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A todos ellos, gracias.



iv



Resumen

La principal contribución del presente trabajo de tesis doctoral viene dada por el diseño e

implementación de un nuevo repositorio digital con funcionalidad de recuperación basada en contenido

para imágenes hiperespectrales de la superficie terrestre, obtenidas de forma remota mediante sensores

aerotransportados o de tipo satélite. En los últimos años, el número de imágenes hiperespectrales se ha

incrementado de forma notable, aunque solamente una pequeña parte de las mismas está disponible para

uso público y las imágenes se encuentran diseminadas en diferentes localizaciones y formatos. Por tanto,

el desarrollo de un repositorio estándar para imágenes hiperespectrales es un objetivo altamente deseado.

En particular, en este trabajo de tesis se desarrolla un nuevo repositorio digital compartido para imágenes

hiperspectrales obtenidas de forma remota, que permite la carga de nuevas imágenes hiperespectrales

junto con sus meta-datos, verdad-terreno y resultados de los análisis (información espectral). Dicho

repositorio se presenta como un servicio web para permitir la gestión de las imágenes a través de

una interfaz web, que está disponible online en http://www.hypercomp.es/repository. No obstante,

la principal contribución del presente trabajo de tesis doctoral es el desarrollo de un sistema eficiente

de recuperación de imágenes basada en la información espectral previamente extráıda mediante técnicas

de desmezclado espectral. Dicho sistema permite la búsqueda de imágenes dentro de una base de datos

mediante la comparación con los componentes espectralmente puros de la imagen, lo cual supone una

novedad significativa en este campo de estudio. Para la extracción de dicha información espectral se

han implementado varias cadenas completas de desmezclado espectral que permiten recuperar y filtrar

las imágenes utilizando la semejanza espectral y la abundancia de una verdad-terreno dada. Con vistas

a gestionar el coste computacional de extraer la información necesaria para catalogar nuevas imágenes

hiperespectrales en el sistema, se recurre a unidades de procesamiento gráfico (GPUs). Las cuales han sido

utilizadas de forma satisfactoria para acelerar los cómputos relacionados con los datos hiperespectrales de

gran dimensionalidad. Es importante destacar que hay muy pocos trabajos en la literatura que utilicen

expĺıcitamente la información espectral para la búsqueda, y ninguno de ellos ha utilizado GPUs para

su implementación eficiente. Además, para liberar la carga computacional del servidor web, el presente

sistema permite la gestión de computación distribuida utilizando varios clusters de computadores (con

arquitecturas CPU y GPU).

Además, esta tesis presenta el desarrollo de un geo-portal para almacenar y devolver de forma eficiente

productos de imágenes de la superficie terrestre obtenidas por los sensores MODIS y SEVIRI. Este

sistema se presenta como una aplicación web, disponible online en http://www.ceosspain.lpi.uv.es, que

permite realizar una búsqueda de imágenes por localización geográfica, además de otros filtros como

tipo de sensor, fecha de adquisición, o cobertura nubosa de la imagen. Con con el desarrollo de este

sistema se ha abarcado un estudio completo de repositorios digitales para datos de la superficie terrestre,

proponiendo una nueva contribución altamente novedosa en este campo. Los productos obtenidos a

partir de las imágenes resultan de gran utilidad en muchos estudios, y más si los productos pueden



ser fácilmente filtrados para regiones de interés concretas, tal y como permite la nueva herramienta

desarrollada en el presente trabajo.
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Abstract

The main contribution of the present thesis work is the design and implementation of a new digital

repository with content-based image retrieval functionality for remotely sensed hyperspectral images,

collected by airborne or spaceborne Earth observation instruments. Over last years, the amount of

hyperspectral images has been significantly increasing, although only a small part of them are available for

public use and they are spread among different storage locations and formats. Therefore, the development

of a standardized hyperspectral data repository is a highly desired goal. Specifically, in this thesis

work we develop a new shared digital repository for remotely sensed hyperspectral data, which allows

uploading new hyperspectral data sets along with meta-data, ground-truth and analysis results (spectral

information). Such repository is presented as a web service for facilitating the advanced management of

images through a web interface, and it is available online from http://www.hypercomp.es/repository.

Most importantly, the developed system includes a spectral unmixing-guided content-based image

retrieval (CBIR) functionality which allows searching for images from the database using spectrally

pure components or endmembers in the scene. Several full spectral unmixing chains are implemented

for spectral information extraction, which allows filtering images using the similarity of the spectral

signature and its associated abundance in the scene. In order to accelerate the process of obtaining

the spectral information for new entries in the system, we resort to efficient implementations of spectral

unmixing processing chains on graphics processing units (GPUs), which have been successfully exploited

to accelerate hyperspectral-related computations. There are a few works in the literature dealing

explicitly with the use of spectral information to perform CBIR from hyperspectral repositories, but

none of them are implemented on GPUs. Furthermore, in order to relieve the load of the computational

server, our system provides distributed computing management using several clusters (with CPU and

GPU architectures).

In addition, another important contribution of this thesis is the development of a new geo-

portal for storing and efficiently retrieving MODIS/SEVIRI remote sensing products, since a complete

design of a standardized image data repository should also store advanced remote sensing products.

In this regard, our newly developed system is presented as a web tool, available online from

http://www.ceosspain.lpi.uv.es, which allows for the retrieval of remote sensing data by geographic

location, and implements other filters based on the image acquisition date, type of sensor or cloud

cover. This development is expected to be quite useful in many studies, in particular, if the products

can be easily retrieved for a given area of interest as it is possible with the newly developed tool. In fact,

this capability has the potential to impact the activities of many remote sensing users such as farmers,

engineers, water managers, as well as the scientific community devoted to Earth observation in general.
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Chapter 1

Introduction

1.1 Context and motivation

Content-based image retrieval (CBIR) systems intend to retrieve images from databases using the pixel

information contained in those images. The incorporation of CBIR [1] techniques into remote sensing

data repositories offers significant advantages from the viewpoint of effectively managing, storing and

retrieving large volumes of remotely sensed data [2]. Hyperspectral imaging (also known as imaging

spectroscopy [3]) is a fast growing area in remote sensing. Hyperspectral scenes are comprised of

hundreds of images (at different wavelength channels) for the same area on the surface of the Earth, thus

generating very large data volumes that need to be efficiently stored and managed. The interpretation

of remotely sensed hyperspectral scenes is also an increasingly relevant research topic involving many

different analysis techniques [4].

In order to provide an idea of available and future missions for Earth observation using hyperspectral

instruments, Table 1.1 provides a summary of the main characteristics of nine hyperspectral instruments:

three airborne -the hyperspectral data collection experiment (HYDICE) [5], the airborne visible infra-red

imaging spectrometer (AVIRIS) [6]) and the reflective optics system imaging spectrometer (ROSIS [7])-

and six spaceborne -Hyperion [8], the German spaceborne imaging spectrometer mission (EnMAP) [9],

the Italian hyperspectral precursor and application mission (PRISMA) [10], the compact high resolution

imaging spectrometer (CHRIS) [11], the hyperspectral infra-red imager (HyspIRI) [12] and infrared

atmospheric sounding interferometer (IASI) [13])-. From this list, EnMAP, PRISMA and HyspIRI are

still not operational. The spatial resolutions are generally higher for airborne instruments. The spectral

coverage of HYDICE, AVIRIS, Hyperion, EnMAP, PRISMA and HyspIRI corresponds to the visible,

the near-infrared, and the shortwave infra-red spectral bands (typically, from 0.4 to 2.5 nanometers),

whereas CHRIS and ROSIS cover only the visible bands and IASI also covers the mid-infra-red and

the long-infrared bands. The number of spectral bands is approximately 200 for HYDICE, AVIRIS,

Hyperion, EnMAP, PRISMA and HyspIRI, with a spectral resolution of the order of 10 nanometers.

The lowest number of bands is provided by CHRIS, with 63 bands and spectral resolutions of 1.3 and

12 nanometers (depending on the region of the spectrum). Quite opposite, instruments such as IASI

provide up to 8461 spectral bands. In all cases, the spectral resolution is very high (offering a huge

potential to discriminate materials).

Several factors make the analysis of hyperspectral data a complex and hard task, calling for

sophisticated analysis methods. Among these factors, we emphasize the presence of spectral mixing

effects that have been generally approached by identifying a set of spectrally pure signatures in the scene
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Table 1.1: Main characteristics of several (available and new) hyperspectral imaging instruments.

Altitude Spatial Spectral Coverage Number Data cube size

(Km) resolution (m) resolution (nm) (µm) of bands (samples×lines×bands)

HYDICE 1.6 0.75 7-14 0.4-2.5 210 200×320× 210

AVIRIS 20 20 10 0.4-2.5 224 512×614×224

ROSIS 3 1-6 4 0.4-0.9 115 340×610× 115

HYPERION 705 30 10 0.4-2.5 220 660×256×220

EnMAP 653 30 6.5-10 0.4-2.5 228 1000×1000×228

PRISMA 614 5-30 10 0.4-2.5 238 400×880×238

CHRIS 556 36 1.3-12 0.4-1.0 63 748×748×63

HyspIRI 626 60 4-12
0.38-25

& 7.5-12
217 620×512×210

IASI 817
V: 1-2 km

H: 25 km
0.5 cm−1 3.62-15.5 8461 765×120×8461

(called endmembers in spectral unmixing terminology) and their corresponding abundance fractions in

each (mixed) pixel of the scene [14]. An additional issue is the extremely high dimensionality and size

of the data, resulting from the very fine spatial, spectral and temporal resolutions currently provided by

hyperspectral instruments (see Table 1.1). This demands fast computing solutions that can accelerate

the interpretation and efficient exploitation of hyperspectral data sets in various applications [15, 16, 17].

Although the amount and volume of hyperspectral image data has been significantly increased in

recent years, with a large number of data sets already collected over different locations over the world and

several new missions under development, the data sets which are available for public use are spread among

different storage locations and present significant heterogeneity regarding the storage format, associated

meta-data (if any), or ground-truth availability. As a result, only a few data sets are recurrently used

to validate hyperspectral imaging applications, and available data are highly fragmented. Nowadays, it

is estimated that a large fraction of collected hyperspectral data sets are never used but simply stored

in different databases. Even if the use of standardized benchmark data is quite interesting from the

viewpoint of algorithm comparison, there is a need to increase the pool of benchmark hyperspectral data

sets available to the community in order to allow a more appropriate selection of specific test data for

different applications. This functionality is already available in other systems which are able to effectively

provide remotely sensed data on-demand and with high retrieval performance [18, 19, 20, 21]. At present

there is no common repository of hyperspectral data sets which can effectively distribute such data

among potential users. Since the amount and volume of hyperspectral data is expected to significantly

increase with the new missions described in Table 1.1, a highly desirable objective in the hyperspectral

imaging community is to develop new tools to effectively share large amounts of hyperspectral data

together with their high-level associated information (e.g., ground-truth, analysis results, pointers to

bibliographic references describing previous results on the data, etc.)

On the other hand, the complete design of a standardized image data repository to store advanced

remote sensing products could be extremely useful in many studies, in particular, if the products could

be easily retrieved for a given area of interest. In fact, this capability has the potential to impact

the activities of many remote sensing users such as farmers, engineers, water managers, as well as the

scientific community devoted to Earth observation and remote sensing. A large number of remotely

sensed multispectral data sets have been collected in recent years by Earth observation instruments such

as the moderate resolution imaging spectroradiometer (MODIS) aboard the Terra/Aqua satellite, or the
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Figure 1.1: Spectral signature definition.

spinning enhanced visible and infrared imager (SEVIRI) aboard the geostationary platform Meteosat

Second Generation (MSG). The advanced remote sensing products resulting from the analysis of these

data are useful in a wide variety of applications, but require significant resources in terms of storage,

retrieval and analysis. Despite the wide availability of these products, the data coming from these

instruments are spread among different locations and retrieved from different sources, and there is no

common data repository from which the data or the associated products can be retrieved.

1.2 Hyperspectral analysis

Hyperspectral imaging is an emerging and fast growing area in remote sensing. It is concerned with the

measurement, analysis, and interpretation of spectra acquired from a given scene (or specific object) at

a short, medium or long distance by an airborne or satellite sensor. The main feature of hyperspectral

images is the high resolution that they present in the spectral domain, since they are collected by

instruments able to measure hundreds of narrow spectral bands corresponding to continuous wavelength

channels [22]. In contrast, multispectral imaging instruments are only able to provide information in

a few spectral bands [23]. In fact, hyperspectral imaging instruments have experienced a significant

evolution [24]. The very high spectral resolution of remotely sensed hyperspectral data [25], rooted in

technological modelling and processing advances, have fostered a strong interest in this image modality

at an unprecedented rate in recent years. Indeed, the very high spectral resolution of hyperspectral data

offers very significant potential in the identification of materials and their properties [26].

The wealth of information available from hyperspectral imaging instruments has opened ground-

breaking perspectives in several applications, including environmental modelling and assessment for

Earth-based and atmospheric studies, risk/hazard prevention a response including with land fire tracking,

biological threat detection, monitoring of oil spills and other types of chemical contamination, target
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detection for military and defense/security purposes, and urban planning and management studies,

among many others [26]. For instance, AVIRIS is now able to record the visible and near-infrared

spectrum (wavelength region from 400 to 2500 nanometers) of the reflected light of an area 2 to 12

kilometers wide and several kilometres long, using 224 spectral bands. As Fig. 1.1 shows, the resulting

data volume can be seen as a data cube with two spatial and one spectral dimension, in addition of each

pixel can be considers as a high-dimensional vector where the values of a pixel comprise its associated

spectral signature. The spectral signatures is characteristic of each observed object and can be used as

a fingerprint for identification purposes.

Although AVIRIS is a widely used platform, it constitutes only one source of hyperspectral

data. Table 1.1 summarizes other international Earth observation missions with hyperspectral sensors

already launched or to be launched in the near future. While in this work our focus is on remote

sensing applications, hyperspectral sensors have been widely used in many other areas. For instance,

hyperspectral cameras are now routinely used for industrial quality control [27], food inspection [28],

forensics [29] and medical imaging purposes [30]. Hyperspectral microscopes are also gaining popularity

in applications such as nanotoxicology [31], chemometrics [32] and pharmacology [33].

One of the main problems involved in hyperspectral data exploitation is spectral unmixing [4], as many

of the pixels collected by imaging spectrometers such as AVIRIS are highly mixed in nature due to spatial

resolution and other phenomena. For instance, it is very likely that the pixel labelled as ‘vegetation’

in Fig. 1.2 is actually composed of several types of vegetation canopies interacting at sub-pixel levels.

The same comment applies to the ‘soil’ pixel, which may comprise different types of geological features.

As a result, spectral unmixing is a very important task for hyperspectral data exploitation since the

spectral signatures collected in natural environments are invariably a mixture of the pure signatures of

the various materials found within the spatial extent of the ground instantaneous field view of the imaging

instrument. Among several techniques designed to deal with the inherent complexity of hyperspectral

images in supervised fashion [4, 34], linear spectral unmixing follows an unsupervised approach which

aims at inferring pure spectral signatures, called endmembers, and their material fractions at each pixel

of the scene.

Let us assume that a remotely sensed hyperspectral image denoted by Y ≡ [y1,y2, · · · ,yn] with n

pixels and l bands or different spectral channels. Let us also denote a given pixel of the image as yj .

The pixel can be represented as a linear combination of a set of spectral signatures, weighted by their

abundances. Under the linear mixture model assumption [35, 36], each pixel vector in the original scene

can be modelled using the following expression:

yj ≈ Mα+ n =

p∑
i=1

miαi + n, (1.1)

where M = {mi}pi=1 is a matrix containing p endmember signatures, α = [α1, α2, · · · , αp] is a p-

dimensional vector containing the abundance fractions for each of the p endmembers in M, and n is

a noise term.

In order to perform spectral unmixing of hyperspectral scenes, a well-defined spectral unmixing chain

consisting of several steps has been traditionally performed [14]. Specifically, the full unmixing chain

used in this work takes as input from the original image Y and produces as a result a set of p spectral

signatures or endmembers and the abundances of such pixels in the image. Fig. 1.3 shows the different

steps involved in the processing chain, which are briefly summarized next.

• Estimation of the number of endmembers. This first stage conducts an estimation of the
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Figure 1.2: Concept of mixed pixel in hyperspectral images.

number of endmembers present in the hyperspectral image Y, aimed at finding how many pure

spectral signatures are comprised by the scene under analysis.

• Dimensional reduction. The number of image bands l is generally higher than the number

of endmembers p. This allows identifying an appropriate subspace that facilitates dimensionality

reduction, improving algorithm performance and reducing computational complexity. Furthermore,

if the linear mixture model is accurate, the signal subspace dimension should be one order less than

the number of endmembers.

• Endmember extraction. This stage consists of identifying the spectral signatures of the

endmembers in the scene. This process can be solved from different points of view [37, 38, 39],

although this work is focused on geometric and sparse methods. The geometric methods consider

that all the mixed pixels are inside a simplex defined by the endmembers (see Fig. 1.4). On the

other hand, sparse methods use spectral libraries to solve the mixed pixel problem [40].

• Abundance estimation. Based on the identified endmembers, the abundance estimation stage

consists of representing every hyperspectral image pixel as the linear combination of the pure pixels,

i.e. to calculate the fractional coverage of such endmembers in every pixel of the hyperspectral

image. This information allows for the generation of abundance maps comprising the coverage

of each endmember in each pixel of the scene. Abundance values are normally constrained to be

non-negative and to sum to one (they belong to the probability simplex). There are, however, some

hyperspectral unmixing approaches in which the endmember determination and inversion steps are

implemented simultaneously.

As we mentioned above, hyperspectral images are often characterized by extremely high

dimensionality and size, which means a high computational cost of executing a full spectral unmixing

chain. In recent years, several efforts exploiting high performance computing technology can be found

in the hyperspectral unmixing literature, including [41] and references therein, which demonstrates that
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Figure 1.3: Spectral unmixing chain.

the processing of high-dimensional remote sensing scenes can be efficiently performed using specialized

hardware accelerators such as FPGAs or GPUs.

