at each
point the day before the beginning of the sampling campaign, as recommended by the LI-COR 8100A
protocol of soil CO2 efflux measurement [40]. The cylinders were installed up to 10 cm deep, leaving
5 cm of the total height free in order to carry out the measurement correctly. After the stabilization of
the microbial soil community [40], sampling was conducted as follows at each point: three repeated
measurements of soil CO2 efflux using a LI-COR 8100A survey device were executed; then three
measurements of soil moisture were taken in three points beside the cylinder using a TDR device and,
finally, three undisturbed soil cores were collected using a steel cylinder at a known volume (100 cm3)
and a soil sample extractor. The soil volumes collected from inside the cylinders used for the soil CO2

efflux measurement (approx. 3.5 dm3) were taken to the laboratory, where microarthropod extraction
was carried out. Once organisms were collected, soil samples were meshed at 2 mm ø. Then, six
replicates were picked up to determine the pH and soil organic matter (SOM) content of each sample
(3 for pH and 3 for SOM). Due to logistical reasons, measurements of soil CO2 efflux, pH, water content,
and bulk density could not be revealed in the autumn campaign. At this time, only SOM has been
measured in the 90 points sampled.

In the laboratory, pH was determined by dissolving 1 g of soil in 3 g of H2O using a pH meter.
SOM was revealed using the loss-on-ignition method. Soil cores inside the steel cylinders were used to
calculate soil bulk density and gravimetric moisture by the wet-minus-dry weights of the samples in
relation to the volume of the undisturbed soil cores (100 cm3).

3.3. Analysis of the Microarthropod Communities

The analysis of the microarthropod community was based on the QBS-ar methodology [11,12].
The QBS-ar index (i.e., biological soil quality based on arthropods) evaluates the capacity of a soil
to harbor animals that are sensitive to disturbances because of their morphological characteristics.
Therefore, based on the number of well-adapted microarthropods to the soil environment at a given
time, it is possible to make a judgment about the quality of the soil in a given area (i.e., the higher the
number of such organisms, the higher the soil quality). The QBS-ar of a soil sample is calculated as the
sum of the ecomorphological indices (EMIs) of each biological form. The EMI is a dimensionless score
that varies between 1 and 20, and it evaluates the degree of adaptation of the morphological traits that
soil animals share by evolutionary convergence. For more details on QBS-ar application, see [13,17].

In this study, soil microarthropods were extracted from the 150 samples (both spring and
autumn) using Berlese-Tullgreen funnels (2 mm mesh size) and conserved in 70% ethanol solutions.
The extraction time was about eight days, depending on the humidity of samples. Then, the extracted
microarthropods were observed under stereomicroscope (40×), counted, identified, and classified
as indicated in Table A2 from Appendix A. Once analysis of the microarthropod community was
completed and raw data were collected, taxa diversity was evaluated via the Shannon’s index; a value
of QBS-ar was associated with each soil sample, and the numbers of individuals per taxon for each soil
sample were obtained.

3.4. Statistical Analyses

Three response variables were considered for this work: abundances, taxa diversity (defined
by Shannon’s index), and community adaptation to soil environment (defined by the QBS-ar index).
A first screening of the data was carried out following the protocol proposed by Zuur et al. [41]. Three
categorical predictors were considered: (i) the season in which samplings were accomplished; (ii) the
location of each sampling point (in-C: beneath tree canopy, out-C: outside the canopy); and (iii) the
SHC representing the intensity of livestock activity surrounding each sampling point.

Initially, a three-way ANOVA test was performed to evince statistical differences among categories.
Abundances were log-transformed based on the range of the data and significance level was established
at p = 0.05. A Tukey pairwise test was applied post hoc to highlight the significant differences between
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pairs of categories. Once seasonal variation of community metrics was statistically confirmed, the rest
of the analyses were carried considering seasons separately.

Prior to analysis, collinearity was tested with Pearson’s correlation coefficient in order to eliminate
variables with identical trends [41]. When Pearson’s correlation was found to be higher than 0.4999,
covariates were considered as collinear and, subsequently, one was excluded from the analysis [42].
Methods such as, non-metric multidimensional scaling (NMDS) and non-parametric permutational
multivariate ANOVA (PERMANOVA) were chosen to study dissimilarities in microarthropod
communities. NMDS based on Bray–Curtis distances was used to order the relationships among
communities’ compositions in a specified number of axes [42]. A stress level score of ≤0.2 was used
to account for goodness of fit. PERMANOVA, also based on Bray–Curtis distances, was then used
to study environmental variables causing dissimilarity in the community structure [43,44]. In order
to identify the sensitivity of each biological form, NMDS was also applied on each taxon based on
the Bray-Curtis dissimilarity index. In order to accomplish these aims, community matrices were
split into (1) two log-transformed abundance matrices (60 soil samples (rows) × 27 taxa (columns)
in spring; 90 soil samples (rows) × 27 taxa (columns) in autumn); and (2) two EMI value matrices
(60 soil samples (rows) × 27 taxa (columns) in spring, and 90 soil samples (rows) × 27 taxa (columns)
in autumn) representing the morphological adaptation of biological forms to the soil environment.
Environmental factors were summarized in a matrix presenting soil parameters, categorical predictors
(SHC and out-C/in-C locations), geospatial characteristics (UTM coordinates, slope, and altitude of each
sampling point), and meteorological variables such as maximum, minimum and mean temperature of
the sampling day; average of maximums, minimums and mean temperatures of the 20 days prior to
the sampling day, effective precipitation of the sampling day, effective cumulative precipitation of the
20 days prior to the sampling day, evapotranspiration of the sampling day, average evapotranspiration
of the 20 days prior to the sampling day, and average hydrological balance of the 20 days prior to the
sampling day (22 columns in spring and 18 in autumn). A stepwise model selection based on the
significance criterion was used to choose the best combination of variables explaining the variance of
the data. These analyses were carried out with the “vegan” package [45] from RStudio.