1.3 Objectives

The main goal of this thesis work is to develop new data repositories (available online as web services) for

sharing and retrieving remotely sensed hyperspectral/multispectral data in an intelligent manner. The

developed systems will be able to provide remote sensing data retrieval, using GPU implementations of

spectral unmixing techniques (in the case of hyperspectral image repositories) and geolocation algorithms

(in the case of multispectral product repositories). This represents an innovative contribution in the

remote sensing community as there are currently no data repositories with the functionalities that we

are providing. In order to achieve this general objective, we will address a number of specific objectives

which are listed below:
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Figure 1.4: Graphic interpretation of the linear mixture model

• To investigate the available spectral unmixing techniques used currently in the hyperspectral

imaging community including their GPU implementations, evaluating the advantages and

disadvantages presented by them, with the ultimate goal of validating full spectral unmixing chains

that will be included in our newly designed systems to extract pure elements and their abundances

from high-dimensional hyperspectral images. Such implementations will be carried out in both

CPU and GPU architectures from distributed computing resources, so that a remote execution

manager for distributed computing will be implemented and validated.

• To analyse, implement and validate advanced matching techniques intended to measure the

similarity and abundances between the pure elements of the images and a set of reference spectral

signatures.

• To design and develop a standardized database for storing all the different formats of

multi/hyperspectral images publicly available, such as images from the widely-used AVIRIS and

ROSIS sensors, and by other instruments such as MODIS and SEVIRI. The database schema will

include all the main image features, ground-truth classification image, involved publications and

results from applying analysis algorithms over the images.

• To study available software resources for web service development in order to manage data

repositories for remotely sensed multi/hyperspectral data.

• To design and implement a web tool able to manage services such as new images addition, unmixing

algorithm execution or image retrieval based on the results of those algorithms. Mainly, the system

will be composed by an user interface which gives access to images through a web service.

• To collect a relevant amount of images and then validate the unmixing-based image retrieval system

functionality through a systematic procedure using both synthetic and real images.
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• To design and develop a standardized database for storing a wide amount of remote sensing image

formats and products.

1.4 Main contributions of the thesis

The digital repository that we present in this work includes some new important features. These

innovative contributions can be summarized as follows:

• The presented system uses several full unmixing chains to perform the cataloguing and retrieval

of hyperspectral images in the repository, as already discussed in [42] and [43]. However, the

proposed implementation allows for more complex search criteria than the ones presented in

previous contributions. Specifically, the queries in our system can be defined by the spectral

information (provided by endmember signatures) and/or the spatial information (provided by

abundances), in joint or separate fashion.

• Another important contribution of our system is the possibility to use previously available spectral

libraries as the main criteria in order to perform the query. In other words, our tool allows

automatically uploading a spectral library and using the spectra in such library in order to perform

content-based retrieval. The user may select a few spectra from the library or even the full library,

using the selected spectral signatures as input to a query. Hence, the increased availability of open

repositories of spectral libraries such as the SPECCHIO project1 is a good complement to the

system that we present in this contribution.

• The processing modules included in our system comprise many well-established techniques in

all parts of the full hyperspectral unmixing chain. Specifically, our system currently includes

two methods for estimating the number of endmembers (VD and HySime), two algorithms for

identifying the spectral signatures of the endmembers directly from the data (N-FINDR and

OSP), and two methods for estimating the fractional abundances, unconstrained (UCLS) and

non-negatively constrained (ISRA). GPU implementations for all these methods are included in

the system, thus allowing for fast cataloguing and meta-data generation for new hyperspectral

image scenes. In addition, we also provide a technique based on sparse unmixing concepts (which

are more suitable for large spectral libraries) to perform the retrieval of images from the database.

• Although the contribution [43] already discussed an efficient implementation of an unmixing-

based CBIR system for hyperspectral imagery, this implementation was specifically developed

for heterogeneous networks of workstations or clusters of computers, without taking advantage

of hardware accelerators such as GPUs which are now widely available in modern clusters and

supercomputers. In this regard, the proposed system expands the parallel features of the system

in [43] and includes the use of GPU accelerators, thus increasing the computational performance

significantly.

• In addition, previous developments such as [42] or [43] were not fully available to the community. In

this contribution, we present a fully open system, with an advanced user interface, and implemented

on two large supercomputing facilities: a first cluster of GPUs is available at the Center of Advanced

Technologies in Extremadura (CETA-Ciemat), which is one of the most powerful clusters of GPUs

in Spain; and the second GPUs cluster is from West University of Timisoara, which is one of

1http://www.specchio.ch
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the most powerful clusters of GPUs in Romania. As a result, the CBIR system that we describe

in this contribution is completely available for public use from http://hypercomp.es/repository.

It contains several synthetic and real hyperspectral data sets that interested readers can use to

conduct their own experiments and include additional hyperspectral data sets in the repository.

• Last but not least, despite the fact that web tools like MRTWeb 2.0 [44] or LAADS Web [45] have

available products from several multispectral sensors, they are not specifically focused on offering

a common data repository in which the data or the associated products can be retrieved. In this

thesis, we present a standardized data repository for multispectral data such as images as their

products. A freely available web tool (available online from http://ceosspain.lpi.uv.es) has been

implemented to manage the repository, which facilitates the remote access (through a web browser)

to a massive collection of processed remotely sensed data sets such as validated MODIS and SEVIRI

products. The data processing is accomplished in real-time, i.e. as soon as the MODIS/SEVIRI

data are collected by the receiving antenna. This makes the final product immediately available to

the wide remote sensing community and allows for a detailed exploration of the high-level products

obtained after the data processing step.

1.5 Thesis organization

The present thesis has been structured in a series of chapters which can be summarized as follows (see

Fig 1.5 for a graphical overview indicating the relationships between the different chapters):

1. Introduction. In this chapter, we have described the main motivations and objectives that have

led to the development of the thesis. In addition, we introduced the hyperspectral imaging concept

and further explained the importance of mixed pixels and their management in remote sensing

data interpretation.

2. System design. In this chapter, we introduce the web service concepts describing their

components, as well as their internal communication and work-flow. Furthermore, we describe

the open source framework used to develop the proposed web system. Then, we fully describe the

proposed new repository which is implemented as a web service, specifically, we detail the system

architecture, database structure and distributed computing resources supported for algorithm

execution. At the end of this chapter, we also show how to perform the uploading and searching

of images through the web interface.

3. Unmixing-based image retrieval system. This chapter describes the content-based image

retrieval system implemented over the repository using several full spectral unmixing chains which

are used in order to generate suitable meta-data for retrieval purposes. In particular, we emphasize

the searching methodology and the GPU implementation of the unmixing chain algorithms adopted

by the system. The chapter concludes with a detailed performance analysis of the system by

comparing its retrieval accuracy using synthetic and real hyperspectral images.

4. Sparse unmixing-based image retrieval approach. This chapter presents a CBIR system

using sparse unmixing techniques, in which a sparse algorithm is used to generate the meta-data

for retrieval purposes. The algorithm is described and the achieved results from this approach are

compared with the results from the unmixing-based approach described in the third chapter of the

thesis.
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5. Multispectral product repository. In this chapter, we describe a second repository for

multispectral imagery products. More specifically, we present a standardized and publicly

repository for storing a wide amount of formats of multispectral images and their products. This

data repository is also available online providing geo-location retrieval capabilities. In addition,

the products from MODIS/SEVIRI included in this repository are also thoroughly described.

6. Conclusions a future research work. This chapter concludes by summarizing the main

contributions of this thesis, as well as with a presentation of the most plausible research lines

that could be explored in future developments of this work.

The thesis concludes with the list of references used during the elaboration of this document. In

order to facilitate the reading of the document, Table 1.2 shows a list of the acronyms that will be used

throughout the thesis. In an appendix, we include the publications resulting from the present thesis work,

together with a statement of the main contributions and relevant aspects which are highlighted for each

individual contribution. Specifically, this thesis has resulted in 4 journal citation reports (JCR) papers

(2 submitted and the rest already published), and 8 peer-reviewed international conference papers.
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1.5 Thesis organization

Table 1.2: List of acronyms used in this thesis.

Acronyms

ADMM Alternating Direction Method of Multipliers [46]
AMEE Automated Morphological Endmember Extraction [47]
ANC Abundance Non-negativity Constraint [36]
ASC Abundance Sum-to-one Constraint [36]

AVIRIS Airbone Visible Infra-Red Imaging Spectrometer [6]
BRDF Bidirectional Reflectance Distribution Function [48]
CBIR Content-Based Image Retrieval
CIFS Common Internet File System
CSS Cascade Style Sheet

CSUNSAL Constrained Sparse Unmixing by variable Splitting and Augmented Lagrangian
CUDA Compute Unified Device Architecture
EE Earth Explorer [49]
EOS Earth observing system

EOSDIS Earth Observing System Data and Information System
FCLS Fully Constrained Least Squares [36]
FPGA Field Programmable Gate Array
FTP File Transfer Protocol
FVC Fraction of Vegetation Cover [50]
GPU Graphic Processing Unit
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
IPL Image Processing Laboratory

HySime Hyperspectral Subspace Identification by Minimum Error [51]
ISRA Image Space Reconstruction Algorithm [52]
JSON JavaScript Object Notation
MNF Minimum Noise Fraction [53]

MODIS Moderate Resolution Imaging Spectroradiometer
MRT MODIS Retrieval Tool [44]
MSG Meteosat Second Generation [54]
NAPC Noise-adjusted Principal Components [55]
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index [56]

N-FINDR [57]
LAADS Level 1 and Atmosphere Archive and Distribution System [45]
LPDAAC Land Processes Distributed Active Archive Center

LSM Land/Sea mask
LST Land Surface Temperature [58, 59]
ORM Object-Relational Mapping
OSP Orthogonal Subspace Projection [60]

OSP-GS Orthogonal Subspace Projection with Gram-Schmidt orthogonalization [61]
PCA Principal Component Analysis [62]
PPI Pixel Purity Index [63]

RMSE Root Mean Square Error [35]
ROSIS Reflective Optics Spectrographics Imaging System [7]
SAD Spectral Angle Distance [35]
SSH Secure Shell
SCP Secure Copy Protocol

SEVIRI Spinning Enhanced Visible and Infra-Red Imager [54]
SMAC Simplified Method for the Atmospheric Correction [64]
SNR Signal-to-Noise Ratio [65]
SST Sea Surface Temperature [66, 67]

SUNSAL Spectral Unmixing by Splitting and Augmented Lagrangian [68]
SVD Singular Value Decomposition [69]
UCLS Unconstrained Least Squares [70]

UGC/IPL Global Change Unit, Image Processing Laboratory, University of Valencia [71]
USGS United States Geological Survey [72]
VCA Vertex Component Analysis [73]
VCI Vegetation Condition Index [74]
VD Virtual Dimensionality [75]

VIIRS Visible Infrared Imaging Radiometer Suit
WSD Web Service Description
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Chapter 2

System design

Our system [76, 77] is implemented as a web service, which integrates a web application and computing

services. In this way, the system delivers data to a set of clients (i.e., web interfaces), while it also receives

content from the clients. An advantage of this approach is that no additional software has to be installed

on the client computer, since a web interface only requires a web browser. The main aim of this thesis is

the development of a web application to manage hyperspectral data, including both hyperspectral images

and unmixing processing results. Specifically, the system also controls algorithm executions and stores

the related data in a database. The remainder of this chapter, devoted to the high-level description of our

system, is organized as follows. Section 2.1 introduces the web services definition. Section 2.2 describes

Symfony2, the developing framework used in our work. Section 2.3 describes the software architecture

of the system, which is composed of three main layers: 1) client layer, which defines the interactions

between the user and the system through a web interface; 2) server layer, which manages the requests

from end-users; and 3) processing layer, in charge of more complex processing tasks such as generation

of meta-data or image retrieval. In section 2.4, we describe the structure of the database that stores the

hyperspectral data in our system. Finally, in section 2.5, we briefly describe the functionalities provided

by the web interface, emphasizing its functionalities in terms of image uploading and queries execution.

2.1 Web service definition

A web service is a software system designed to support interoperable machine-to-machine interactions

over a network [78]. Other systems interact, regardless of the programming language in which they

are written, using the web service through standard communication protocols. In our case, the

communication protocol is HTTP1 protocol and the data objects are exchanged encapsulated in JSON2

format. In this section we describe the implementation of web services in our system from a high-level

perspective. The remainder of this section is organized as follows. In subsection 2.1.1, we describe the

different roles involved in the web service architecture. Subsection 2.1.2 describes the rules for message

exchange among roles. Subsection 2.1.3 shows the communication work-flow among the web service

components.

1http://www.w3.org/Protocols/rfc2616/rfc2616.html
2http://json.org
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2.1.1 Roles

A web service is an abstract notion that must be implemented by a concrete computational resource. As

we illustrate graphically in Fig. 2.1, the agent (resource) is the concrete piece of software or hardware

that sends and receives messages, while the service is characterized by an abstract set of functionalities

that should be provided. Thus, the agents could be modified or even replaced as long as they have the

same communication interface. The purpose of a web service is to provide some functionality on behalf

of its owner (a person or organization). The provider entity is the person or organization that provides

an appropriate agent to implement a particular service. A requester entity is a person or organization

that wishes to make use of a provider entity’s web service.

2.1.2 Service and semantic

The service description represents a contract governing the mechanics of the interaction with a particular

service. The mechanics of the message exchange are documented in a web service description (WSD),

which is a machine-processable specification of the web service’s interface. It defines the message formats,

data-types, transport protocols, and transport serialization formats that should be used between the

requester agent and the provider agent. It also specifies one or more network locations from which a

provider agent can be invoked, and may provide some information about the expected message exchange

patterns. In essence, the service description represents an agreement governing the mechanics of the

interaction with that service. The semantics represent a contract between the requester entity and the

provider entity regarding the purpose and consequences of the interaction.

2.1.3 Work-flow

There are many ways that a requester entity might engage and use a web service. In general, the

following broad steps are required: (1) as illustrated in Fig. 2.1 the requester and provider entities

become known to each other (or at least one becomes know to the other); (2) the requester and provider

entities somehow agree on the service description and semantics that will govern the interaction between

the requester and provider agents; (3) the service description and semantics are realized by the requester

and provider agents; and (4) the requester and provider agents exchange messages, thus performing some

task on behalf of the requester and provider entities (i.e., the exchange of messages with the provider

agent represents the concrete manifestation of interacting with the provider entity’s web service.).

2.2 Symfony2

A framework streamlined application is developed by automating many of the patterns employed for

a given purpose, furthermore, it adds structure to the code, prompting the developer to write better,

more readable, and more maintainable code. Ultimately, a framework makes programming easier, since

it packages complex operations into simple statements. There are several frameworks which provide

some common elements to the development of web services (such as security, routing, database access,

etc.) and which allow focusing the work on the specific aspects of each development. Several web service

development tools have been analysed to implement our system, as such as Symfony23, Akelos4,

3http://symfony.com
4http://trac.akelos.org/
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2.2 Symfony2

Figure 2.1: Web service architecture.

CakePHP5, Prado6, Seagull7, Yii8 or Zen9. According to our tests, the best candidate has been

Symfony2 since it covers all our needs, i.e., it is flexible to include new components. The main developing

features and design pattern of this framework are detailed next.

2.2.1 Features

Symfony2 is a complete object-oriented framework written entirely in PHP 5.310, which is designed

to optimize the development of web applications by way of several key features, so that it separates a

web application’s business rules, server logic, and presentation views. It contains numerous tools and

classes for shortening the development time of complex web applications. Additionally, it automates

common tasks which allows the developer to focus entirely on the specifics of an application. It has

been thoroughly tested in various real-world projects, and is actually in use for high-demand e-business

websites. In the following, we describe the database storing module used in our system, as well as the

view module.

2.2.1.1 Storing module

One of the most common and challenging tasks for any web application involves reading information

to and from a database. Symfony2 allows to integrate an object/relational abstraction layer with an

ORM interface. An important benefit of an object/relational abstraction layer is that it prevents using a

syntax that is specific to a given database, since it automatically translates calls to the model objects to

5http://cakephp.org/
6http://www.pradosoft.com/
7http://seagullproject.org/
8http://www.yiiframework.com/
9http://www.zend.com/

10http://php.net/releases/5 3 0.php
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SQL queries optimized for the current database at hand. The ORM is defined to access the database in

an object-oriented way, and it translates the object logic to the relational logic. In this work, the ORM

used is Doctrine11, which is one of the most important PHP ORM frameworks in the web development

community; it communicates with the database regardless the relational database management system

[79] used, since the SQL sentences are generated by Doctrine instead of by the programmer. It is

compatible with most of the available relational database management engines, including MySQL12,

PostgreSQL13, Oracle14, and Microsoft SQL Server15.

2.2.1.2 View module

Twig16 is another framework integrated as a module; it is a powerful templates engine which is flexible,

efficient and fast. Twig has its own code that is compiled as PHP and produces HTML17 code. Specially,

the inheritance mechanism of templates represents its best feature because it works as an interface for

the inheritance from object-oriented programming, i.e., several HTML pages can be produced from base

templates.

2.2.2 Design pattern

Symfony2 is based on the model-view-controller pattern which is an application design pattern originally

introduced in [80]. The main idea of this pattern is to separate presentation from data and controller

from presentation. This kind of separation allows each part of the application focus on exactly one goal.

The controller focuses on changing the data from the model, and delivering the data to the view. Indeed,

the view is focused on creating representations of the model. A step-by-step description of the Symfony2

work-flow follows:

• The user first presents a request for viewing a certain web page.

• The routing system decides which is the appropriate controller for handling such request.

• The controller executes the code associated with the request. The controller is a PHP class designed

to attend the user requests.

• Data queries are now demanded by the data manager (Doctrine in our case).

• Finally, the retrieved data is rendered the form of view templates and is presented to the user who

originated the request.

2.3 System architecture

As shown by Fig. 2.2, the software architecture of the proposed system is formed by different layers,

which can be defined by their roles. The system follows a modular design in which the communication

between layers is defined using standard data exchange formats and transfer protocols, so that any layer

can be modified as long as it can communicate with the rest of the system. Our design has been carried

11http://www.doctrineproject.org/
12http://www.mysql.com
13http://www.postgresql.org.es
14http://www.oracle.com/us/products/database/overview/index.html
15https://www.microsoft.com/sqlserver/default.aspx
16http://twig.sensiolabs.org/
17http://www.w3.org/TR/html
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Figure 2.2: Architecture of the proposed hyperspectral image repository.

out using free software tools such as Symfony2, described in section 2.2, while the adopted format

for data exchange through the layers is JSON, an open standard format that uses human-readable text

to transmit data objects. In the following, we describe the different software layers that compose the

system: 1) client layer, which defines the interactions between the user and the system through a web

interface; 2) server layer, which manages the requests from end-users; and 3) processing layer, in charge

of more complex processing tasks such as generation of meta-data or image retrieval.

2.3.1 Client layer

This layer defines the interactions between the users (through an internet web browser) and our system,

and is responsible for providing users with remote and interactive access to the system. The web

17
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interface has been designed using HTML518, which is the last version of HTML, the most widely used

web programming language. HTML was primarily designed as a language for semantically describing

scientific documents, although its general design and adaptations over the years have enabled it to be

also suitable for describing a number of other types of documents, particularly, it has become the main

mark-up language for creating web pages. However the HTML5 web appearance is improved in this work

using CSS319, which is the last version of CSS -a style sheet language used for describing the look and

formatting of mark-up documents-. CSS3 allows to control the document view, such as colors, sizes,

layouts and visual effects, among others. On the other hand, the interaction between the user and the

web interface is captured by the event handlers of jQuery20, which is a JavaScript library. jQuery

provides dynamic manipulation of HTML documents, event handling, animation, and a simpler Ajax21

use; furthermore, it works across a multitude of browsers since it is versatile and extensible.

The web interface transmits a request to the server layer via HTTP, which is an application-level

protocol for distributed, collaborative, hypermedia information systems and the foundation of data

communication for the World Wide Web. Thus, HTTP can be used for many tasks beyond its use

for hypertext, such as name servers and distributed object management systems, through an extension

of its request methods, error codes or headers. Since HTTP allows for the typing and negotiation of data

representation, the systems can be built independently of the data being transferred.

As a last point, it is worth mentioning that most of the views are actually generated in the server,

using the view module Twig of Symfony2, which eases dynamism on the interface since it provides

template inheritance, as section 2.2 describes.

2.3.2 Server layer

Many of the services provided by the system are managed and executed on the server layer, which

is composed of several elements with different roles. As Fig. 2.2 shows, the web server handles web

interface requests (via HTTP) and manages the system resources (i.e., the storage of meta-data and files),

in addition of handling algorithm executions. The server layer can be considered as the main engine of

the system since it is in charge of managing and connecting the different components of our system.

The server layer is also in charge of storing image meta-data, following a database scheme that is

described in the next subsection. In our case, MySQL has been selected as relational database manager,

since it is open-source and provides fast queries and low computational cost. This is a popular choice of

database for use in web applications, and has the advantage that many programming languages (such as

C/C++, used for the development of our system) already include libraries for accessing MySQL databases.

On the other hand, a file storage server is also included in this layer for providing remote file access

to any of the layers of the system. This module is also in charge of uploading and downloading data

files, such as images and meta-data, via FTP22, a standard network protocol used to transfer files from

one host to another such as, in our case, the internet. Furthermore, since remote file storage allows to

include distributed computing resources, the file server provides image data to the processing layer, as

described in subsection 2.3.3.

The communication between the web interface and the web server is handled by an application server.

Apache223 server has been selected for this role, which has become the most popular HTTP server in the

18http://www.w3.org/TR/html5
19http://www.w3.org/Style/CSS3
20http://jquery.com
21http://www.w3.org/standards/webdesign/script
22http://www.w3.org/Protocols/rfc959/
23http://www.apache.org/
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last 20 years; further, it was the first web server software to serve more than 100 million websites according

to the Netcraft24 analysis. Apache2, distributed as free software, provides a full range of web server

features, including CGI25, SSH26, authentication modules, and virtual domains; it also supports plug-in

modules for extensibility. Apache2 supports several sever-side programming languages, such as Perl,

Python, Tc1 or PHP.

In this way, PHP 5.3 is the main programming language used in our system, which is a server-

side scripting language designed for web development, but also used as a general-purpose programming

language; it is widely used in web development and is now installed on more than millions of websites

and web servers. PHP 5.3 is a complete programming language -object-oriented-, that also offers all

the features needed to build a complete web server, such as user sessions, parsers for standard data-

interchange format, and a full-stack of plug-ins for database managing and transport protocols. As

section 2.2 shows, Symfony2 framework is written entirely in PHP 5.3 whose storage layer is defined to

access the database in an object-oriented way. Ultimately, in this subsection we show the communication

between the server layer and the processing layer (described in subsection 2.3.3). Nowadays, most

distributed computing resources are protected by a strong security access; fortunately, the majority can

be accessed by the SSH protocol, which is a protocol for secure remote login and other secure network

services over an insecure network. Thus, we have implemented a PHP class for remote access to the

processing layer, which uses the SSH PHP library. Specially, the communication between the server and

the processing layer is carried out by secure remote access using the SSH protocol, and in addition the

files produced by the processing layer are retrieved by SCP27 (which is SSH-based).

2.3.3 Processing layer

The processing layer has been designed to relieve the web server workload of the algorithm executions

with high computational cost. High availability and quality of service are provided by this layer, since

several algorithms can be executed at the same time without slowing down of the system or introducing

time penalizations. The processing layer is in charge of executing algorithms, mostly related to the

cataloguing of new hyperspectral images in the system.

The processing layer algorithms are implemented in C/C++ using libraries to access parallel

computing facilities, which efficiently execute requests coming from the web server; the complete

algorithm implementations are detailed in the next chapter. This layer receives execution requests

from the server layer, via secure shell (SSH) protocol, along with execution parameters and FTP links of

the required files to execute algorithms. Those links could be the image source and results of previous

executions (required for algorithms in which the input is the result of other algorithms).

In order to manage algorithm executions in the processing layer, we have implemented the execution

manager as a shell script. Shell is a command line language designed for Unix command line

interpreters, so that a script is a collection of commands which work serially to resolve a problem.

In addition, the execution manager uses a special sub-script implemented for monitoring algorithm

executions -called monitoring module-, thus the only requirement to integrate different resource managers

(described in subsection 2.3.4.4) is to implement a specific monitoring module for them. Below we detail

the work-flow of this execution manager :

• Creating temporal folder structure which stores the temporal data from the execution.

24http://www.netcraft.com/
25http://www.w3.org/CGI/
26http://www.ietf.org/rfc/rfc4251.txt
27http://linux.die.net/man/1/scp
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a) CETA-Ciemat Cluster b) Timisoara Cluster

Figure 2.3: Appareance of the facilities of the two clusters supported in the system.

• Checking input data and downloading the files from the storage server.

• Reading configuration of the selected cluster.

• Submitting the execution algorithm request to the resource manager.

• Monitoring the execution and retrieving the results.

• Encoding the results as JSON format and sending the results back to the server layer.

• Deleting the temporal folder structure.

Currently, our processing layer supports efficient algorithm executions using several clusters with

different resource managers located in different organizations in the European area, which are provided

by two institutions from Spain and Romania. Indeed, any cluster can be supported by our system since a

specific monitoring module is implemented to control the resource manager of such cluster. The currently

supported clusters are described in the next subsection.

2.3.4 Clusters supported in the system

The system has been designed to support access to any cluster which allows SSH access; indeed, it allows

algorithm execution over clusters with different architectures and resource management systems. At the

moment the system has access to several clusters (Fig. 2.3 shows a general view of the cluster facilities)

located in different European countries, particularly, CETA-Ciemat28 from Spain and West University

of Timisoara29 from Romania. Next, we introduce those institutions and provide some features of the

available computational resources.

2.3.4.1 CETA-Ciemat resources

The Extremadura Research Centre for Advanced Technologies (CETA-Ciemat), which belongs to the

Spanish Ministry of Science and Innovation, participates in our work with two GPU computing platforms.

Both systems are managed by SLURM, which is briefly described in subsection 2.3.4.4. In the following,

we describe the features of these two clusters:

28http://www.ceta-ciemat.es
29hpc.uvt.ro
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1. The CETA Production cluster has 32 computing nodes with 2 NVidiaTM TESLA M205030 GPUs,

64 GPUS in total, each GPU features 448 streaming processor cores at 1.15 GHz, with single

precision floating point performance of 1.03 TFlops, double precision floating point performance of

515 GFlops, total dedicated memory of 3 GB at 1.5 GHz and memory bandwidth of 144 GB/sec.

The GPUs are connected to eight nodes with: two multi-cores of type Quad Core Intel Xeon at

2.93 GHz with 4 physical cores, and 24 GB of DDR3 1333 MHz SRAM memory. The system is

mounted on a Bullx R42231.

2. The CETA Test GPU cluster has 34 GPUs split in 17 computing nodes with 2 NVidiaTM TESLA

C106032 GPUs; each GPU features 240 streaming processor cores at 1.3 GHz, total memory

dedicated of 4 GB at 800 MHz and memory bandwidth of 102 GB/s. The GPUs are connected to

eight nodes with: two multi-cores of type Quad Core Intel Xeon at 2.26 GHz with 4 physical cores,

and 24 GB of DDR3 1333 MHz SRAM memory. The system is mounted on a Bullx R42233.

2.3.4.2 West University of Timisoara resources

The second computing resource provider is the HPC center at West University of Timisoara, Romania.

It participates in our work with a GPU platform, which is managed by LoadLeveler resource manager

(described in subsection 2.3.4.4). The INFRAGRID GPU cluster has 7 computing nodes with a

NVidiaTM TESLA M2070Q34 GPU; each GPU features 448 streaming processor cores at 1.15 GHz, with

single precision floating point performance of 1.03 TFlops, double precision floating point performance

of 515 GFlops, total dedicated memory of 6 GB at 1.55 GHz and memory bandwidth of 148 GB/sec.

Every GPU is installed in a system with two multi-cores of type Quad Core Intel Xeon at 3.46 GHz with

4 physical cores, and 32 GB of DDR3 1333 MHz SRAM memory.

2.3.4.3 GPU cluster architectures

As we have mentioned above, the current version of the system supports two different GPU cluster

architectures. Table 2.1 describes the features of both GPU clusters, furthermore Table 2.2 compares

the computational differences between the GPU devices installed in those clusters.

2.3.4.4 Resource managers

In this section, we describe the resource managers that have been used for the implementation of our

system.

1. SLURM35 is an open-source resource manager designed for Linux clusters of all sizes. It provides

three key functions. First, it allocates exclusive and/or non-exclusive access to resources (compute

nodes) to users so they can perform works in parallel. Second, it provides a framework for starting,

executing, and monitoring works (typically, parallel jobs) on a set of allocated nodes. Finally, it

arbitrates contention for resources by managing a queue of pending works. SLURM provides high

availability and quality of service to our system, since it offers the following features:

30http://www.nvidia.com/docs/IO/43395/NV DS Tesla M2050 M2070 Apr10 LowRes.pdf
31http://www.bull.com/catalogue/details.asp?tmp=bxs-rack-fr&opt=ns-r424e02&dt=ft&cat=bullx
32http://www.nvidia.co.uk/object/tesla c1060 uk.html
33http://www.bull.com/catalogue/details.asp?tmp=bxs-rack-fr&opt=ns-r422e02&dt=ft&cat=bullx
34http://www.nvidia.com/docs/IO/40049/Tesla M2070Q Datasheet.pdf
35https://computing.llnl.gov/linux/slurm
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Table 2.1: Technical specifications of the GPU clusters used in this study.

Cluster
Specifications

INFRAGRID CETA Test CETA Production

Scheduler Loadleveler SLURM

Number of GPU devices 7 34 64

Device version M2070Q C1060 M2050

Number of streaming processor 444 240 444

Processor clock 1024 MHz 1293 MHz 1024 MHz

Single precision floating point 1.03 TFlops 933 GFlops 1.03 TFlops

Double precision floating point 515 TFlops 78 GFlops 515 TFlops

GPU memory size 6 GB 4 GB 3 GB

GPU memory clock 1546 MHz 800 MHz 1546 MHz

GPU memory bandwidth 148 GB/s 102 GB/s 148 GB/s

Multi-core processor Quad Core Intel Xeon

Processor clock 3.46 GHz 2.26 GHz 2.93 GHz

RAM memory size DDR3 32 GB DDR3 24 GB

RAM memory clock 1333 MHz

Table 2.2: Computational power of our Tesla devices.

Version
Specifications

C1060 M2050/M2070Q

Maximum size of z dimension of a grid 65535

Maximum number of threads per block 512 1024

Maximum size of x and y dimensions of a block 512 1024

Maximum size of z dimension of a block 64

Warp size 32

Maximum number of resident threads per MP 768 1536

Maximum number of resident blocks per MP 8

Maximum number of resident warps per MP 24 48

Number of 32-bit registers per MP 8 K 32 K

Maximum shared memory per MP 16 KB 48 KB

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 8 KB

• Scalability: it is designed to operate in a heterogeneous cluster with up to tens of millions of

processors.

• Performance: it can accept more than 1000 job submissions per second and fully execute 500

simple jobs per second (depending upon hardware and system configuration).

• Free and open-source: its source code is freely available under the GNU General Public

License.

• Fault tolerant: it is highly tolerant of system failures, including failure of the node executing

its control functions.

• Status jobs: it provides the status of the running jobs at the level of individual tasks to help

identify load imbalances and other anomalies.

SLURM provides workload management on many of the most powerful computers in the world. On
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the November 2013 Top50036 list, five of the ten top systems use SLURM including the number

one system, which sum over 5.7 million cores. Furthermore, SLURM manages several GPU clusters

which are presented in the list, four of them are listed below:

• At the 6th place, Piz Daint a Cray XC30 system at the Swiss National Supercomputing

Centre with 28 racks and 5272 hybrid compute nodes each with an Intel Xeon E52670

processor and a NVidiaTM Kepler K20x37 GPU device, which means 115,984 compute cores,

yielding a peak performance of 6.27 PFlops.

• At the 7th place, Stampede at the Texas Advanced Computing Center/University of Texas

is a Dell with over 80,000 Intel Xeon processors, Intel XeonPhi38 co-processors, plus

128 NVidiaTM Kepler K20x GPUs, delivering 5.17 PFlops.

• At the 37th place, Lomonosov, a T-Platforms system at Moscow State University Research

Computing Center with 52,168 Intel Xeon processors and 8,840 NVidiaTM Tesla X207039

GPU devices, yielding a peak performance of 1.7 PFlops.

• At the 117th place, LOEWE-CSC is a combination of CPU-GPU Linux cluster at the Center

for Scientific Computing (CSC) of the Goethe University Frankfurt, Germany, with 20,928

AMD Magny-Cours40 CPU cores plus 778 ATI Radeon 587041 GPU devices, delivering

508.499 TFlop/s.

2. LoadLeveler42 is a commercial workload management and job scheduling system developed

by IBM. It is based on the CONDOR43 system to which many new features were added, making

it much more versatile. Current versions of LoadLeveler support load balancing across the

workstations in the cluster, multiple resource queues, serial and parallel workloads, and distributed

file systems. LoadLeveler also provides a well documented application programming interface

for customizations and extensions to the system. Some of its most important features are listed

below:

• Provides facilities for building, submitting and processing serial and parallel batch jobs.

• Allows to match job requirements with the best available machine resources.

• Is flexible because each machine (node) can be configured differently if required.

LoadLeveler provides workload management on many of the most powerful computers in the

world. On the November 2013 Top500 list, four of the ten top systems use LoadLeveler including

the number three system. Furthermore, it manages several GPU clusters where are presented in

the list, three of them are listed below:

• At the 31st place, a customized IBM iDataPlex DX360M444 system at the the

Rechenzentrum Garching computing center in Germany. It combines 12 nodes with Intel

36http://top500.org
37http://www.nvidia.com/content/PDF/kepler/TeslaK20XBD06397001v05.pdf
38http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-

brief.html
39http://www.nvidia.com/object/tesla tech specs.html
40http://www.amd.com/Documents/Magny-coursPerformanceRHEL BhavnaSarathy.pdf
41http://www.amd.com/es/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-

overview.aspx
42http://www-03.ibm.com/systems/software/loadleveler
43http://toolkit.globus.org/grid software/computation/condor.php
44http://www03.ibm.com/systems/x/hardware/highdensity/dx360m4/
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Xeon Phi co-processors and 338 nodes with two NVidiaTM Kepler K20x GPU devices,

delivering 1.03 PFlops.

• At the 328th place, a customized IBM iDataPlex DX360M4 cluster at private financial

institution in United States. It integrates Intel Xeon E5-2680v2 withNVidiaTM Kepler

K20x, yielding a peak performance of 146.2 TFlops.

• At the 336th place, a customized IBM iDataPlex DX360M4 cluster at Arizona University

in United States. It integrates Intel Xeon E5-2680v2 with NVidiaTM Kepler K20x,

yielding a peak performance of 144.9 TFlops.

2.4 Database structure

The structure of the database used to store hyperspectral meta-data is illustrated in Fig. 2.4. The

database has been carefully designed in order to store relevant information about the hyperspectral

images which are stored in our system. In addition to standard information about each scene, such as

the number of samples, lines, bands, data type, byte-order, wavelength information or interleave, we also

store additional information such as the endmembers and abundances associated to each scene (content

meta-data), as well as additional (optional) information such as the results and publications in which

a certain hyperspectral scene has been addressed, or the results obtained from the scene by different

algorithms. The meta-data related to the image content are automatically generated by the system

using unmixing algorithms that are used to catalog each scene, hence the procedure for uploading a new

data set to the system only requires basic information about the scene. Furthermore, a RGB quick-look

is generated automatically, as Algorithm 1 shows, by performing the three spectral bands red, green and

blue. In addition, relevant information about previous analyses and experiments over each scene can also

be stored in the database if available, while the unmixing results are used to generate meta-data that

can be then used for retrieval purposes using different queries.