Generalized additive models (GAMs) were applied to investigate the effects of spatial distribution
of niche-environmental factors upon spatial distribution of QBS-ar and total log-transformed
abundances. In order to model the dispersion of community metrics across the space, two protocols
were executed to run the models: the first, a random effect on “pure” spatial coordinates was used in
order to seek spatial dependence of the response variables; on the second, a random effect on ordination
coordinates extracted from NMDS replaced the spatial coordinates in order to find the best descriptor
of the community metrics variation [41]. Stepwise model selection was based on Akaike’s information
criterion (AIC) [46]. The R package “mgcv” [47] was used to perform this analysis.

Graphics were generated using the “ggplot2” [48] package from RStudio.

4. Results

4.1. Soil Parameters

Organic matter and water contents, bulk density and pH were measured in the three SHC in both
in out-C and in-C locations (Table 1). Averages slightly differed based on SHC categorization. However,
decreasing values of organic matter content were found from SHChigh to SHClow in out-C locations;
differences were less evident when pH, bulk density, and water content were compared. Soil pH was
found to be acidic (5.61 to 5.96) inside the study area with no broad variations both in either out-C or
in-C. Moreover, bulk density averages in out-C varied slightly around 1.5 g cm−3. However, values of
the soil parameters on in-C were smaller in the case of bulk density (≈1.2 g cm−3), but far higher in
organic matter (≈10% compared to ≈5% for in-C and out-C, respectively). Instead, water content and
soil CO2 efflux were the less-variable parameters considering both out-C and in-T locations (≈20% and
≈5 µmol m−2 s−1, respectively).
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Table 1. Mean ± standard deviations of soil parameters. SHC indicates the “soil habitat condition”
categories; In-C and Out-C indicate whether values were detected beneath the tree canopy or outside
the canopy, respectively.

SHChigh SHCmedium SHClow

Units Out-C In-C Out-C In-C Out-C In-C

Bulk density g cm−1 1.5 ± 0.1 1.2 ± 0.2 1.5 ± 0.1 1.2 ± 0.2 1.5 ± 0.2 1.2 ± 0.1
Organic matter % 5.3 ± 2.5 10.3 ± 4.6 1.9 ± 1.8 9.1 ± 4.6 3.8 ± 1.4 9.5 ± 4.1

pH - 5.8 ± 0.7 6.0 ± 0.8 5.6 ± 0.4 5.9 ± 0.4 5.8 ± 0.2 5.7 ± 0.7
Soil CO2 efflux µmol m−2 s−1 4.6 ± 2.8 4.9 ± 2.7 4.5 ± 1.4 5.2 ± 1.9 5.2 ± 1.9 5.0 ± 2.2
Water content % 18.4 ± 5.9 20.8 ± 8.3 22.2 ± 8.8 23.2 ± 8.0 21.8 ± 8.4 23.7 ± 10.5

4.2. Seasonallity, Environmental Characteristics, and Community Structure

Generally, 113,579 organisms belonging to 27 taxa were individually identified and counted.
Collembola, Acari, larvae of dipterans, and larvae of coleopterans were the most frequent taxa (58%,
35%, 3%, and 1%, respectively) representing 97% of the total abundances. In detail, frequencies varied
significantly from spring to autumn (p < 0.01), as evidenced by results of the three-way ANOVA
showed in Table 2. In spring, collembolans represented 50% of total abundances, which increased
to 62% in autumn. Mite populations were higher in spring (44%) than in autumn (32%), and larvae
of dipterans and larvae of coleopterans maintained their populations varying from 2% to 3% in the
case of dipterans, remaining at 1% in the case of coleopterans. Other taxa, such as coleopteran adults,
hemipterans, pauropods, thysanopterans, and ants, were frequently found but their abundances were
lesser. Moreover, diplopods were found only in spring, and isopods conversely only in autumn,
as well as individuals belonging to Zygentoma taxon. However, the most important source of variation
was the location of each sampling point (in-C or out-C), showing a strong influence on the response
variables. Although SHC was not revealed as a significant source of variation by the ANOVA, some
taxa, such as diplopods, were found only in SHClow when trees were present. Embiopterans were
found in the three SHCs, both in out-C and in-C, during spring campaign, but only in in-C locations
during autumn. Proturans and pseudoscorpions followed similar patterns, as they were found in
the same categories, but pseudoscorpions lacked in autumn in-C-SHClow. Such variations were also
reflected by the QBS-ar and H′ indices, the values of which differed not only according to seasonality,
but also to the location of sampling points (F = 4.490 and F = 6.232, both significant, respectively) as
showed in Figure 3 and Table 2. The highest mean value of QBS-ar was detected in out-C-SHCmedium,
followed by out-C-SHChigh, both in autumn. Generally, higher values of QBS-ar were found in out-C.
Instead, mean values of H′ were closer to 1 in in-C locations in spring, but not in autumn.