Algorithm 1 RGB Encoder

1: procedure RGBEncoder(image,RGBFile)
2: interval = (image.WaveLast−image.WaveFirst)/image.Bands ◃ Wavelength interval of the image bands
3: waveRed = 650, waveGreen = 550, waveBlue = 480 ◃ Standard RGB wavelengths
4: colors[0] = (waveRed−image.waveFirst)/interval ◃ Band according to red wavelength
5: colors[1] = (waveGreen−image.waveFirst)/interval ◃ Band according to green wavelength
6: colors[2] = (waveBlue - waveFirst)/interval ◃ Band according to blue wavelength
7: for j = 0 to 3 do
8: for i=0 to image.Pixels do
9: RGBVector[i+(j∗image.Pixels)] = AbsoluteValue(image.Vector[i+(colors[j]∗image.Pixels)])
10: end for
11: end for
12: Paint RGBVector in RGBFile ◃ using any encoder library
13: end procedure

The database scheme tables could be classified, according to the above statement, as follows. First

the tables which contain features about the image, second the tables related to data execution, and last

(but not least) the system authentication/authorization data.

2.4.1 Image features

This subsection describes the features of each of the tables which are related to the image features.
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2.4.1.1 Image

The image table is the main table of the database, since its attributes have been designed to describe

the relevant features for hyperspectral image analysis; furthermore it includes additional information

through related tables such as image source, involved publications or type image field. On the other

hand, the image table contains the endmembers and abundances which have been selected from the

result of algorithm executions on the given image. In the following, the table attributes are listed:

• Id. The identifier of the image.

• Name. The name assigned by the image owner.

• Interleave. Interleave feature of the image, following the ENVI45 standard notation. This attribute

refers to the order in which the pixels are stored: band sequential (BSQ), band interleaved by pixel

(BIP), or band interleaved by line (BIL).

• Lines. Lines feature of the image, following the ENVI standard notation. It refers to the the

number of lines per image for each band.

• Samples. Samples feature of the image, following the ENVI standard notation. It refers to the

the number of samples (pixels) per image line for each band.

• Bands. Bands feature of the image, following the ENVI standard notation. It refers to the the

number of bands per image file.

• DataType. Data type feature of the image, following the ENVI standard notation. It is a

parameter identifying the type of data representation, where 1=8 bits (byte); 2 = 16 bits signed

integer; 3 = 32 bits signed long integer; 4 = 32 bits floating point; 5 = 64 bits double precision

floating point; 6 = 2×32 bits complex, real-imaginary pair of double precision; 9 = 2×64 bits

double precision complex, real-imaginary pair of double precision; 12 = 16 bits unsigned integer;

13 = 32 bits unsigned long integer; 14 = 64 bits signed long integer; and 15 = 64 bits unsigned

long integer.

• ByteOrder. A byte order feature of the image, following the ENVI standard notation. It describes

the order of the bytes in an integer, long integer, 64 bits integer, unsigned 64 bits integer, floating

point, double precision or complex data types. The byte order value 0 is Least Significant Byte

First (LSF) data (DEC and MS-DOS systems) and byte order value 1 is Most Significant Byte

First (MSF) data (all others - SUN, SGI, IBM, HP, DG).

• Wavelenght. Lists the centre wavelength values of each band in an image.

• WavelenghtUnit. Wavelength values metric.

• WaveIni. Indicates the minimum value of the wavelength sensitive range; it depends on the

hyperspectral sensor.

• WaveEnd. Indicates the maximum value of the wavelength sensitive range; it depends on the

hyperspectral sensor.

45https://www.exelisvis.com/ProductsServices/ENVIProducts/ENVI.aspx
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• Endmembers. A special attribute which contains the extracted endmembers from the image; it

is automatically assigned after selecting a set of endmembers in the cataloguing process.

• Abundances. A special attribute which contains the estimated abundances; it is automatically

assigned after selecting a determinate abundance result in the cataloguing process.

• Thumbnail. A special attribute which contains a small image quick-look. The RGB image is

obtained from Algorithm 1, and then it is encoded on characters and is automatically assigned in

the process of uploading image.

• URL. A special attribute which contains the image location, in file storage server; it is

automatically assigned by the server in the process of uploading image.

• TypeID. Foreign key to Image Type table.

• SourceID. Foreign key to Source table.

• PublicationSet. Foreign key to Publication table. A set of publications in which the image is

involved in.

• ResultSet. Foreign key to Result Algorithm table. A set of results from algorithms executions

which have been performed over the image.

2.4.1.2 Image type

Images are classified by fields types as such as hyperspectral satellite images or hyperspectral medical

images, among others. In the following, the table attributes are listed:

• Id. The identifier of the type.

• Name. Descriptive name of the type.

2.4.1.3 Source

It allows cataloguing an image based on its source, such as universities, institutes, national research

centers or any institution which has provided such image. In the following, the table attributes are

listed:

• Id. The identifier of the source.

• Institution. Name of the institution.

• Details. An additional attribute for commenting.

2.4.1.4 Publication

Publications in which an image is involved, in order to understand the importance of an image and

contrast the results of different publications. In the following, the table attributes are listed:

• Id. The publication table identifier.

• DOI. The identifier of the publication in the research scope, it is the standard DOI (digital object

identifier).
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2.4.2 Data execution

This subsection describes the attributes of the tables related to algorithms execution in our system.

2.4.2.1 Algorithm

The system has been designed to provide an image catalog, which is performed by several algorithms over

different compute resources. Thus, different algorithms and computation resources can been selected in

each cataloguing execution. In the following, we list the table attributes involved:

• Id. The algorithm table identifier.

• Name. Descriptive name of the algorithm.

• TypeID. Foreign key to Algorithm Type table.

• Resource. Foreign key to Resource table. Set of available computational resources to execute the

algorithm.

2.4.2.2 Algorithm type

Algorithms are classified into different types according to their role in the cataloguing process, such

as estimation of the number of endmembers, endmember extraction or abundance estimation. In the

following, the attributes of the involved table are listed:

• Id. The algorithm type table identifier.

• Name. Descriptive name of the algorithm type.

2.4.2.3 Result algorithm

The system provides execution monitoring, such that it stores the status of each execution at any time.

Therefore, users can check the status of the executions (successful or wrong) and also download the final

results. In the following, the table attributes are listed:

• Id. The result algorithm table identifier.

• Status. Status of the algorithm execution.

• Time. Time spent by the algorithm execution.

• Date. Date of the algorithm execution.

• Result. Result of the algorithm execution. The results could be the number of endmembers or

the URL of a file which provides an address to the file results of the endmember extraction or

abundance estimation process.

• Abundances. Foreign key to Result Algorithm table. It links the abundances extracted from a

given set of endmembers previously extracted.

• ImageID. Foreign key to Image table.

• AlgorithmID. Foreign key to Algorithm table.

• ResourceID. Foreign key to Resource table.
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2.4.2.4 Resource

The algorithm executions are performed in distributed computing resources, so that the system needs

access data to connect, execute, monitor and retrieve the execution results to/from remote resources.

This table contains the relevant information to authenticate and authorize our system in the distributed

computing resources. In the following, the table attributes are listed:

• Id. The identifier of the table.

• Name. Descriptive name of the resource.

• HostName. Host name of the cluster.

• UserName. User name with right permissions.

• Credentials. User credentials.

2.4.3 Access features

Database tables related to the system authentication/authorization data are described in this subsection.

2.4.3.1 Users

User authentication/authorization data is stored in this table. In the following, the table attributes are

listed:

• Id. The user table identifier.

• Name. User name.

• Password. User authentication password.

• Email. Email user address.

• Role. Foreign key to Roles table.

2.4.3.2 Roles

The system authorization is based on roles which apply access restrictions to some services for users

according to their role. In the following, the table attributes are listed:

• Id. The table identifier.

• Name. Descriptive name of the role.

2.5 CBIR interface use

The proposed CBIR system performs a complex process to generate the searching meta-data and retrieve

the image, from image analysis in distributed computing resources to matching the spectral/spatial

features of these images with an input ground-truth. Fortunately, this process is totally transparent to

the user through the web interface. The web interface provides hyperspectral data management, such as

images and their associated meta-data, in addition to automatic loading of a spectral library and using

the spectra in such library in order to perform CBIR. The user may select a few spectra from the library
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or even the full library, using the selected spectral signatures as input to a query. In subsection 2.5.1 we

describe the hyperspectral data set uploading process. Subsection 2.5.2 concludes with a description of

how the queries are carried out.

2.5.1 Hyperspectral images uploading

All the registered users have permission to add new images to our system; further the users are allowed

to modify any data from their images. The process of adding new images follows two steps, first the

meta-data of the new image are introduced into the system through a web form as we can see in Fig.

2.5(a); these data are required to perform any algorithm over the image. Second, as Fig. 2.5(b) shows,

the binary file, which contains the reflectance data of the image, is uploaded into the system. In this

stage, the system generates a compressed file that will be available for downloading. This file includes

the binary data and a header file (ENVI format) within the associated meta-data previously added in

the first step. Optionally, the ground-truth related to the image can be included in the image data [as

Fig. 2.5(c) shows]; such ground-truth is very useful for further analyses.

2.5.2 Queries

Our CBIR system allows end-users to perform queries to the hyperspectral image database described

in Fig. 2.4. For each new hyperspectral data set, the spectral endmembers and their corresponding

abundance maps can be obtained using a set of algorithms implemented in the system. These algorithms,

which are described in the next chapters, conform a full spectral unmixing chain made up of three

steps: 1) estimation of the number of endmembers, 2) identification of endmember signatures, and 3)

abundance estimation. The information provided by endmember identification and abundance estimation

is then used as meta-data, to catalog each image stored in the database. This allows for fast CBIR

functionality, since the meta-data provides a compact representation of each scene in the database, and

the full unmixing chain is implemented efficiently in parallel (exploiting also the GPUs available in the

system).

In the following, we provide a simple step-by-step example illustrating how to perform a simple

hyperspectral image retrieval task in our system. Fig. 2.6(a) shows a general overview of

our system, which allows guest access (this option does not allow uploading new images in the

system). Full access to the system is also available upon request, including the image uploading

functionality. Although the system is still in beta version, it is fully operational (available online from

http://hypercomp.es/repository) and allows any interested user to obtain an account.

Fig. 2.6(b) shows the catalog panel of the system, which allows for automatically extracting meta-

data for each new hyperspectral scene that is uploaded in the system. The user can decide between two

algorithms for estimating the number of endmembers (VD [75] and HySime [51]), two algorithms for

identifying endmember signatures (N-FINDR [57] and OSP-GS [60]), and two algorithms for estimating

the abundances (UCLS [70] and ISRA [52]). The user can also decide in which computing resource the

algorithms will be performed. As subsection 2.3.4 shows, the algorithms can be executed in both GPUs

or multi-core clusters. After the algorithms have been executed, the results are visualized and the user

can decide the best combination of algorithms in order to catalog the hyperspectral scene. Once the

procedure is completed, the hyperspectral image will be automatically catalogued using the resulting

meta-data, and stored in the database structure described in Fig. 2.4.

Fig. 2.6(c) shows an example of a query, in which a USGS library of minerals is loaded in our system

and two specific spectral signatures (muscovite and kaolinite) are used to define the query. The spectral
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(a)

(b)

(c)

Figure 2.5: Image uploading work-flow: (a) Introducing the new image meta-data. (b) Uploading a new
image binary file. (c) Uploading associated ground-truth file.
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similarity threshold is set to 3 degrees and the minimum abundance is set to 5% (this means that we are

looking for hyperspectral scenes containing at least 5% muscovite and 5% kaolinite). The system now

provides information the images retrieved. For the first one in the list, the system estimates 8.48% of

muscovite and 8.97% of kaolinite. In this case, the spectral similarity scores are very high, with less than

one degree in the spectral similarity test for both endmembers. As a result, the end-user can infer that

this scene accurately satisfies the search criterion. Since there are other scenes retrieved, the end-user

may decide to select any other hyperspectral image retrieved from the query (the images are ordered

according to the combined spectral similarity score resulting from the query).
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(a)

(b)

(c)

Figure 2.6: (a) General overview of the system. (b) Catalog panel of the system. (c) Example of a query.
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Chapter 3

Unmixing-based image retrieval
system

A CBIR system is typically intended to retrieve images by means of the information that is contained

in the data (images). This is particularly important in large data repositories, such as those available

in remotely sensed hyperspectral imaging [65]. For this reason, the development of CBIR systems for

hyperspectral data repositories is an emerging need in remote sensing applications, particularly after

the development of several new Earth observation missions [15]. In this chapter, we describe the CBIR

strategy [76, 77] that we have developed for our system, which is based on an unmixing-based image

retrieval methodology.

The remainder of the chapter is structured as follows. Section 3.1 describes developments in the

area of CBIR applied to hyperspectral image databases. Section 3.2 describes the CBIR behaviour

with particular emphasis on the proposed searching methodology. Section 3.3 describes the unmixing

chain algorithms that are used to extract the spectral information. Section 3.4 develops the efficient

implementation on GPUs of the unmixing chain algorithms. Section 3.5 describes the comparative

metrics used in this work for both algorithm accuracy evaluation and image retrieval. Section 3.6

concludes with the performance of the system by comparing its retrieval accuracy, using real hyperspectral

and synthetic images with different noise levels.

3.1 Previous CBIR developments fo hyperspectral imaging

There have been several attempts towards the development of CBIR systems in the area of hyperspectral

imaging. One of the most relevant ones was described in [42], which presents a spectral/spatial CBIR

system for hyperspectral images. The authors use endmember induction algorithms to extract a set of

image spectral features, and then compute spatial features as abundance image statistics. These two

sources of information are then combined into a dissimilarity measure that guides the search for answers

to database queries [81]. In this context, each hyperspectral image is characterized by a tuple given by

the set of induced endmembers and the set of fractional abundance maps resulting from an unmixing

process conducted using three stages [82]. For the estimation of the number of endmembers, the authors

use the VD [75] method. For the endmember induction step, the authors use three different methods: 1)

a fast implementation of the PPI algorithm [63], called fast iterative PPI (FIPPI) [83]; 2) the volume-

based N-FINDR method [57]; and 3) the ILSIA algorithm [84]. For the estimation of the fractional

abundances of inducted endmembers, the authors use the FCLSU algorithm [36]. The authors validate
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their approach using synthetic data and a real hyperspectral data set (with 2878 × 512 pixels and 125

spectral bands, cut in patches of 64× 64 pixels for a total of 360 patches).

A similar strategy is employed in [43], which presents a parallel heterogeneous CBIR system for

efficient hyperspectral image retrieval using spectral mixture analysis. Here, the PPI algorithm performs

endmember extraction and FCLSU estimates the abundances. A spectral signature matching algorithm

guides the queries to the database. This algorithm first considers the SAD [35] in order to retrieve images

by means of an endmember-guided similarity criterion, and then the search is refined by analysing the

relative difference between the abundance fractions associated with the retrieved image and the example

image for the search. Another contribution of [43] is an efficient implementation of the system for

heterogeneous networks of computers, possibly distributed among different locations. This idea arose

from the naturally distributed format of hyperspectral image databases. The system was tested using a

collection of 154 hyperspectral data sets collected by the AVIRIS sensor over the World Trade Center area

in New York, only a few days after the terrorist attacks of September 11th, 2001. The implementation

used a heterogeneous network of 16 workstations, and also the NASA Thunderhead cluster1 with 256

CPUs, providing good results in terms of image retrieval accuracy and parallel performance.

3.2 Content-based image retrieval methodology

In this thesis work, we develop a completely new CBIR system which takes advantage of seminal concepts

from linear spectral unmixing to perform effective data retrieval. As introduced in chapter 2, a query is

defined by the user from a web interface using ground-truth spectral signatures, a similarity threshold

and minimum abundance of those ground-truth substances. Then the query is sent to the CBIR engine,

which returns the most similar images in the database. However, first of all every new hyperspectral data

set needs to be catalogued by extracting the spectral endmembers and their corresponding abundance

maps using a set of algorithms implemented in the system. These algorithms conform a full spectral

unmixing chain made up of three steps: 1) estimation of the number of endmembers, 2) identification of

the spectral signatures of the endmembers, and 3) estimation of fractional abundances. The information

provided by endmember identification and abundance estimation is then used as meta-data, to catalog

each image stored in the database. This allows for fast CBIR functionality, as the meta-data provides

a compact representation of each scene in the database, and the full unmixing chain is implemented

efficiently in parallel (exploiting also the GPUs available in the system).

As Fig. 3.1 shows, the CBIR workflow is composed of several stages. First and foremost, we have

the database image catalog using the algorithms to extract the spectral information, which are detailed

in section 3.3, that obtain the spectral endmembers and their abundance maps in every image. The

catalog is performed once a new hyperspectral image is incorporated into the repository. This process is

commanded by the image provider through the web interface. The following steps are performed in this

process:

• Estimation of the number of endmembers. First of all, the estimation of the number of endmembers

in the hyperspectral image must be performed, since it will be a relevant input parameter for the

next algorithm.

• Endmember extraction. In a second step, the most spectrally pure spectral signatures or

endmembers in the image must be located, which are relevant to a query.

1http://science.gsfc.nasa.gov/606.1/docs/Specs.pdf
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Figure 3.1: Structure of the CBIR procedure based on unmixing concepts.

• Abundances estimation. In the last step, the endmember abundances are estimated. This allows us

to establish filters by setting a minimum required abundance of a given endmember in the scene.

The catalog process can be performed as many times as desired, until convincing results are obtained.

Once the results are good enough they are assigned as associated image meta-data to the database, and

they will be used for spectral comparison in future queries.