Table 2. Three-way ANOVA on log-transformed abundances, QBS-ar and Shannon’s index (H′).
Asterisks indicate levels of significance (*) = p < 0.05; (**) = p < 0.01; (***) = p < 0.001. “Location”
indicates whether the sampling point was located beneath tree canopies (in-C) and outside the
canopy (out-C).

Ln Abundances QBS-ar H′

Suorce of Variation F Test p-Value F Test p-Value F Test p-Value

Livestock pressure 2.911 0.058 2.451 0.090 1.532 0.220
Location 14.655 <0.001 *** 17.464 <0.001 *** 0.913 0.341
Season 7.644 0.007 ** 2.057 0.154 0.007 0.932

Livestock pressure × Location 1.233 0.295 1.059 0.350 1.209 0.302
Livestock pressure × Season 1.355 0.262 0.511 0.601 2.247 0.110

Location × Season 0.015 0.902 4.490 0.036 * 6.232 0.014 *
Livestock pressure × Location × Season 1.718 0.184 1.581 0.210 0.634 0.532

See details in Appendix A: results of the post hoc Tukey test are shown in Table A3, mean values
of QBS-ar and H’ are in Tables A4 and A5, and total abundances are in Tables A6 and A7.
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Figure 3. Boxplots showing the distribution of data for each response variable by soil habitat condition
(SHC) and location factor (outside the canopy = Out-C or beneath tree canopy = In-C) in both seasons.
(A,B) plots show log-transformed abundances; (C,D) plots show QBS-ar values; (E,F) plots show H′

index values.

Results of NMDS and PERMANOVA are reported in Figure 4 and Table 3, respectively.
The ordination of sampling points based on community abundances showed stress values below the
0.15 threshold (Figure 4A,B). However, the occurrence of high EMI scores did not show convergence,
as evidenced by stress values above 0.20 (Figure 4C,D). The scaling of community abundances was
characterized by high overlapping based on categorical predictors (locations and SHC). Nevertheless,
more dissimilarity among communities was attributed to locations (p < 0.05 and p < 0.001 in spring
and autumn, respectively) than to SHC, which was significant in autumn (p < 0.05) but not significant
at all in spring (Table 3). Representation of significant taxa abundances in spring was lower than in
autumn, as shown in Figure 4A,B. In spring, such groups as Acari and Coleoptera (adults and larvae)
avoided points where values of organic matter and pH were higher, but they were also positively
related to high bulk density. Otherwise, Collembola, Thysanoptera, larvae of Diptera, and larvae
of Coleoptera were positively related to points where soil water content was higher. In autumn
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(Figure 4B), Collembola, Chilopoda, and Pauropoda avoided points where SOM was higher. Moreover,
these groups were significantly related to out-C-SHCmedium and out-C-SHClow in autumn. Several
environmental variables were significant in both seasons, but after the model selection performed on
PERMANOVA, only water content (p < 0.01), pH (p < 0.05), and soil CO2 efflux (p < 0.05) were deemed
significant (R2 = 17.4%). In the autumn model, environmental variables, such as slope (p < 0.05), SOM
(p < 0.01), effective precipitation (p < 0.05), and mean temperatures of the 20 days prior to sampling day
(p < 0.05), explained a wider percent of the total variance of PERMANOVA (R2 = 22.1%) as compared
to the spring model. It is noteworthy that the location of sampling points was found significant in both
abundance models (p < 0.05 and p < 0.001 in spring and autumn, respectively).Forests 2020, 11, x FOR PEER REVIEW 13 of 25 
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Figure 4. Community composition fits categorical predictors (SHC and location factor), environmental
parameters and taxa (abundances and EMIs). Log-transformed abundance matrices for spring and
autumn samplings are shown in graphics (A,B), respectively; EMI-values matrices for spring and
autumn samplings are shown in panels (C,D), respectively. Black arrows show the fitting of significant
taxa, whereas red arrows show the fitting of significant environmental variables. Location indicates
whether the sampling point was established beneath the tree canopy or outside the canopy; SHC
indicates the characteristics of the surrounding environment, as well as the pressure of the livestock
where sampling points were placed; bd = bulk density; ET_avg20 = average evapotranspiration of the
20 days prior to sampling; mo = soil organic matter content; T_0 = mean temperature of the sampling
day; T_avg20 = average temperature of the 20 days prior to sampling; T_max0 = maximum temperature
of the sampling day; T_min0 = minimum temperatures of the sampling day; T_min.avg20 = average
minimum temperature of the 20 days prior to sampling; wc = soil water content.

As the NMDS ordinations based on EMI matrices were almost random in both seasons, a clear
effect of SHC categories causing differences among sampling points was not determined. Nonetheless,
segregation of communities by locations was quite evident in autumn as indicated by PERMANOVA
(p < 0.001) in Table 3 and Figure 4D. Moreover, the number of significant taxa that fit the scaling
based on EMI scores was higher when compared to taxa abundance ordination in both seasons. Once
again, variables fitting communities was higher on NMDS than in PERMANOVA, but after the model
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selection, soil water content was the only significant variable related to spring communities (p < 0.05).
In contrast, the autumn model was related to the variation of slope (p < 0.01) and mean temperature of
the 20 days prior to sampling day (p < 0.01), including the location factor. Despite this, and similarly
to abundances, total variances explained by EMI spring and autumn models were low (R2 = 8.4 and
R2 = 19.7%, respectively).

Table 3. PERMANOVA results for matrices of log-transformed abundances and eco-morphological
index score matrices. Significant results for environmental parameters causing dissimilarity are marked
with asterisk: (*) = p < 0.05; (**) = p < 0.01; (***) = p < 0.001. Location indicates if the sampling point
was established beneath the tree canopy (In-C) or outside the canopy (Out-C); SHC indicates the
characteristics of the surrounding environment and pressure of the livestock where sampling points
were placed; EP (–20) = effective precipitation of the 20 days prior to the sampling day; T (-20) = average
temperature of the 20 days prior to the sampling day.

Community
Matrix Season Source of

Dissimilarity Df F R2

Log-transformed Spring Location 1 2.674 0.041 *
Abundances Water content 1 3.444 0.052 **

pH 1 2.480 0.037 *
Soil CO2 efflux 1 2.263 0.034 *

Residuals 54 0.836

Log-transformed Autumn Location 1 6.217 0.062 ***
Abundances SHC 2 2.184 0.044 *

Slope 1 3.173 0.032 *
OM content 1 3.530 0.035 **

T (−20) 1 2.720 0.027 *
EP (−20) 1 2.156 0.022 *
Residuals 78 0.779

EMIs Spring Location 1 2.097 0.034
Water content 1 3.155 0.051 *

Residuals 57 0.916

EMIs Autumn Location 1 11.329 0.111 ***
Slope 1 5.055 0.050 **

T (−20) 1 3.456 0.036 **
Residuals 82 0.803

4.3. Spatial and Temporal Patterns of Abundances and QBS-ar

GAMs demonstrated how both response variables (total abundances and QBS-ar) changed in
spring and autumn in relation to the spatial structure of environmental variables (Table 4 and Figure 5).
In general, variance explained by the models was very high (R2 = 87.4% and R2 = 89.1% for abundances;
R2 = 85.5% and R2 = 91.8% for QBS-ar in spring and autumn, respectively), the largest effect of
which was the contribution of the random effect in NDMS coordinates (F = 21.750 and F = 23.880
for abundances in spring and autumn; F = 12.870 and F = 37.430 for QBS-ar in spring and autumn,
respectively). Moreover, the smoothness of the models was conditioned by location factor, where
out-C significantly explained a wider proportion of the variance over the unexplained (F = 7.920 and
F = 8.923 in spring and autumn, respectively) rather than in-C. Also, effective precipitation of 20 days
prior to sampling day resulted statistically significant in autumn (F = 2.539). Otherwise in autumn,
QBS-ar scores followed similar spatial patterns to SOM content in autumn (F = –2.214). It is important
to note that smoothing was better when several variables such as pH, SOM and bulk density (spring
abundances), temperature (autumn abundances), and effective precipitation (autumn QBS-ar) were
available. Despite their insignificant effects on smoothing, AIC obtained better scores when they
were present.

Figure 5A,B shows the spatial patterns of smooth isolines for total abundances. The maximum
order of magnitude in autumn (e4) indicates a higher variation than in spring (e2). Instead, smooth
isolines for QBS-ar reached variations from 0 to 80 in both seasons (Figure 5C,D).
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Table 4. GAMs results for community metrics in each season. Significant results are shown in bold.
Location indicates where sampling stations were located: outside the canopy (Out-C) or beneath tree
canopy (In-C); SHC-low/medium/high indicates the characteristics of environment and pressure of the
livestock in which points were located; T (–20) = average temperature of the 20 days prior to sampling
day; EP (–20) = effective cumulative precipitation of the 20 days prior to sampling day.

Metrics Season Parameter F p R2

Log-transformed Spring s(NMDS1, NDMS2) 21.750 <0.001 0.874
Abundances Location-out-C 7.920 <0.001

Location-In-C −0.948 0.348
SHClow −1.705 0.095

SHCmedium −1.444 0.156
pH −1.416 0.164

OM content −1.529 0.134
Bulk density −1.536 0.132

Autumn s(NMDS1, NDMS2) 23.880 <0.001 0.891
Location-out-C 8.923 <0.001
Location-In-C 1.742 0.087

SHClow 1.899 0.062
SHCmedium 1.066 0.291

T (−20) −1.605 0.114
EP (–20) 2.539 0.014

QBS-ar Spring s(NMDS1, NDMS2) 12.870 <0.001 0.855
Location-out-C 35.507 <0.001
Location-In-C −0.873 0.389