In a second stage, a query is sent to the server. A standard query defined for our CBIR is composed of

spectral signatures, a threshold of similarity between the reference signatures and the image endmembers,

in addition to a minimum abundance of such spectral signatures in the scene which limits the results to

the images with enough quantity of such substance. The reference spectral signatures used for searching

are located in spectral libraries, and our system supports standard library formats such as SLI.

The last stage of the CBIR work-flow is the image spectral information matching. The metrics used

for this purpose are SAD [35], i.e. the angle between the spectral signatures from the spectral library

and the spectral signatures extracted from the images as endmembers, and calculate the abundance

percentage of such spectral signatures in the scene. This stage is fully described in subsection 3.2.2.

In the following, we briefly introduce the USGS spectral library which has been used as the main

library to guide the searching process in our system. This section concludes with a description of the

searching methodology, including aspects such as distance metrics and matching algorithms used for

retrieval purposes.
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3.2.1 U.S. Geological Survey spectral library

USGS Spectroscopy Lab2 is studying and applying methods for identifying and mapping materials

through spectroscopic remote sensing, on the Earth and throughout the solar system using laboratory,

field, airborne and spacecraft spectrometers. One of its most well-known projects is the assembly of the

digital reflectance spectral library, which is very useful as a reference for material identification in remotely

sensed images. The newest library provided covers the wavelength range from the ultraviolet to far infra-

red along with sample documentation. This library comprises hundred of spectral signatures of different

materials and includes samples of minerals, rocks, soils, plants, vegetation species, microorganisms, and

man-made materials. In our work we use a nearlier spectral library [85], which is widely used in the

literature. This library comprises the wavelength range from 0.2− 3.0 microns, and contains 481 spectra

of minerals.

3.2.2 Searching methodology

Two searching options are available in the proposed system. The first one relies on the SAD (described

in 3.5.1) in order to retrieve hyperspectral images with endmembers that are similar to those available

in a spectral library that can be loaded in the system. A particular issue that may arise in this kind of

search is the fact that the wavelengths of the spectral library used as input can be different from the

wavelengths of the hyperspectral images stored in the system. For this purpose, we have implemented,

as described in Algorithm 2, a spectral convolution strategy that looks for the wavelength values which

are present in both the hyperspectral data and the input spectral library (with the possibility to include

a tolerance threshold in the wavelength matching procedure). In most cases, the spectral resolution of

the input signatures in the spectral library is much higher than the images stored in the database, and

it is often possible to retrieve scenes with great accuracy as their associated wavelengths are a subset of

those of the signatures in the spectral library.

On the other hand, the system also allows queries based on the specific abundance of a given

endmember. For instance, we may not only look for scenes with a specific kind of vegetation

(endmember), but also with a significant presence (abundance) of this kind of vegetation in the retrieved

scene. For this purpose, we may set a minimum threshold for the abundance of a given endmember (or

group of endmembers) in the retrieved scene. As Algorithm 3 shows, this is implemented by calculating

the total abundance of each of the endmembers in the scene, summing all the relative contributions

in each pixel and obtaining the total abundance coverage of an endmember in the scene. Then, we

may impose a minimum abundance threshold that is used in the retrieval process. In this way, we can

effectively perform image retrieval based on both endmember and abundance information (i.e., not only

retrieving scenes that contain a certain endmember but also scenes that contain a certain amount of a

given endmember). Since this information is available as meta-data for each scene, the retrieval process

is quite fast and the most computationally expensive part is the generation of the meta-data itself, which

is carried out in parallel as will be explained in section 3.4.

In the following, the different stages of a full searching process are detailed:

• Initialization. In this step, a spectral library of signatures used for the search is loaded into the

system.

• Spectral convolution. The system automatically performs a spectral convolution strategy that

allows comparing the wavelengths of the input spectral library with the wavelengths of the real

2http://speclab.cr.usgs.gov/
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Algorithm 2 Bands convolution process

1: procedure BandsConvolution(grountruths,endmemders,tolerance,gtOut,endOut)
2: lastMatched= 0
3: counter = 0
4: for i = 0 to grountruths.NumBands do
5: for j = lastMatched to endmemders.NumBands do
6: diff=grountruths.WaveLength[i] − endmemders.WaveLength[j]
7: if diff <= tolerance then
8: gtMatchedArray.push(i)
9: endMatchedArray.push(j)
10: lastMatched=j + 1
11: Break For loop
12: end if
13: end for
14: end for
15: for line=0 to grountruths.size do
16: for column=0 to gtMatchedArray.Length do
17: k=grountruths.NumSamples ∗ line + gtMatchedArray[column];
18: gtOut.push(grountruths.vector[k])
19: end for
20: end for
21: for line=0 to endmemders.size do
22: for column=0 to endMatchedArray.Length do
23: k=endmembers.NumSamples ∗ line + endMatchedArray[column];
24: endOut.push(endmemders.vector[k])
25: end for
26: end for
27: end procedure

Algorithm 3 Selection of an abundance percent threshold

1: procedure AbuncandesPercent(abundances,percentArray)
2: total = 0.0
3: for i = 0 to abundances.Pixels∗abundances.Endembers do
4: total= AbsoluteValue(abundances.Vector[i]) + total;
5: end for
6: for i =0 to abundances.Endmembers do
7: partial = 0.0
8: overflow = abundances.Pixels∗i
9: last = abundances.Pixels∗(i+1)
10: for j = overflow to last−1 do
11: partial=AbsoluteValue(abundances.Vector[j])+partial
12: end for
13: percentArray[i]= (partial/total)∗100
14: end for
15: end procedure

hyperspectral data stored in the system.

• Signature comparison. For a spectral signature (or set of signatures) available in the loaded spectral

library, the system calculates the SAD with all the endmembers stored as meta-data for each

hyperspectral scene in the system, and retrieves a number of matching scenes satisfying the specified

criterion.

• Abundance filter. As an optional step, the system allows defining a minimum abundance filter which

is used as an additional condition to the signature comparison described in the previous step. In

this case, the image is retrieved only if the matched endmember contains a total abundance in the

scene that is higher than a minimum predefined abundance threshold.

• Sorting and visualization. The retrieved images are shown to the user sorted from higher to lower

spectral similarity (lowest to highest spectral angle).
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3.3 Unmixing chain

3.3.1 Estimation of the number of endmembers

The estimation of the number of endmembers is an essential stage in the unmixing process because it

is highly important in later stages as a crucial parameter in endmember identification and abundance

estimation algorithms. Despite its importance in the literature, there are not many automatic proposals

to solve this problem. In this subsection, two proposals are described: VD [75] which is based on a

detector built on the eigenvalues of the sample correlation and covariance matrices, and HySime [51]

which adopts a minimum mean squared error based approach to infer the signal subspace.

3.3.1.1 Virtual Dimensionality (VD) algorithm

Let us denote by Y ≡ [y1,y2, · · · ,yn] a hyperspectral image with n pixel vectors, each with l spectral

bands. First, VD calculates the eigenvalues of the covariance matrix Kl×l = 1/n(Y − Y)
T
(Y − Y)

and the correlation matrix Rl×l = Kl×l +YY
T
, respectively referred to as covariance-eigenvalues and

correlation-eigenvalues, of each of the spectral bands in the original hyperspectral image Y. If a distinct

spectral signature makes a contribution to the eigenvalue-represented signal energy in one spectral band,

then its associated correlation eigenvalue will be greater than its corresponding covariance-eigenvalue, in

which case only noise would be represented in this particular band. By applying this concept, a Neyman-

Pearson detector [75] is introduced to formulate the issue of whether a distinct signature is present or

not in each of the spectral bands of Y as a binary hypothesis testing problem where a so-called Neyman-

Pearson detector is generated to serve as a decision marker based on a prescribed PF (i.e. false alarm

probability). In light of this interpretation, the issue of determining an appropriate estimation p for the

number of endmembers is further simplified and reduced to a specific value of PF that is present by the

Neyman-Pearson detector.

3.3.1.2 Hyperspectral Signal Subspace Identification by Minimum Error (HySime)

Let us denote by Y ≡ [y1,y2, · · · ,yn] a hyperspectral image with n pixel vectors, each with l spectral

bands. HySime method consists of two parts. First, an algorithm calculates the noise estimation which

produces a n × l matrix ϵ̂ containing an estimation of the noise present in the original hyperspectral

image Y (let us remember that n is the number of pixels and l is the number of bands of Y). This

algorithm follows an approach which addresses the high correlation exhibited by close spectral bands.

This algorithm stars from calculating Z = YT and R′ = (ZTZ)−1, so the regression vector β̂i and noise

ξ̂i for each band iϵ{1, 2, · · · , l} can be calculated by:

β̂i = ([R′]κi,κi −
[R′]κi,i[R

′]i,κi

[R′]i,i[R̂]κi,i

), (3.1)

and

ξ̂ = zi − Zκi β̂i, (3.2)

where [R′]κi,κi denotes the matrix R′ in which i-th column and i-th row has been deleted, [R′]κi,i denotes

i-th column of R′ and [R′]κi,κi denotes i-th row of R′.

The main advantage of the noise estimation algorithm described above is that its computational

complexity is substantially lower than other algorithms for noise estimation in hyperspectral data in the
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literature. Additional details about this algorithm can be found in [51] and we do not repeat them for

space considerations.

On the other hand, the second part of HySime is the signal subspace identification algorithm, which

first computes the noise correlation matrix R̂n = 1/n
∑

i(ξiξ
T
i ) and then computes the signal correlation

R̂s = 1/n
∑

i((yi−ξi)(yi−ξTi )). The next steps are to calculate the eigenvectors of the signal correlation

matrix and the terms δ̂i based on quadratic forms, and then to sort the terms in ascending order. Finally,

a minimization function is applied to obtain an estimation p in the signal subspace Ŝ. The main purpose

of this algorithm is to select the subset of eigenvectors that best represents the signal subspace in the

minimum mean squared error sense, p is the number of terms δ̂i ≪ 0.

3.3.2 Dimensionality reduction

The number of endmembers p present in a given scene is, very often, much smaller than the number

of bands l. Therefore, assuming that the linear model is a good approximation, spectral vectors lie

in or very close to a low-dimensional linear subspace. The identification of this subspace enables low-

dimensional yet accurate representation of spectral vectors. It is usually advantageous and sometimes

necessary to operate on data represented in the signal subspace. Thus, a signal subspace identification

algorithm is often required as a previous processing step in the spectral unmixing chain before the

endmember identification. Although unsupervised subspace identification has been approached in many

ways, we have focused on the projection techniques, which seek for the best subspaces to represent

data by optimizing objective functions. For example, PCA maximizes the signal variance; SVD [69]

maximizes power; MNF [53] and NAPC [55] minimize the ratio of noise power to signal power. NAPC

is mathematically equivalent to MNF and can be interpreted as a sequence of two principal component

transforms: the first applies to the noise and the second applies to the transformed data set. In this

work PCA has been selected as dimensionality reduction method and is described below.

3.3.2.1 Principal component analysis (PCA)

Let us denote by Y ≡ [y1,y2, · · · ,yn] a hyperspectral image with n pixel vectors, each with l spectral

bands. PCA is a well-known method for dimensionality reduction [62] which can be computed by

performing the eigendecomposition of the covariance matrix of the hyperspectral image Y:

K ≡ VΛV−1, (3.3)

where K is the covariance matrix of Y, V ≡ [v1,v2 · · ·vl] is an orthogonal matrix whose columns

are the eigenvectors of K, and Λ is a diagonal matrix containing the eigenvalues of K.

The projection of the data Y by the eigenvectors V yields the principal components of Y. The

eigenvalues in Λ encase the ’weight’ of each principal component of the resulting data. By choosing only

the eigenvectors corresponding to the largest p eigenvalues, the data dimensionality has reduced while

preserving the maximum information (variance). This fact provides the possibility of working in a reduce

data set as the information of the subspace is similar to work with original data information. In this

context, for instance, the same endmembers are identified from both the reduced and the original data

set.
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3.3.3 Endmember extraction

As introduced in chapter 1, the endmember identification process can be executed from several points

of view. On the one hand, we have methods which exploit a geometric approximation by assuming that

all the endmembers are inside a simplex. Several geometric methods use techniques in which do not

assume the presence of pure pixels in the scene [86, 87, 88, 89]. The main problem of this approach is

the possibility of obtaining virtual endmembers, which may be formed by spectral signatures without

any relation with real materials in nature. On the other hand, sparse methods use spectral libraries

to solve the mixture problem using spectral signatures not necessarily present in the image [40], so the

resulting endmembers come from the spectral library, in which the spectral signatures were measured in

a laboratory with optimal conditions. Although the endmembers obtained from the image pixels have

the advantage of having same conditions as the image, it is also possible that some objects may not

be perfectly represented by pure pixels in the scene. In addition, there are other approximations to

the endmember identification problem such as statistical methods in which spatial information-oriented

methods are highlighted. In our implementations, we mainly exploited endmember identification methods

based on geometric approximations. However, our system also offers the possibility to use sparse

unmixing to conduct the queries. Next, two popular geometric methods implemented in our system

are described: N-FINDR and OSP-GS.

3.3.3.1 N-FINDR

The N-FINDR algorithm [57] is one of the most widely used an successfully applied methods for

automatically determining endmembers in hyperspectral image data without using a priori information.

This algorithm looks for the set of pixels with the largest possible volume by inflating a simplex inside

the data. The procedure begins with a random initial selection of pixels (see Fig. 3.2). Every pixel in

the image must be evaluated to refine the estimate of endmembers, looking for the set of pixels that

maximizes the volume of the simplex defined by the selected endmembers. The mathematical definition

of the volume of a simplex formed by a set of endmember candidates is proportional to the determinant

of the set augmented by a row of ones. The determinant is only defined in the case where the number of

features is p− 1, p being the number of desired endmembers [90]. Since in hyperspectral data typically

the number of bands is bigger than the number of endmembers, n ≫ p, a transformation that reduces

the dimensionality of the input data Y is required. In this work, we use the PCA for this purpose.

The corresponding volume is calculated for every pixel in each endmember position by replacing that

endmember and finding the resulting volume. If the replacement results in an increase of volume, the

pixel replaces the endmember. This procedure is repeated in iterative fashion until there are no more

endmember replacements. The method can be summarized by a step-by-step algorithmic description

which is given bellow:

• Feature reduction. Apply the PCA to reduce the dimensionality of the data Y from l to d = p − 1 ,

where p is the number of endmembers to be extracted.

• Initialization. Let {m(0)
1 ,m

(0)
2 , . . . ,m

(0)
p } be a set of p endmembers randomly extracted from the

input data Y.

• Volume calculation. At iteration k ≥ 0, the volume defined by the current set of endmembers is
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a) N-FINDR initialed randomly (p=4) b) Final volume estimation by N-FINDR

Figure 3.2: Graphical interpretation of the N-FINDR algorithm in a three-dimensional space.

calculated in volume calculation as follows.

V(m(k)
p ,m(k)

p , . . . ,m(k)
p ) =

∣∣∣∣det [ 1 1 . . . 1

m
(k)
1 m

(k)
2 . . . m

(k)
p

]∣∣∣∣
(p− 1)!

(3.4)

• Replacement. For each pixel vector yi in the input hyperspectral data, we recalculate the volume

by testing the pixel in all p endmember positions, i.e., first calculate V(yj ,m
(k)
2 , . . . ,m

(k)
p ), then

calculate V(m
(k)
1 ,yi, . . . ,m

(k)
p ), and so on until V (m

(k)
1 ,m

(k)
2 , . . . ,yi). If none of the p recalculated

volumes is greater than V(m
(k)
1 ,m

(k)
2 , . . . ,m

(k)
p ), then no endmember is replaced. Otherwise, the

combination with maximum volume is updated and the endmember is replaced by the new one. So

that, a new set of endmembers is produced by replacing m
(k+1)
j = yi and m

(k+1)
i = m

(k)
i for i ̸= j,

where m
(k+1)
j is the avoided endmember. The replacement step is repeated for all the pixel vectors

in the input data until all the pixels have been exhausted. The result of this is a final endmembers

set of M = {mi}i=1
p

As a final comment, it has been observed that different random initializations of N-FINDR may produce

different final solutions. Since our system intends to work in heterogeneous fashion, the algorithm is not

initialized with a common matrix, so that our experiments show high standard deviations in the case of

N-FINDR.

3.3.3.2 Orthogonal subspace projection with Gram-Schmidt orthogonalization (OSP-GS)

The OSP algorithm [60] was originally developed to find spectrally distinct signatures using orthogonal

projections. For this work, we have used an optimization of this algorithm which allows calculating the

OSP without requiring the computation of the inverse of the matrix that contains the endmembers

already identified in the image. This operation, which is difficult to implement in parallel, is

accomplished using the Gram-Schmidt method for orthogonalization. This process selects a finite set of

linearly independent vectors W = {w1, · · · ,wp} in the inner product space Rn in which the original

hyperspectral image Y is defined, and generates an orthogonal set of vectors B = {b1, · · · ,bp} which
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spans the same p-dimensional subspace of Rn (p ≤ n) as W. In particular, B is obtained as follows:

b1=w1, m1 = b1

∥b1∥
b2=w2 − proj b1(w2), m2 = b2

∥b2∥
b3=w3 − proj b1(w3)− proj b2(w3), m3 = b3

∥b3∥
b4=w4 − proj b1(w4)− proj b2(w4)− proj b3(w4), m4 = b4

∥b4∥
...

...

bp=wp −
∑p−1

j=1 projbj (wp), mp =
bp

∥bp∥ ,

(3.5)

where the projection operator is defined in (3.6), in which < w,b > denotes the inner product of vectors

w and b.

projb(w) =
< w,b >

< b,b >
b. (3.6)

The sequence b1, · · · ,bp in (3.5) represents the set of orthogonal vectors generated by the Gram-Schmidt

method, and thus, the normalized vectors m1, · · · ,mp in (3.5) form an orthonormal set. As far as B

spans the same p-dimensional subspace of Rn as W, an additional vector bp+1 computed by following

the procedure stated at (3.5) is also orthogonal to all the vectors included in W and B. This algebraic

assertion constitutes the cornerstone of the OSP method with Gram-Schmidt orthogonalization, referred

to hereinafter as OSP-GS algorithm.