Autumn s(NMDS1, NDMS2) 37.430 <0.001 0.918
Location-out-C 15.892 <0.001
Location-In-C 0.107 0.915
OM content –2.214 0.030

EP (−20) −1.888 0.063
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Figure 5. GAM plots representing spatial smoothing of the response variables. (A) GAM model for
spring total abundances; (B) GAM model for autumn total abundances; (C) GAM model for spring
QBS-ar; (D) GAM model for autumn QBS-ar. Codes represent the quantity by which each response
variable varies. Black-solid isolines represent the spatial smoothing that belonged to a determined
interval of variation. Red-dashed isolines represent the upper variation of that interval associated with
each black solid isoline sharing the same code. Green-dashed isolines represent the lower variation of
that interval associated to each black solid isoline sharing the same code.
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5. Discussion

Understanding the ecosystem processes governing reservoirs of soil biodiversity, and the practices
threatening them (e.g., anthropogenic mismanagement), would strongly benefit from characterizing the
microarthropod community composition associated with traditionally managed rangelands. Moreover,
the use of morphological traits in identifying spatial patterns and diversity of biological forms and
relationships with above- and belowground environmental characteristics is a helpful method to detect
areas under risk in terms of loss of soil multifunctionality [4,12]. This need becomes even more urgent
since Mediterranean areas are especially sensitive to new climate change scenarios [7]. Features of
Iberian rangeland ecosystems, such as the patchy distribution of vegetation and the unequal pressure
exerted by livestock, may be a major structuring force of soil microarthropod communities at local
scales. Nevertheless, several stochastic events (e.g., colonization and extinction) usually more related
to regional scales can also take place locally [49].

5.1. The Response of Community Abundances

Our analyses suggest that abundances of microarthropod communities differed in response to the
presence of trees and livestock pressure. These differences among community and taxa abundances
can be simply explained by the environmental characteristics of each sampling point [50]. In this
context, the analysis based on NMDS allowed us to identify dissimilarities among communities’
compositions, and sensitivity of taxa populations in relation to spatial and temporal dynamics of
niche-environmental parameters. Our results suggest that, in general, areas outside the influence of
trees harbor higher abundance of microarthropods rather than areas beneath tree canopies. NMDS
also reveals a great degree of overlap between locations × SHC categories that could be representative
of a geographic dispersal of taxa (at the study area scale) due to the absence of physical barriers and
proximity of categories [51]. It is noteworthy that approximately 80% of variation was undetermined
by the multivariate analysis (PERMANOVA), thus, it could be due to other non-spatially structured
environmental factors that were not measured in the field [52], or even because of biotic interactions
within the microarthropod community due to its spatial aggregation [49,53]. Results of GAM, based
on abundances in both seasons, support the results of PERMANOVA. GAM models reflected a
clear spatial structure of total abundances, as indicated by approximately 88% of variance explained
in both seasons. This indicates that spatiotemporal processes (e.g., dispersal) in relation to local
environmental factors drive total abundances of microarthropod communities [52,54–56]. Therefore,
soil environmental variables, characteristics of vegetation cover, and livestock pressure alone could not
explain by themselves the community aggregation phenomena but a dispersion of total abundances.
This fact coincides with [53,54], who concluded that the spatial structure of variables plus the spatial
and temporal structure of total abundances reveals that overall abundances are mediated both by
dispersal and environmental factors, where the effects of the latter are weaker.

Several relationships inferred from NMDS analysis are relevant. Significant taxa, such as
Acari, Collembola, Pauropoda, Araneae, and Chilopoda, were related to out-C-SHCmedium and
out-C-SHClow in autumn, while Acari, Collembola, and Thysanoptera were positively associated with
out-C-SHCmedium and out-C-SHClow in spring. Such convergence of positive correlations in the same
direction could indicate that lower livestock pressure allows the development of populations and the
co-occurrence of microarthropod taxa in the absence of trees, which accords with Mulder et al. [57].
However, an ensemble of biotic and abiotic interactions can also cause such relationships: for instance,
soil parameters analyses indicate that trees contribute to rising SOM values, mostly due to litter
inputs [21], which provide habitat and energy budget to the detrital community. In addition, significant
negative relationships between pH, SOM, and abundances of such groups as Acari and Coleoptera
in spring, as well as between SOM, and Collembola and Chilopoda (and Coleoptera) in autumn,
have been identified. Except for Chilopoda (mainly predators), the other taxa show a wide variety
of feeding habits. Indeed, the spectrum of feeding habits within the microarthropod community is
wide [5]. However, our study is limited since the assemblage of communities was performed at a low
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taxonomical level. Thus, in order to shed light on relationships between feeding habits, environmental
parameters, and community structure, an analysis of the functional roles of microarthropods at higher
taxonomical level should be performed.

Another inference suggested by results based on NMDS analysis is that Acari and Collembola
abundances avoid each other, as mites were more related to out-C, whereas collembolans were more
related to in-C areas. However, this affirmation must be put in context: mites and collembolans are
dominant and normally coexist in soil. Locally, competition for resources between both taxa (e.g.,
those with detritivorous feeding habits) is expected to benefit some functional groups over others due
to negative interactions, as suggested by Caruso et al. [54] in a study of Antarctic microarthropod
communities. As our study lacked a functional characterization of taxa, this affirmation is not sustained
by our results. Otherwise, several authors [24,29] indicate that trees (and litter) in semiarid wood
pastures decrease soil evapotranspiration rates by sunlight interception [31], and consequently decrease
wider fluctuations of soil moisture when compared to open spaces. This causes a response of the entire
microarthropod community to light availability as demonstrated by Jiménez-Chacón et al. [31], who
concluded that detritivores preferred darker microsites (e.g., beneath tree canopies). Hence, a higher
accumulation of litter and SOM beneath tree canopies, associated with lower rates of evapotranspiration,
promoted collembolan abundances and likely inhibited the development of detritivorous mites by
competition for resources. The opposite occurs in localities where mite populations are greater than
collembolans, but our results do not allow for speculation about such dynamics.

5.2. The Response of Biological Forms’ Evolutive Adaptation

In the context of this study, rangeland mismanagement leads to a promotion of undesirable
vegetation in terms of livestock profit. However, from the perspective of biodiversity, a greater number
of well-adapted microarthropod communities live in such areas. The measurement of biological forms’
adaptation to soil environment involves the evaluation of such traits as depigmentation; reduction
of appendages, such as antennae and legs; presence, absence, or reduction of the visual apparatus;
presence, absence, or reduction of wings; dimensions; and body shape [11]. The higher the score
attributed to each trait, the better adapted to a soil environment the organism is. The sums of all these
scores serves as the EMI of each biological form. In the same way, the greater the number of biological
forms with high scores that lives in the soil, the better quality and stability of the soil (i.e., the less
disturbance) [58]. This is the main concept upon which QBS-ar relies and, by definition, it is based
on environmental filtering theory. Overall, our analyses suggest that microarthropod communities’
evolutive adaptation to their soil environment differed mostly in response to the presence of trees.
These differences reinforce the hypothesis that vegetation cover and environmental characteristics
(i.e., habitat degradation caused by livestock pressure) are major forces that structure microarthropod
communities even at evolutive level, which accords with the main basis of QBS-ar and environmental
filtering theory.

Stress values of the NMDS analysis based on EMI communities suggest that the goodness of
fit on morphological traits was poor. Nevertheless, a clear and significant differentiation between
out-C and in-C was identified (stronger in autumn than in spring). This supports our hypothesis
that vegetation cover shapes the microarthropod adaptation, but it contradicts the result obtained
by Meloni et al. [39], who studied the community composition of ground arthropods, in terms of
abundances and richness, in patches of vegetation and interpatch in Mediterranean drylands. In that
study, patches of vegetation harbored higher richness and abundances than in interpatch areas when
compared to the open space values of our study. However, in Meloni et al.’s study it is noteworthy
that vegetation cover on interpatch areas was absent (bare soil).

NMDS analysis also showed a great degree of overlap between SHC categories, and insignificant
effects on EMI communities. Overall, a greater number of taxa showed significant fits to SHC areas
and locations. Unfortunately, it is difficult to extract clear inferences in relation to SHC based on these
results due to stress values over 0.20. However, disturbances driven by livestock could explain it
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since several authors consider that well-managed silvopastoral systems, for instance with livestock
charges at 1 AU ha−1 or below [30], could enhance resource allocation within soil food webs [59], by,
for example, altering the C:N ratio [60]. This fact supports the niche-environmental hypothesis, and it
could explain why SHCmedium showed similar patterns to SHClow on QBS-ar values.

Finally, poor values of variance explanation resulted from PERMANOVA. Approximately 87%
of the total variance remained undetermined. This implies that the occurrence of morphological
adaptation may be related to spatially structured variables or biotic interactions (or both) that were
not measured in the field. Results of GAM analyses based on QBS-ar confirm the hypothesis that
morphological adaptation also follows a spatially structured distribution. Moreover, it is even stronger
than total abundances models. Smoothing patterns also differed from spring to autumn, which
were negatively related to the spatial position of trees and SOM in autumn, and only to trees in
spring. Therefore, the response to the third question of this work is that morphological adaptation and
abundances did not follow identical, but similar, spatial patterns as confirmed by NMDS, PERMANOVA
and, finally, GAM analysis.

5.3. Object-Based Image Analysis and SHC Classification

Correlations between microarthropod communities’ structures, metrics and evolutive adaptations
and SHC classification using OBIA were not as high as expected. This might have been due to the fine
scale at which microarthropod populations develop themselves, or to the relatively rapid dynamics
of annual grasses. OBIA was chosen as the best candidate to remotely classify objects on the ground
when compared to pure pixel classification techniques, but it obviously presents problems regarding
the pixel’s dimensions of the image. However, OBIA turned out to be a useful technique to identify
livestock effects, which would be a useful analysis when performed at larger scales. That being said,
we were able to confirm that the results of the analysis corresponded with the areas in which livestock
spend more time, as demonstrated in precedent studies about physical-chemical indicators of soil
quality [25], impacts of livestock [30], and soil erosion studies [30,61] realized within the study area.