3.3.4 Abundance estimation

The last stage of the unmixing chain of the linear mixture model is the estimation of abundance of

the identified endmembers, M = {mi}pi=1, in every pixel of the hyperspectral image Y. The results are

presented as an abundance map associated to each endmember, with as many maps as endmembers, p,

being produced. Abundance values can be constrained to be non-negative (ANC), i.e., αi ≥ 0 and the

abundance sum-to-one constraint (ASC), i.e.,
∑p

i=1 αi = 1. Since ASC has received some criticisms in

the recent literature [40], the most popular solutions estimate the abundances without any restrictions

or applying only the ANC. Next, two widely used solutions implemented in our system are presented:

UCLS method, which has no restrictions, and ISRA method, which applies the ANC.

3.3.4.1 Unconstrained least-squares (UCLS)

UCLS algorithm [70] works as follows. Once the set of endmembers M = {mi}pi=1 has been identified,

their correspondent abundance fractions A = [α1, α2, · · · , αp], in a specific l-dimensional pixel vector yi

of the scene, can be simply estimated (in least squares sense) by the following unconstrained expression:

αi = (MTM)−1MTyi. (3.7)

This method is fast and easy to implement, since non-restrictions are applied. Although it can produce

negative abundances which are no nature-related.

3.3.4.2 Image space reconstruction algorithm (ISRA)

ISRA algorithm [52] is an abundance estimation method which applies ANC, so all the values are positive.

Once the set of endmembers M = {mi}pi=1 has been identified (note that M can also be seen as an n×p
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matrix where n is the number of spectral bands and p is the number of endmembers) we apply the

following steps. First, a αi vector abundance is initialized with positive values for each yi pixel in the

image Y. Then, an iterative process calculates the abundances as follows:

αk+1
i = αi

k

(
MT · yi

MTM · αi
k

)
, (3.8)

this process is executed until the estimation error is lower than a given error threshold ε, such

estimation error is calculated with ∥yi −Mαi
k+1∥22. Otherwise, the process keeps executing until:

∥αk+1 − αk∥
∥αk∥

≤ ρ, (3.9)

where ρ indicates the maximum similarity between abundances. This algorithm has been described in

[52]. It is important to emphasize that the calculations of the fractional abundances for each pixel are

independent, so they can be calculated simultaneously without data dependencies, thus increasing the

possibility of parallelization.

3.4 GPU implementation

In recent years, GPUs have evolved into highly parallel, multi-threaded, many-core coprocessors with

tremendous computational power and memory bandwidth [91]. The combined features of general-

purpose supercomputing, high parallelism, high memory bandwidth, low cost, compact size, and excellent

programmability are now making GPU-based desktop computers an appealing alternative to massively

parallel systems made up of commodity CPUs. The exploding GPU capability has attracted more and

more scientists and engineers to use it as a cost-effective high-performance computing platform in many

applications, including hyperspectral imaging problems. In addition, GPUs can also significantly increase

the computational power of cluster-based and distributed systems (e.g., clusters of GPUs are becoming

an important architecture for supercomputing purposes.3).

Several efforts exploiting GPU technology can already be found in the hyperspectral unmixing

literature, including [41] and references therein. Only in the area of spectral unmixing of hyperspectral

data there have been many developments already. A GPU-based implementation of the AMEE algorithm

for pure spectral signature identification was described in [47]. In this case, speedups on the order of

15x were reported. The well-known PPI algorithm [63] has been implemented in GPUs using different

strategies [92, 93]. A GPU-based real time implementation of the VCA algorithm [73] has also been

recently reported in [94]. A full spectral unmixing chain [95, 96] comprising the automatic estimation of

the number of endmembers using the VD [75] or the HySime [51], the identification of the endmember

signatures using the N-FINDR algorithm [57], and quantification of endmember fractional abundances

using UCLS [65] has been reported in [97], with speedups superior to 50x. A variation of this chain

using the OSP [60] instead N-FINDR for endmember identification [61] was given in [70], achieving

similar speedups and real-time unmixing results. Since UCLS provides abundances that are not subject

to constraints, a non-negative abundance estimation method called ISRA [52], which was available in

the form of an FPGA implementation [98], has been recently implemented in multi-core [99] and GPU

[100] systems.

In this section, we describe the GPU implementation of the algorithms described in the previous

section. They are carried out using the CUDA architecture developed by NVidiaTM . Fig. 3.3 illustrates

3http://www.top500.org
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Figure 3.3: A GPU device ( NVidiaTM Tesla).

the appearance of a NVidiaTM Tesla GPU device. As Fig. 3.4 shows, the architecture of a GPU can

be seen as a set of multiprocessors. Each multiprocessor is characterized by a single instruction multiple

data architecture, i.e., in each clock cycle, each processor executes the same instruction but operating on

multiple data streams. Each processor access to a local shared memory and also to local cache memories

in the multi-processor, while the multiprocessors have access to the global GPU (device) memory. GPUs

can be abstracted in terms of a stream model, under which all data sets are represented as streams

(i.e. ordered data sets). Algorithms are constructed by chaining so-called kernels which operate on

entire streams and which are executed by a multiprocessor, taking one or more streams as inputs and

producing one or more streams as outputs. Thereby, data-level parallelism is exposed to hardware, and

kernels can be concurrently applied without any sort synchronization. The kernels can perform a kind

of batch processing arranged in the form of a grid of blocks, where each block is composed by a group of

threads that share data efficiently through the shared local memory and synchronize their execution for

coordinating accesses to memory (see Fig. 3.5). With the above ideas in mind, our GPU implementation

of the hyperspectral unmixing chain comprises three stages: a) Estimation of number of endmembers on

GPUs; b) Endmember extraction on GPUs; c) Abundance estimation on GPUs.

3.4.1 Estimation of the number of endmembers on GPU

In this subsection we detail the GPU implementation of two methods for estimating the number of

endmembers in a hyperspectral scene: VD (described in 3.3.1.1) and HySime (described in 3.3.1.2)

3.4.1.1 GPU implementation of VD

The GPU implementation of VD algorithm, described in subsection 3.3.1.1, can be summarized as

follows. Once we load the full hyperspectral image Y in the GPU memory, the first step is to calculate

the covariance matrix Kl×l. For this purpose, we need to calculate the mean value of each band of the

image and subtract this mean value to all the pixels in the same band. To perform this calculation in the

GPU, we use a kernel called centerData configured with as many blocks as the number of bands in

the hyperspectral image, l. In each block, all available threads perform a reduction process using shared

memory and coalesced memory accesses to add the values of all the pixels from the same band. Once this

process is completed, another thread divides the computed value by the number of pixels in the original
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Figure 3.4: Schematic overview of a GPU architecture, which can be seen as a set of multiprocessors.

Figure 3.5: Different levels of memory in the GPU for the thread, block and grid concepts.

image, n, and then the mean value is obtained. In the last step, the kernel subtracts the mean value of

each band to every pixel of that band, then the result is a matrix Y −Y. This matrix is used to calculate

the covariance matrix Kl×l in the GPU by a matrix multiplication operation (Y −Y)
T
(Y −Y). This
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operation is performed using the cuBLAS4 library. Specifically, we use the cublasSgemm function that

executes efficient matrix multiplications on GPUs. The next step is to calculate the correlation matrix

Rl×l in the GPU. In order to achieve this, we use a kernel called computeCorrelation which launches

as many threads as elements in the correlation matrix, so l × l threads, where each thread computes

an element of the resulting matrix as follows: Rij = Kij + YiYj . Finally, we have observed that the

remaining steps in the VD calculation (i.e., extraction of correlation-eigenvalues, covariance-eigenvalues

and Neyman-Pearson test for estimation of the number of endmembers) can be computed very fast in

the CPU.

3.4.1.2 GPU implementation of HySime

As subsection 3.3.1.2 shows, HySime is clearly divided in two stages: 1) noise estimation and 2) subspace

estimation. In the first stage, once we load the hyperspectral image Y in GPU memory, we implement

the noise estimation algorithm. For this purpose, the first step is to compute R̂ and its inverse, R′.

The former is calculated in the GPU by means of standard cuBLAS matrix multiplication (using

cublasSgemm) while the latter is implemented in the CPU to avoid the high computational cost of

the inverse operation in parallel (we tested the GPU communication time is bigger than inverse CPU

execution).

We keep in the CPU the iterative procedure of calculating the noise estimation matrix for each band

from the original image, since there are only l iterations. Then, for each i-th iteration we compute

in the GPU two kernels and a matrix-matrix multiplication using cuBLAS. The first kernel, called

computeBeta, performs the computation of all β̂ values and stores them in a l× l matrix. This kernel

has as many blocks as spectral bands in the original image. We have divided equation 3.1 in three parts

described by the equations: 3.10, 3.11 and 3.12. Specifically, Eq. 3.10 multiplies both columns and the

computed value is divided by the i -th element, it is optimized by keeping the i -th column in shared

memory. Then Eq. 3.11 subtracts AAi values to [R′
κi,κi ] using one thread by row. Finally, Eq. 3.12

multiplies XXi and [R̂κi,i] matrix.

AAi = [R′
κi,i][R

′
i,κi ]/[R

′
i,i] (3.10)

XXi = [R′
κi,κi ]−AAi (3.11)

β̂i = XXi[R̂κi,i] (3.12)

Once we have β̂ matrix, the next step is to compute the operation ξ̂i = zi − Zκi β̂i. For this purpose,

the multiplication P = Zκi β̂i is performed using cuBLAS, followed by the calculation of ξ̂ = Z−P. We

can take advantage of this operation to subtract each element of P from each element of zi in parallel.

For this goal, we use a simple kernel, called subtractElements, which subtracts two structures of the

same size using as many threads as elements in the structures.

On the other hand, the second stage is the subspace estimation algorithm. For this purpose,

the first step is to calculate the noise correlation matrix R̂n = [ξ̂1, · · · , ξ̂n]
T
[ξ̂1, · · · , ξ̂n], which could

4https://developer.nvidia.com/cublas
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be calculated by means of a cuBLAS multiplication; since only diagonal elements of this matrix are

considered, it is just necessary to compute the diagonal values: R̂ni,i = [ξ̂1i , · · · , ξ̂ni ]
T
[ξ̂1i , · · · , ξ̂ni ]. Due

to the number of intermediate structures needed in this process, the memory requirements can generate

problems in some GPU devices. To address this issue, we implement this operation in the CPU as it

is not computationally expensive. The second step of the subspace estimation is to calculate the signal

correlation matrix R̂s = 1/n
∑

i((yi − ξ̂i)(yi − ξ̂Ti )), so we start by performing the operation
(
yi − ξ̂Ti

)
with the subtractElements kernel. After this, we use again cuBLAS matrix multiplication to obtain

R̂s. Next, the eigenvectors V are calculated by SVD in the CPU using an optimized function (dsyevr )

of the widely used linear algebra package (LAPACK)5. The terms δ̂i are obtained based on the quadratic

forms given by:

δ̂ij =

l∑
j=1

−qij + 2σ2
ij (3.13)

where vi corresponds with the i -th eigenvector, qij = vT
ij
R̂svij and σ2

ij
= vT

ij
R̂nvij . We perform these

operations using cuBLAS matrix multiplication. Finally, we apply a minimization function to get the

estimate of p in the CPU, which is the number of δ̂i values smaller than 0. Hence, the signal subspace

is defined by the p first eigenvectors of R̂s.

3.4.2 Dimensionality reduction on GPU

In this subsection we detail the GPU implementation of the dimensionality reduction algorithm used in

this work, PCA, which is described in 3.3.2.1.

3.4.2.1 GPU implementation of PCA

As 3.3.2.1 shows, the first step of PCA algorithm is the covariance matrix calculation Kl×l. For this

purpose, the original image Y is copied into GPU memory, and then we use the kernel centerData

(described in 3.4.1.2) to perform Y − Y that produces a matrix of the mean centered image data.

This matrix is used to calculate the covariance matrix Kl×l in the GPU by a matrix multiplication

(Y −Y)
T
(Y −Y) using the cuBLAS function cublasSgemm.

Later, we apply the SVD to get the eigenvalues and eigenvectors (Vl×l) of the covariance matrix

in the CPU. Once the eigenvalues and their associated eigenvectors are sorted in descending order, the

eigenvectors are moved to the GPU to perform the projection of Y over them by the matrix multiplication

B = YV. The resulting n × l matrix contains the bands sorted in descending order by the variance

of their data. Thus, we can create a new image from the first p − 1 bands of B, which contains the

majority of the original image information. Furthermore, we can accelerate the process by using in the

last multiplication the first p− 1 eigenvectors (or columns) instead of the complete V matrix.

3.4.3 Endmember extraction on GPU

This subsection details the GPU implementation of the endmember extraction algorithms: N-FINDR

(described in 3.3.3.1) and OSP-GS (described in 3.3.3.2).

5http:www.netlib.orglapack
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3.4.3.1 GPU implementation of N-FINDR

The GPU implementation of the N-FINDR algorithm, described in subsection 3.3.3.1, can be summarized

as follows. Prior to the implementation on the GPU, a series of optimizations were performed in the

original method, which have even improved the serial implementation. Since the most time-consuming

computation in the N-FINDR algorithm is the calculation of the determinants, we have optimized this

step. The determinant of a non-singular matrix V is usually obtained from the factorization PV

= LU (where P is a permutation matrix, L is a unit lower triangular matrix, and U is an upper

triangular matrix) as the product of the diagonal elements of U. This decomposition is known asGaussian

elimination or LU factorization (with partial row pivoting). The repeated volume calculations of the

N-FINDR algorithm can be reduced by exploiting some basic properties of the LU factorization and

matrix determinants. Consider, i.e., the p× p and p× p− 1 matrices:

V
(1)
B =

[
1 . . . 1 1

m
(0)
2 . . . m

(0)
p yj

]
and

V̄
(1)
B =

[
1 . . . 1

m
(0)
2 . . . m

(0)
p

]
,

(3.14)

where B is the reduced version of the hyperspectral image Y with p components, obtained as result of

the PCA transform which is also performed in the GPU as described in the previous subsection.

Let assume that we have computed the LU factorization (with partial pivoting) PBV
(1)

B = LBUB.

Then, the LU factorization (with partial pivoting) ofV
(1)
B is simply given by PBV

(1)
B =

[
UB(L

−1
B PT

Byj)
]
.

Therefore, the LU required factorizations for the N-FINDR volume calculations can be all computed by

simply forming the p×m matrix B̂ =

[
1 1 . . . 1

BT

]
, where B is the reduced hyperspectral image.

Then, we need to compute LB
−1PB

T B̂. This is one of the parts that we accomplish in the GPU

by means of a Volume-Calculation kernel which obtains the pixel volume in one iteration. The n

volumes required for the first iteration of the N-FINDR algorithm are calculated from the product

of the determinant of UB and the last row of L−1
B PT

BB̂. By means of a maxVolume kernel, we get the

value of the maximum volume and the location of the pixel that produces such volume. In the following,

we describe the process in step-by-step fashion:

1. Initialization. First, we form a p× p matrix V
(1)

B by initializing the first row to ones and setting in

each row (from the second one) a random endmember. The determinant of the resulting matrix is

calculated and the result is sorted in the currentVolume variable. Since the matrix dimension is

small, the determinant is performed in the CPU. On the other hand, we create the n-elements vector

VolVector which is used to store in the k -th position the volume resulting from an endmember

replacement for the i -th pixel. Therefore, the reduced image B is modified by inserting a new first

band of ones and getting B̂.

2. Volume calculation. In each k -iteration we replace in V
(1)

B the current endmember of the k -th

position for the endmember from p-th position, in addition to replacing the p-th column by a

column with this format:


0
·
·
·
1

. Then the LU factorization is applied to this matrix and we obtain

LB,UB and PB. After that, we compute the determinant of UB and the inverse of LB . Since

those matrices are triangular and small, we can execute the determinant and the inverse in the
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CPU without any time penalty. At this point, we have the necessary elements to calculate the

volume in just one iteration. Due to the fact that these elements are calculated by multiplying

the determinant of UB by the last row of L−1
B PT

BB̂, we divide this process in two phases: first,

we perform the matrix multiplication S = L−1
B PT

B in the CPU. The second phase, due to its high

computational cost, it is performed in the GPU using the kernel VolumeCalculation. This last

kernel executes a multiplication of UB by the last row of the p×m matrix SB̂, therefore, we have

optimized the SB̂ operation by multiplying only the last row of S by B̂, so we save the calculations

of obtaining the first p− 1 rows.

3. Replacement. Once we have computed the volumes of one iteration, the next step is to find the

pixel which generates the biggest volume and check if this volume is bigger than currentVolume.

For this purpose, we use the ReductionVol kernel, which performs a reduction process in which j

blocks work on different VolVector sections, so that each block calculates the local maximum and

identifies its position. At the end of the execution, due to the fact that there are as many produced

values as blocks (each block has its local maximum), it is necessary to keep those local maximums

and their positions in global memory and later copy them to the CPU memory. Thus, the last

reduction step focused on comparing the j elements is executed in the CPU, since j << n. At the

end of each k -iteration, the new volume is compared with the previous one (k− 1). If the new one

is the biggest, then the k -th endmember is replaced for the testing pixel and the currentVolume is

updated.

The volume calculation and replacement steps are repeated for all the pixel vectors in the input data

until all the pixels have been exhausted.

3.4.3.2 GPU implementation of OSP-GS

The GPU implementation of the OSP-GS algorithm, described in subsection 3.3.3.2, is given below. The

algorithm is based on two main steps.