6. Conclusions

Results of this study suggest that there is a clear effect of spatial heterogeneity and spatially
distributed variables (measured and unmeasured in the field) on structuring community metrics
and community composition. This study demonstrates several facts: (1) landscape characteristics
play a crucial role on the occurrence of evolutive adaptation of microarthropod biological forms;
(2) abundances and the occurrence of morphological adaptation did not follow identical, but similar
spatial patterns; (3) and the effect of environmental characteristics, such as the patchy distribution of
vegetation being high on abundances and taxa diversity, which is likely due to environmental filtering,
but to stochastic dispersal as well. In contrast, environmental filtering better explains the spatial
distribution of QBS-ar and community composition based on EMI scores. (4) Higher abundances
and adaptation to soil environment were related to open spaces rather than areas under arboreal
influence. Smoothing of GAM models responded to the spatial positions of trees in terms of overall
abundances and QBS-ar in both seasons. Moreover, the contribution to GAM models of the spatial
structure of soil parameters and livestock pressure was unexpectedly low in abundances, and almost
absent in QBS-ar patterns (with the exception of SOM content in autumn). This indicates that stochastic
dispersal in relation to local environmental factors (e.g., non-spatially structured abiotic factors, as well
as biotic interactions) drive abundances and adaptation of microarthropod communities. (5) High
livestock pressure influenced microarthropod communities’ composition and metrics. Better values
of community metrics were reached in medium and low areas, which indicates that lower livestock
activity trends to enhance microarthropod zoocenoses. (6) The delimitation of SHC areas via OBIA
technique showed unexpectedly lower correlations with microarthropod communities’ composition.
For future studies, we strongly recommend the use of UAVs and multispectral images in order to
reduce pixel dimensions, but also to determine the physiological state of vegetation. In this context,
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identifying the links between vegetation and belowground communities might be crucial to accurately
quantify the resilience of ecosystems, and the consequences of climate change for humankind.
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Appendix A

Table A1. Means ± SD of meteorological parameters calculated for the period 01/01/2013 to 31/12/2018.
From: Redarex; Meteorological station: Valdesalor (CC18) which, is approximately 31 km away from
the study area; altitude: 382 m.; coordinates UTM H30 X: 730,101, Y: 4,361,000; Extracted from [62].

Meteorological Variable Units Value

Annual solar radiation W/m2 16.59 ± 6.76
Net solar radiation W/m2 7.52 ± 4.22

Mean annual temperature ◦C 15.02 ± 6.30
Maximum mean temperature of the coldest month ◦C 15.84 ± 0.62
Minimum mean temperature of the coldest month ◦C 2.41 ± 0.27

Maximum mean temperature of the warmest month ◦C 30.60 ± 6.46
Minimum mean temperature of the warmest month ◦C 13.61 ± 4.22

Mean annual rainfall mm 524.2 ± 28.4
Mean annual effective precipitation mm 249.8 ± 14.4

Mean annual evapotranspiration mm 1363.1 ± 75.5

Table A2. Eco-morphological Indexes (EMIs) score for each microarthropod taxa. Groups shown are
those found in this work.

Taxa EMI Score

Pseudoscorpiones 20
Opiliones 10
Araneae 1–5

Acari 20
Isopoda 10

Diplopoda 10–20
Pauropoda 20
Symphyla 20
Chilopoda 10–20

Protura 20
Diplura 20

Collembola 1–20
Psocoptera 1
Hemiptera 1

Thysanoptera 1
Zigentomi 10

Embioptera 10
Orthroptera 1–20
Coleoptera 1–20

Hymenoptera 1–5
Diptera 1

Lepidoptera 1
Coleoptera (larvae) 10

Diptera (larvae) 10
Hymenoptera (larvae) 10
Lepidoptera (larvae) 10

Holometabolans (adults) 1
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Table A3. Significant comparisons from post hoc Tukey tests are shown.

Metrics Factors Pairs Comparison Difference p

Ln abundances Livestock pressure Low − High 0.568 0.045

Location In-C − Out-C –0.07 <0.001

Season Spring − Autumn –0.051 0.007

Livestock pressure × Location High × In-C − Low × Out-C –1.108 0.009
High × In-C −Medium × Out-C –1.147 0.004

Medium × In-C −Medium × Out-C –0.9 0.03

Livestock pressure × Season Low × Autumn − High × Autumn 0.882 0.038
High × Spring − Low × Autumn –1.093 0.032

Medium × Spring − Low × Autumn –0.924 0.036

Location × Season In-C × Autumn − Out-C × Autumn –0.651 0.036
In-C × Spring − Out-C × Autumn –1.199 <0.001

Livestock pressure × Location ×
Season

High × In-C × Spring − Low × Out-C
× Autumn –1.526 0.048

High × In-C × Autumn −Medium ×
Out-C × Autumn –1.427 0.043

High × In-C × Spring −Medium ×
Out-C × Autumn –1.733 0.019

High × In-C × Spring − Low × In-C ×
Autumn –1.781 0.035

QBS-ar Location In-C − Out-C –19.693 <0.001

Livestock pressure × Location High × In-C − High × Out-C –24.222 0.037
High × In-C − Low × Out-C –28.101 0.009

High × In-C −Medium × Out-C –33.791 <0.001
Medium × In-C −Medium × Out-C –23.922 0.027

Livestock pressure × Season High × Spring − Low × Autumn –23.295 0.09

Location × Season In-C × Autumn − Out-C × Autumn –27.661 <0.001
In-C × Spring − Out-C × Autumn –24.243 0.002

Livestock pressure × Location ×
Season

High × In-C × Autumn − High ×
Out-C × Autumn –39.419 0.08

High × In-C × Autumn − Low ×
Out-C × Autumn –34.004 0.051

H′ Location × Season In-C × Spring − Out-C × Spring 0.197 0.063

Table A4. Average QBS-ar values ± SD found at each SHC (high, medium and low livestock pressure),
in each Location (beneath = in-C and outside the canopy = out-C) during both sampling campaigns.

Spring Autumn

Livestock Pressure Out-C In-C Out-C In-C

SHChigh 66.9 ± 28.3 72.1 ± 27.2 104.4 ± 34.2 64.9 ± 23.2
SHCmedium 97.1 ± 39.4 80.3 ± 22.2 105.9 ± 27.8 76.8 ± 32.3

SHClow 91.3 ± 22.4 84.8 ± 22.7 98.9 ± 18.4 89.0 ± 31.5

Table A5. Average Shannon’s diversity values ± SD found at each SHC (high, medium and low
livestock pressure), in each Location (beneath = in-C and outside the canopy = out-C) during both
sampling campaigns.

Spring Autumn

Livestock Pressure Out-C In-C Out-C In-C

SHChigh 0.79 ± 0.36 0.78 ± 0.33 0.97 ± 0.27 0.89 ± 0.23
SHCmedium 0.76 ± 0.20 1.04 ± 0.41 0.86 ± 0.34 0.83 ± 0.29

SHClow 0.69 ± 0.29 1.00 ± 0.48 0.76 ± 0.26 0.68 ± 0.24
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Table A6. Absolute numbers of microarthropod found at each SHC (high, medium and low livestock
pressure), in each Location (beneath tree canopy = In-C or outside the canopy = Out-C) during the first
sampling campaign.

Spring

Out-C In-C

Taxa SHChigh SHCmedium SHClow SHChigh SHCmedium SHClow

Pseudoscorpiones - 3 - - - 3
Opiliones - - - - - -
Araneae 1 - 3 - 2 2

Acari 3410 3928 2882 902 1116 2030
Isopoda - - - - - -

Diplopoda - - - - - 2
Pauropoda 1 8 1 3 - -
Symphyla - 10 3 - 3 -
Chilopoda 2 17 18 4 19 8

Protura - 1 - - - 3
Diplura 30 29 24 3 7 -

Collembola 995 4368 1046 3424 5584 936
Psocoptera - - - 5 2 7
Hemiptera 1 51 30 14 34 13

Thysanoptera 1 24 7 6 20 8
Zigentomi - - - - - -

Embioptera 1 2 - 6 4 2
Orthroptera - - - 1 - -
Coleoptera 46 180 28 25 18 12

Hymenoptera 5 26 64 17 153 31
Diptera - 1 2 2 7 6

Lepidoptera - - 1 1 1 -
Coleoptera (larvae) 36 31 30 14 31 34

Diptera (larvae) 29 218 63 64 120 135
Hymenoptera (larvae) - - - 4 - -
Lepidoptera (larvae) 1 3 1 - 2 2

Holometabolans - - - - - -
Total 4559 8900 4203 4495 7123 3234

Table A7. Absolute numbers of microarthropods found at each SHC (high, medium and low livestock
pressure), in each Location (beneath tree canopy = In-C or outside the canopy = Out-C) during the
second sampling campaign.

Autumn

Out-C In-C

Taxa SHChigh SHCmedium SHClow SHChigh SHCmedium SHClow

Pseudoscorpiones 1 6 1 - 1 -
Opiliones - - - - - -
Araneae 1 5 12 4 3 1

Acari 4003 5375 10370 1321 2599 2498
Isopoda - - - - 1 -

Diplopoda - - - - - -
Pauropoda 16 383 56 1 29 97
Symphyla 18 9 20 7 1 2
Chilopoda 5 11 2 - 11 1

Protura 2 2 7 - 1 1
Diplura 8 1 - - 3 1

Collembola 7079 9787 13472 4708 4892 10,574
Psocoptera - - - - - 2
Hemiptera 102 22 18 243 12 17

Thysanoptera 34 29 11 7 36 13
Zigentomi - - 3 1 - -

Embioptera - - - 7 2 5
Orthroptera - - - - - -
Coleoptera 96 85 29 10 36 32

Hymenoptera 3 17 17 80 58 10
Diptera 31 15 16 7 25 13

Lepidoptera - - - - - -
Coleoptera (larvae) 152 101 92 137 52 69

Diptera (larvae) 1374 712 226 238 84 71
Hymenoptera (larvae) - - - - - -
Lepidoptera (larvae) 70 16 21 21 4 2

Holometabolans 3 6 1 1 2 1
Total 12,424 16,382 24,310 6700 7839 13,410
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