1. Initialization. The first step is related to the proper arrangement of the hyperspectral data in the

local GPU memory. In order to optimize accesses, bearing in mind that the OSP-GS algorithm uses

the pixel vector as minimum unit of computation, we store the pixel vectors of the hyperspectral

image Y by columns. This arrangement is intended to access consecutive wavelength values in

parallel by the processing kernels, so the i -th thread of a block will access the i -th wavelength

component of a pixel vector of Y. This technique is used to maximize global memory bandwidth

and minimize the number of bus transactions. Once the image is stored on GPU memory, a

structure is created in which there are as many blocks as pixel vectors are in the hyperspectral

image divided by the number of threads per block, where the maximum number of supported

threads depends on the considered GPU architecture. A kernel called pixelMaxBright is now

used to calculate the brightest pixel m1 in Y. This kernel computes the dot product between

each pixel vector and its own transposed version, retaining the pixel that results in the maximum

projection value.

2. Orthogonal vector calculation. Once the brightest pixel in Y has been identified, the pixel is

allocated as the first column in matrix M. The algorithm now calculates the orthogonal vectors

through the Gram-Schmidt method as detailed in Eq. (3.5). Since the data structure dimension is

small, the orthogonal vectors are performed in the CPU. A new kernel called pixelProjection
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is created to project the orthogonal vector onto each pixel in the image, in which there are as many

blocks as pixel vectors are in the hyperspectral image divided by the number of supported threads

which depends on the considered GPU architecture. An important optimization applied at this

point involves the effective use of the shared memories, which are used to store the most orthogonal

vectors obtained at each iteration of OSP-GS (this is because these vectors will be accessed every

time that the projection onto each pixel of the image is performed). The maximum of all projected

pixels, is calculated using a separate reduction kernel reductionProjection which also uses

the shared memory to store each of the projections and obtains the new endmember m2. The

algorithm now extends the endmember matrix as M = {m1,m2}. The second step process is

repeated until the desired number of endmembers p has been extracted, M = {m1,m2, · · · ,mp}

3.4.4 Abundance estimation on GPU

This subsection describes the GPU implementation of the abundance endmember estimation algorithms

UCLS (described in 3.3.4.1) and ISRA (described in 3.3.4.2).

3.4.4.1 GPU implementation of UCLS

As subsection 3.3.4.1 shows, Eq. 3.7 resolves the problem of estimating the abundance of the endmembers

in a hyperspectral image Y without any restriction applied. In order to simplify the problem, we

transform this equation into a matrix form:

A = (MTM)−1MTYT , (3.15)

where A is the abundance matrix, M is the endmember matrix and Y is the original hyperspectral

image matrix. Due to its matricial nature, cuBLAS multiplications seems the best way to calculate the

last equation, but we have tested that the performance is higher if the first two multiplications and the

inverse are executed in the CPU, and then the last and biggest multiplication is performed in the GPU,

thus, the algorithm is divided into two stages. In the first stage, a p× l matrix is calculated in the CPU

by multiplying C = (MTM)−1MT , which is invariant for the abundance calculations of all the image

pixels.

On the other hand, the second stage is performed in the GPU by a kernel called UCLS. This kernel

uses the maximum number of threads available in the GPU architecture, at least the number of pixels,

n. The main picture of this kernel is to multiply every row of C by every image pixel yi, which produces

a p× n abundance matrix A = [α1, α2, · · · , αp]. For this purpose, C matrix is stored in shared memory,

then each i -th thread load the i -th pixel, yi.

3.4.4.2 GPU implementation of ISRA

As subsection 3.3.4.2 shows, ISRA follows an iterative process to calculate the non-negative abundances

of previously identified p endmembers in the image Y using Eq. 3.8. This expression is transformed to

matrix form:

Ak+1 = Ak ⊗ YM

AkMTM
(3.16)

where M = {mi}pi=1 is the endmember matrix, A denotes the p-dimensional abundance maps

estimated for every pixel of Y, the abundance matrix is iteratively updated. The symbol ⊗ indicates

the multiplication -element by element- of A by the matrix obtained from YM
AkMTM

. The GPU
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implementation of Eq. 3.16 is performed with two kernels and three cuBLAS multiplications. At the

beginning A is initialized with positive values, in order to keep the non-negative restriction, so a kernel

called ONES initializes the abundance matrix with ones using as many threads as matrix elements, n×p.

In the iterative process, Eq. 3.16 has an invariant numerator YM for all the iterations, so before

starting to iterate, we perform Num = YM by a cublasSgemm multiplication. During the iterative

process, we perform first Aux = AkMT and later Den = AuxM using cublasSgemm multiplication.

At the end, a second kernel UPDATE, which uses as many threads as elements in A, calculates

Ak+1 = Ak ⊗ Num
Den . In this last kernel, the i -th thread executes three steps: first, it multiplies the

i -th element of A by the i -th element of Num; second, it divides the multiplication result by the i -th

element of matrix Dem; and third, it updates the i -th element of the abundance matrix A with the

result of the previous division. The iterative process continues until a specific iteration threshold, which

is considered enough to perform the abundances, is reached.

3.5 Quantitative metrics

In this section, we describe the comparative metrics used in this work for both algorithm accuracy

evaluation and image retrieval. Two metrics have been used, the RMSE -for accuracy evaluation-

and SAD -for both for accuracy evaluation and image retrieval-. Since SAD calculates the spectral

similarity between to spectral signatures, it provides a perfect measure for content-based image retrieving.

These two metrics are widely used in the hyperspectral unmixing literature [35] and constitute the main

evaluation metrics included in our system.

3.5.1 Spectral angle distance (SAD)

The spectral angle measures the spectral similarity between two spectral signatures, where the best case

is 0 degrees and the worst case is 90 degrees. For illustrative purposes, Fig. 3.6 shows the graphical

representation of SAD. Let us assume that two spectral signatures are denoted by yi and yj . These

signatures are associated with any pair of hyperspectral image Y pixels and can be represented by

two vectors yi = [yi
(1),yi

(2), · · · ,yi
(l)] and yj = [yj

(1),yj
(2), · · · ,yj

(l)], where yi
(k) refers to the k-th

spectral value of the yi pixel, and yj
(k) refers to the k-th spectral value of the yj pixel, k ∈ {1, 2, · · · , l}.

The SAD value between yi and yj is the arc cosine of the spectral angle performed by such pixels in the

l-dimension:

SAD(yi,yj) = arccos
yi · yj

∥ yi ∥ · ∥ yj ∥
= arccos

l∑
k=1

yi
(k) · yj

(k)

√√√√ l∑
k=1

yi
(k)2 ·

√√√√ l∑
k=1

yj
(k)2

(3.17)

The SAD metric is invariant to multiplicative scalings that may arise due to different illumination

conditions and sensor observation angle. Thus, this metric is commonly used to measure the spectral

quality of the endmembers extracted with regards to some (possibly available) reference signatures.

However, we use it to compare endmembers resulting from image results with reference signatures, and

then retrieve them.

Due to the fact that reference signatures are mostly obtained in optimal conditions (e.g. in the

laboratory) by a ground spectroradiometer, these signatures are not affected by atmospheric interferers,
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Figure 3.6: Graphic representation of SAD.

non-linear mixtures, geometric corrections, etc. In this regard, it is quite important to use a metric, like

SAD, that is invariant to these effects.

3.5.2 Root mean square error (RMSE)

RMSE is a frequently used measure which evaluates the difference between the reconstructed image from

the performed image spectral information (extracted endmembers and the estimated abundances) and

the original data set. In our case, the reconstructed image Ŷ is calculated by multiplying the endmember

matrix, M, by the abundance matrix, A. Therefore, the reconstructed error can be simply calculated as

follows:

RMSE(Y, Ŷ) =
1

n

n∑
i=1

(
l∑

k=1

[y
(k)
i − ŷ

(k)
i ]2

)1/2

, (3.18)

where n is the number of pixels, l is the number of bands, y
(k)
i is the k-th band in the yi pixel of

the original hyperspectral image, and ŷ
(k)
i is the k-th band in the ŷi pixel of the reconstructed image,

k ∈ {1, 2, · · · , l}. This definition allows us to obtain the RMSE for each pixel and the complete image.

The best case is zero, which means that pixels with error close to zero are better represented in the

reconstructed image.

3.6 Experimental results

The performance of the proposed unmixing-based CBIR system has been evaluated from two different

perspectives: its ability to retrieve hyperspectral images of interest from the set of catalogued

ones available in the system, and its efficiency in cataloguing and retrieving hyperspectral images.

Experiments have been conducted using both synthetic images (in a fully controlled environment) and

also representative real hyperspectral images. The remainder of this section is organized as follows. First,

we describe the synthetic and real hyperspectral data sets used in our experiments. Then, we perform

an evaluation of the system from the viewpoint of retrieval accuracy. Finally, we perform an evaluation

from the viewpoint of computational efficiency.

54



3.6 Experimental results

Figure 3.7: Fractal images used in our simulations.

Figure 3.8: Procedure used for generating a synthetic hyperspectral image from a fractal image.

3.6.1 Hyperspectral data

3.6.1.1 Synthetic data

The main reason for using synthetic data in our evaluation of retrieval accuracy is that these kind of

images can be generated in a fully controlled environment. As a result, algorithm accuracy can be

effectively validated and tested. In this work, we have used a set of synthetically generated images using

fractals. We have selected fractals because they can simulate naturally occurring patterns in nature. For

illustrative purposes, Fig. 3.7 displays the five fractal images used in our simulations. The procedure

for generating one of our simulated images is depicted in Fig. 3.8, in which a fractal image is used

to simulate spatial patterns. The k-means clustering algorithm is adopted to select a set of clusters
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from the fractal image. Then, a procedure starts, which assigns a set of spectral signatures from a

spectral library to each region resulting from the clustering step mentioned before. A crucial step in

the simulation procedure is how to assign a spectral signature to each cluster. For this purpose, we

have implemented an automatic procedure that follows a simple strategy, in which p = 9 signatures are

first assigned to spatially disjoint regions belonging to different clusters. The remaining regions are then

assigned spectral signatures in an automatic way, ensuring that: (1) spatially adjacent clusters always

have different signatures associated with them, and (2) there is a balance among the overall number of

pixels in the image which are associated to each spectral signature. Inside each region, the abundance

proportions of spectral signatures have been generated following a procedure that tries to imitate reality

as much as possible, i.e. those pixels closer to the borders of the regions are more heavily mixed, while

the pixels located at the center of the regions are more spectrally pure in nature. This is accomplished by

linearly mixing the signature associated to each cluster with those associated with neighbouring clusters,

making sure that the most spectrally pure signature remains at the center of the region while signature

purity decreases linearly away from the center to the borders of the regions. With the aforementioned

procedure, the simulated regions exhibit the following properties:

• All the simulated pixels inside a region are mixed, and the simulated image does not contain

completely pure pixels. This increases the complexity of the unmixing problem and simulates the

situation often encountered in real-world analysis scenarios, in which completely pure pixels are

rarely found.

• Pixels close to the borders of the region are more heavily mixed than those in the center of the

region.

• If the simulated region is sufficiently large, the pixels located at the center can exhibit a degree of

purity of 99% of a certain endmember. However, if the size of the simulated region is small, the

degree of purity of pixels at the center of the region can decrease until 95% of a certain endmember,

while pixels located in the region borders are generally more heavily mixed.

To conclude the simulation process, zero-mean Gaussian noise was added to the scenes in different

signal to noise ratios (SNRs) of 10:1, 30:1, 50:1, 70:1, 90:1 and 110:1 to simulate contributions from

ambient and instrumental sources, following the procedure described in [60]. For illustrative purposes,

Fig. 3.8 shows the spectra of the USGS library used in the simulation of one of the synthetic scenes

(labeled as “Fractal 1”). In total, we considered five different fractal images (first simulated without

noise, i.e. with SNR=∞) and then seven different versions of each scene corrupted with different noise

levels, which gives a total of 35 synthetic images, all of them available in our system for public use.

3.6.1.2 Real data

In addition to the 35 synthetic images described in the previous section, our repository has currently 7

additional real hyperspectral images for a total of 42 hyperspectral images and total space of about 1

GB. It is worth noting that the repository is ready to receive additional scenes from end-users so that the

database can grow. For the experiments that will be described in the following section, we have considered

three well-known hyperspectral images with reference information (and which have been widely used in

recent hyperspectral imaging literature) in order to substantiate both the retrieval accuracy and parallel

performance of the proposed CBIR system. Since the images comprise different analysis scenarios, sizes

and properties, our selection is expected to be sufficiently heterogeneous to provide an evaluation of the

system from different perspectives.
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Figure 3.9: AVIRIS hyperspectral image collected by NASA Jet Propulsion Laboratory over Indian Pines
region.

• The first scene used in our experiments is the AVIRIS Indian Pines data set (see Fig. 3.9), which

comprises 145 lines, 145 samples and 220 spectral channels between 0.4µm and 2.5µm with a

nominal spectral resolution of 10 mm, and a total size of around 9 MB. This scene has been widely

used as a benchmark in classification applications, and contains detailed ground-truth in the form

of a ground-truth map with 16 mutually exclusive classes.

• The second scene used in our experiments was acquired by the AVIRIS sensor in 1995 over the

mining Cuprite region, Nevada, U.S.A. Fig. 3.11 shows the image location over an aerial photograph

of the region, in which the different mineral zones can be distinguished. It comprises 224 bands

between 0.4µm and 2.5µm, with a nominal spectral resolution of 10 mm. Prior to the analysis,

bands 1-2, 105-115, 150-170 and 223-224 were removed due to water abortion and low SNR in

those bands, leaving 188 bands. A portion of 350×350 the original image has been selected that

has a total size of around 50 MB. This scene has been widely used as a benchmark in spectral

unmixing applications [25], since a complete reference information for this image is provided online

by USGS. Among this information we have a spectral library with the spectral signatures of the

minerals comprised by this scene and the classification map 3.12 of the main minerals in Cuprite

region.

• The third scene used in our experiments is the AVIRIS World Trade Center data set, which was

acquired by the AVIRIS sensor on 16th September in 2001 (five days later of the terrorist attack)

over World Trade Center (WTC), New York. Fig. 3.10 shows the false color composition of

the scene. It comprises 512 lines, 614 samples and 224 spectral channels between 0.4µm and

2.5µm with a nominal spectral resolution of 10 mm, and a total size of around 140 MB. It is

important to emphasize the high spatial resolution of this image, which is 1.7 meter/pixel while

the normal AVIRIS spatial resolution is 20 meters/pixel. This scene, which has been widely used

as a benchmark in target and anomaly detection applications, comprises reference information

available in several forms6.

6http://www.speclab.cr.usgs.gov/wtc
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Figure 3.10: AVIRIS hyperspectral image collected by NASA Jet Propulsion Laboratory over the World
Trade Center in New York City on Sept. 16, 2001.

Figure 3.11: Location of AVIRIS hyperspectral Cuprite image over an aerial photograph of Cuprite
mining region, Nevada, 1995.
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Figure 3.12: Classification map of AVIRIS Cuprite image (acquired using the USGS Tetracorder
algorithm).

3.6.2 Evaluation of image retrieval accuracy

In order to illustrate the performance of our CBIR system, we specifically address a case study in which

the synthetic images described in the previous subsection are used to substantiate the retrieval accuracy

using different noise conditions. For illustrative purposes, we also use the AVIRIS Cuprite scene to

evaluate the retrieval accuracy with real hyperspectral data. The two metrics that we have used in our

experiments (which are described in section 3.5) are the SAD in endmember comparison and the RMSE

in the estimated abundance fractions.

In our experiments we use synthetic and real hyperspectral data sets. First, as synthetic image, we

use six versions of a fractal image with six different signal to noise ratios (10:1, 30:1, 50:1, 70:1, 110:1 and

no-noise version). Such fractal image was constructed using 9 spectral signatures from the USGS digital

spectral library: KaolineiteKGA-l(wxyl), Dumortierite HS190.3B, Nontronite GDS41, Alunite GDS83

Na, Sphene HS189.3B, Pyrophyllite PYS1A, Halloysite NMNH10623, Muscovite GDS108 and Kaolinite

CM9. On the other hand, we use the real image AVIRIS Cuprite since its well-known features provide

adequate results for evaluating the system accuracy over real hyperspectral data sets.

The SAD and RMSE results are obtained after using a query based on the nine USGS spectral

signatures that were used to construct the fractal synthetic images. In the following, we analyse the

results achieved from cataloguing images with different unmixing chain combinations. In order to show

the real accuracy of our system, the scores show the mean and the standard deviation of ten query

executions with different catalogs.

First, Table 3.1 compares the SAD results obtained from both endmember extraction algorithms
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implemented in this system: N-FINDR and OSP-GS. As shown by this table, the SAD scores for the

synthetic scenes generally decrease as the amount of simulated noise is lower, and most of the scores

for SNR levels of 30:1 or lower are below 10 degrees. In both algorithm results the accuracy is very

good, although the best results are from OSP-GS, due to the fact that N-FINDR algorithm starts from

a random endmember matrix and this causes variability in the results. However, since the worst case

of the SAD is 90 degrees, these are considered to be good similarity scores. In other words, the SAD

metric reveals that our system can effectively retrieve the scenes containing endmembers which are highly

similar, spectrally, to those used in the set of input signatures used to launch the query.

The second evaluation is performed by using RMSE metric, which evaluates the abundance maps

accuracy. The system provides two abundance estimation algorithms: UCLS and ISRA. In order to

make a complete evaluation of the abundance maps, we analyse the results performed from the abundance

estimation using the endmembers previously identified by both algorithms N-FINDR and OSP-GS. The

RMSE scores are grouped according to the extraction algorithm in two tables: Table 3.2 shows the RMSE

scores of cataloguing using N-FINDR combined with UCLS and ISRA; and the results of cataloguing

using the endmembers identified by OSP-GS are displayed on Table 3.3. Both tables show RMSE scores

for the synthetic scenes, which generally decrease as the amount of simulated noise is lower. The scores

of Table 3.3 are the better, since the abundances have been estimated using endmembers from OSP-GS,

which have shown better results in Table 3.1. The analysis of the abundance accuracy scores in Table

3.3 reveals lower RMSE results for UCLS but some of them are negative, while ISRA scores are higher

and all of them are positive.

These RMSE results could not be obtained for the AVIRIS Cuprite scene since the ground-truth

abundances are difficult to obtain in real scenarios, but in this case we used the RMSE between the

original and the reconstructed scene using the endmembers and abundances derived by the considered

unmixing chains. As Table 3.4 shows, the reconstruction errors obtained in this case were very low [39]

in all the cases, indicating that the considered unmixing chains provide accurate abundance maps for

real hyperspectral data sets.

In addition, it is important to analyze the abundance coverage achieved by a query performed over

the datasets considered in these experiments using the 9 USGS spectral signatures. As subsection 3.2.2

describes, the abundance coverage is performed as the percentage of an endmember in the scene. Table

3.5 shows the abundance coverage obtained after cataloguing the images using N-FINDR+UCLS and N-

FINDR+ISRA. In the same way, Table 3.6 shows the abundance coverage obtained after cataloguing the

images using OSP-GS + UCLS and OSP-GS + ISRA. In order to show the accuracy of this technique,

we provide the scores achieved by applying the abundance coverage algorithm over the ground-truth of

the synthetic dataset (see Table 3.7). In our experiments, we have observed that this technique is very

sensitive to endmember identification variations, thus the scores achieved by cataloguing the images are

a bit different with regards to the ground-truth scores. However, the abundance percentages can be

seen as the numerical values of each abundance map, and the abundance estimation accuracy has been

demonstrated by using RMSE, so we consider that the abundance coverage scores are sufficient for image

retrieval purposes.

3.6.3 Evaluation of parallel performance

The computational performance of the proposed CBIR system has been evaluated using CPU and GPU

architectures available in the two CPU-GPU clusters of CETA-Ciemat (see section 2.3.4). The parallel

algorithms were performed in the two clusters, the CETA Production cluster (GPU 1 hereinafter) with
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Table 3.1: Spectral angle distance (degrees) obtained using 9 USGS mineral spectra (those used to
construct the fractal synthetic scenes used in our experiments) as input to a query on our database
of hyperspectral scenes. The similarity results obtained for the six synthetic scenes (on average) with
different noise ratios, and for the AVIRIS Cuprite scene are reported. The scenes were catalogued using
both N-FINDR and OSP-GS.

USGS Extraction Signal to noise ratio AVIRIS

signature Algorithm 10:1 30:1 50:1 70:1 110:1 No noise Cuprite

N-FINDR 15.013 3.137 2.393 1.555 2.283 2.266 5.444

Kaolinite ±1.788 ±1.406 ±1.321 ±1.513 ±0.914 ±2.592 ±1.254

CM9 OSP-GS 12.345 1.293 0.158 0.104 0.104 0.104 3.731

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 15.459 1.687 0.192 0.116 0.194 0.115 3.597

Muscovite ±0.388 ±0.006 ±0.001 ±0.001 ±0.157 ±0.001 ±0.001

GDS108 OSP-GS 18.843 1.685 0.192 0.117 0.115 0.115 4.082

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 26.261 2.742 0.573 0.274 0.361 0.331 17.161

Halloysite ±2.257 ±0.184 ±0.405 ±0.001 ±0.059 ±0.068 ±1.147

NMNH106236 OSP-GS 24.203 2.842 0.602 0.568 0.571 0.570 18.625

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 14.656 1.682 0.205 4.762 2.702 3.334 9.651

Pyrophyllite ±0.708 ±3.064 ±0.082 ±4.127 ±5.404 ±6.669 ±1.225

PYS1A OSP-GS 15.568 1.682 0.352 0.015 0.000 0.000 9.154

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 25.781 4.438 10.768 11.324 10.828 6.667 6.900

Sphene ±1.821 ±1.798 ±12.137 ±10.968 ±7.185 ±7.384 ±0.625

HS189.3B OSP-GS 26.091 3.544 1.322 0.313 0.309 0.308 9.867

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 23.822 1.605 0.180 0.096 0.095 0.079 8.722

Alunite ±10.882 ±0.229 ±0.028 ±0.034 ±0.034 ±0.029 ±1.812

GDS83 Na OSP-GS 14.744 1.941 0.234 0.144 0.126 0.124 8.751

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 15.483 1.583 0.268 5.746 0.092 2.882 11.504

Nontronite ±0.803 ±0.450 ±0.151 ±7.308 ±0.001 ±5.039 ±1.892

GDS41 OSP-GS 38.733 1.600 0.201 0.096 0.092 0.092 15.243

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 24.635 2.487 0.513 0.501 0.502 0.502 3.081

Dumortierite ±8.451 ±1.327 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

HS190.3B OSP-GS 15.732 4.467 1.994 0.501 0.502 0.502 3.334

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

N-FINDR 22.221 8.192 0.182 0.018 0.000 0.000 9.696

KaolineiteKGa-l ±7.198 ±13.181 ±0.001 ±0.001 ±0.001 ±0.001 ±0.105

(wxyl) OSP-GS 17.434 27.964 0.182 0.0185 0.000 0.000 10.522

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001
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NVidiaTM TESLA M2050 GPU devices, and the CETA Test cluster (GPU 2 hereinafter) with NVidiaTM

TESLA C1060 GPU devices. In both clusters, each GPU is connected to a Quad Core Intel Xeon at 2.93

GHz with 4 physical cores, and 24 GB of DDR3 1333 MHz SRAM memory. The cluster specifications

are described in Table 2.1, and the computational specifications of both GPU devices are detailed in

Table 2.2. The serial algorithms were executed in one of the available cores of the CETA Production

cluster.

In this subsection, we analyze the system performance over three real images, with different sized.

They are AVIRIS Indian Pine (145 lines, 145 samples and 220 spectral channels for a total size of

9 MBytes), AVIRIS Cuprite (350 lines, 350 samples and 188 spectral channels for a total size of 50

MBytes) and AVIRIS World Trade Center (512 lines, 614 samples and 224 spectral channels for a total

size of 140 MBytes), all of them widely described in subsection 3.6.1.

As mentioned in section 3.3, our system includes six algorithms -two for each stage of the unmixing

chain- which can be combined to produced eight different unmixing chains, although in our experiments

we only consider two completely different chains because they cover the performance times of all the

algorithms. The first unmixing chain, based on VD for identification of the number of endmembers,

N-FINDR for endmember signature finding, and ISRA for non-negative abundance estimation. In the

case of N-FINDR, a dimensionality reduction of the original scene using PCA is conducted, hence we

report the times for the PCA and for the N-FINDR algorithm in this case. The second unmixing chain

is made up of HySime for finding the number of endmembers, OSP-GS for extracting the endmember

signatures, and ULS for unconstrained abundance estimation.

Before describing our results, it is important to emphasize that our GPU versions provide exactly the

same results as the serial versions of the algorithms, implemented using the gcc (gnu compiler default)

with optimization flag -O3. Since the hyperspectral images contained in our repository can all fit the

video memory of a single GPU (between 3 and 4 GB), we report the processing results obtained in a

single GPU, although our system is ready to use a cluster of GPUs in parallel if needed. This is mainly

because the current volume of stored hyperspectral data makes computations manageable with a single

GPU. Since the computational requirements of the system can be currently managed with one GPU

unit, we have decided to provide results based on the utilization of a single GPU. In the future, if the

system grows as we expect with the addition of new data sets from external users, we may need to resort

to a multi-GPU implementation. This is perfectly feasible, since the system has been designed with

this configuration in mind, although currently we only need to use one GPU device. Another important

consideration is that working in a single GPU reduces communication time, particularly if the scenes

can be allocated into a single GPU memory. However, the communication overheads for a full multi-

GPU implementation could be significant and it would be necessary to fully test our implementation

in this scenario. In any event, we expect the searching part to scale properly with the GPU number

since our search strategy is based on comparing the spectral endmembers and the abundance fractions

using standard distance metrics. The most challenging part would be the cataloguing of a new scene

using different endmember identification techniques, as it will depend on the considered endmember

identification strategy, but in this case the cataloguing will take place only once (at the beginning) and

the results would then be immediately available for searching purposes.

In the following we analyze the processing times (in seconds) used by our system in the process of

cataloguing three real hyperspectral scenes using two different unmixing chains. In each experiment,

ten runs were performed and the mean values were reported. We include the initialization times in

our experiments since, as mentioned before, these times are generally higher in a GPU cluster than in

single GPU devices, which is due to the fact that the communications between the nodes of the cluster
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introduce a slight delay in the process. The analysis is manly focused on the total time of each algorithm

(initialization and processing time).

As shown by the following results, using only one GPU of the cluster can already significantly

accelerate the catalog process for the three considered scenes, which takes only a few seconds in all

cases and with significant speedups. The initialization times (retained in our results in order to give an

idea of the performance of the system in a GPU cluster, even if only one GPU is really used for the

calculations) are not significant. This means that, once a new hyperspectral scene has been uploaded

into our system, its associated meta-data can be efficiently generated in automatic fashion for subsequent

retrieval. It is also worth noting that the results of the cataloguing can be dynamically selected, i.e. the

end-user may decide to use any algorithm combination to catalog a scene.

3.6.3.1 AVIRIS Indian Pines scene

Here, we analyze the results achieved using both chains and the AVIRIS Indian Pines. Table 3.8 shows

the processing times of the first unmixing chain, based on VD, N-FINDR and ISRA and Table 3.9 shows

the processing times of the second unmixing chain, based on HySime, OSP-GS and UCLSC. We consider

28 as the number of endmembers in all the cases since it is the mean of several executions using both VD

and HySime. In both tables we describe the CPU and GPU times (including the initialization required

in the GPU clusters) and the speedups achieved by the parallel implementation in both GPU clusters

(GPU 1 and GPU 2 ).

All the results are better in GPU 1 cluster since its GPU devices are the most powerful available in

these experiments. In any case we analyse the results considering the scores of both GPU architectures.

Table 3.8 displays the time measured for the first unmixing chain, which achieved speedups between 3x

and 50x. On the other hand, the second unmixing chain times are displayed on Table 3.9, which shows

speedups between 1x and 20x. In the case of UCLS less significant results are achieved due to the small

image size, which does not balance the time consumed by the GPU initialization.

3.6.3.2 AVIRIS Cuprite scene

Tables 3.10 and 3.11 show the processing times and speedups achieved for the GPU implementations

of both chains mentioned above tested on the AVIRIS Cuprite scene. We consider 19 as the number of

endmembers in all the cases since it is the mean of several estimation executions using both VD and

HySime. In both tables we describe the CPU and GPU times (including the initialization required in the

GPU clusters) and the speedups achieved by the parallel implementation in both GPU clusters (GPU 1

and GPU 2 ).

Table 3.10 shows the processing times of the first unmixing chain, based on VD, N-FINDR and

ISRA. GPU implementations achieved good speedups which are between 13x and 46x. If we focus on

the difference of times between both clusters, we can see that some of the speedups are better in the

less powerful GPU architecture, this fact can take place in cases in which all the threads provided by

the GPU architecture are not used and the stream processor cores are less but more powerful. In this

regard, GPU 2 GPU devices provide 240 cores at 1.3 GHz and GPU 1 GPU devices provide 444 cores at

1.14 GHz. In our case, the AVIRIS Cuprite image has p = 19 endmembers, so some of the calculations

are not enough to cover all the available threads. On the other hand, the times obtained by the second

chain based on Hysme, OSP-GS and UCLS, are shown in Table 3.11. As we can see, all the results are

better in GPU 1 device, and the speedups are between 2x and 43x.
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3.6.3.3 AVIRIS World Trace Center scene

Tables 3.12 and 3.13 show the processing times and speedups achieved for the GPU implementations

of both chains mentioned above using the AVIRIS World Trade Center image. We consider 30 as the

number of endmembers in all the cases since it is the mean of several estimation executions using both VD

and HySime. In both tables we describe the CPU and GPU times (including the initialization required

in the GPU clusters) and the speedups achieved by the parallel implementation in both GPU clusters

(GPU 1 and GPU 2 ). As shown by these tables, the best speedups achieved over this scene range from

17x to 172x in total times, this fact demonstrates that our parallel implementations perform better over

large hyperspectral images.
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Table 3.2: Root mean reconstruction error (RMSE) in abundance estimation obtained using 9 USGS
mineral spectra (those used to construct the fractal synthetic scenes used in our experiments) as input to
a query on our database of hyperspectral scenes. The accuracy of the abundance maps estimated from
the six synthetic scenes (on average) with different noise ratios are reported. The scenes are catalogued
using two spectral unmixing chains: N-FINDR + UCLS and N-FINDR + ISRA.

USGS Abundance Signal to noise ratio

signature algorithm 10:1 30:1 50:1 70:1 110:1 No noise

Kaolinite CM9

UCLS 0.196 0.334 0.246 0.059 -0.001 0.383

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.228 0.139 0.114 0.103 0.107 0.078

±0.159 ±0.101 ±0.007 ±0.114 ±0.009 ±0.014

Muscovite GDS108

UCLS 0.223 0.760 0.843 0.944 0.953 0.953

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.263 0.390 0.389 0.799 0.418 0.419

±0.149 ±0.070 ±0.096 ±0.823 ±0.087 ±0.106

Halloysite NMNH106236

UCLS -0.029 0.035 -0.002 0.002 -0.064 -0.0001

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.129 0.116 0.094 0.137 0.068 0.094

±0.263 ±0.046 ±0.023 ±0.112 ±0.017 ±0.026

Pyrophyllite PYS1A

UCLS 0.194 0.042 -0.087 0.001 0.232 -0.028

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.238 0.646 0.069 0.130 0.083 0.074

±0.177 ±0.365 ±0.014 ±0.120 ±0.013 ±0.014

Sphene HS189.3B

UCLS 0.0266 0.006 0.009 -0.005 -0.058 -0.076

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.147 0.136 0.174 0.128 0.154 0.184

±0.231 ±0.121 ±0.005 ±0.083 ±0.004 ±0.006

Alunite GDS83 Na

UCLS 0.221 -0.085 -0.031 0.003 -0.028 -0.107

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.275 0.0.066 0.061 0.858 0.063 0.063

±0.153 ±0.021 ±0.016 ±1.630 ±0.015 ±0.0171

Nontronite GDS41

UCLS -0.109 -0.003 -0.002 0.001 0.035 -0.096

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.102 0.632 0.069 0.104 0.080 0.071

±0.234 ±0.466 ±0.011 ±0.093 ±0.011 ±0.011

Dumortierite HS190.3B

UCLS 0.150 -0.054 -0.020 0.003 0.001 -0.030

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.219 0.677 0.075 0.094 0.074 0.077

±0.186 ±0.438 ±0.016 ±0.043 ±0.014 ±0.017

KaolineiteKGa-l (wxyl)

UCLS 0.152 -0.055 0.024 -0.002 -0.000 0.001

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.240 0.077 0.078 0.346 0.085 0.081

±0.235 ±0.027 ±0.012 ±0.614 ±0.012 ±0.012
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Table 3.3: Root mean reconstruction error (RMSE) in abundance estimation obtained using 9 USGS
mineral spectra (those used to construct the fractal synthetic scenes used in our experiments) as input to
a query on our database of hyperspectral scenes. The accuracy of the abundance maps estimated from
the six synthetic scenes (on average) with different noise ratios are reported. The scenes are catalogued
using two spectral unmixing chains: OSP-GS + UCLS and OSP-GS + ISRA.

USGS Abundance Signal to noise ratio

signature algorithm 10:1 30:1 50:1 70:1 110:1 No noise

Kaolinite CM9

UCLS 0.155 0.156 0.071 0.049 0.048 0.048

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.147 0.089 0.082 0.083 0.083 0.076

±0.001 ±0.001 ±0.012 ±0.012 ±0.012 ±0.001

Muscovite GDS108

UCLS 0.041 0.841 0.948 0.952 0.952 0.952

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.570 0.484 0.409 0.406 0.406 0.406

±0.001 ±0.001 ±0.104 ±0.104 ±0.001 ±0.001

Halloysite NMNH106236

UCLS 0.074 0.082 0.004 0.006 -0.001 -0.001

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.063 0.057 0.099 0.095 0.094 0.080

±0.001 ±0.001 ±0.026 ±0.026 ±0.026 ±0.001

Pyrophyllite PYS1A

UCLS 0.084 0.029 0.002 0.001 -0.000 -0.000

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.086 0.080 0.071 0.071 0.071 0.063

±0.001 ±0.001 ±0.013 ±0.013 ±0.013 ±0.001

Sphene HS189.3B

UCLS 0.026 0.060 -0.011 -0.010 -0.001 -0.002

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.035 0.118 0.179 0.184 0.184 0.181

±0.001 ±0.001 ±0.006 ±0.005 ±0.005 ±0.001

Alunite GDS83 Na

UCLS 0.094 -0.060 -0.003 0.001 -0.000 -0.000

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.094 0.058 0.060 0.061 0.061 0.052

±0.001 ±0.001 ±0.017 ±0.017 ±0.016 ±0.001

Nontronite GDS41

UCLS 0.028 -0.027 -0.002 0.001 -0.001 -0.001

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.035 0.089 0.065 0.068 0.068 0.062

±0.001 ±0.001 ±0.010 ±0.010 ±0.010 ±0.001

Dumortierite HS190.3B

UCLS 0.199 0.002 -0.002 -0.001 0.001 0.001

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.193 0.064 0.075 0.075 0.075 0.065

±0.001 ±0.001 ±0.016 ±0.016 ±0.016 ±0.001

KaolineiteKGa-l (wxyl)

UCLS 0.261 0.090 0.016 0.001 0.000 0.001

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 0.260 0.063 0.074 0.076 0.076 0.067

±0.001 ±0.001 ±0.012 ±0.011 ±0.011 ±0.001
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Table 3.4: Root mean reconstruction error (RMSE) in the reconstructed scene using endmember and
abundances estimated over the AVIRIS Cuprite scene. The results obtained for the Cuprite AVIRIS
scene are reported. The scene was catalogued using four spectral unmixing chains: OSP-GS + UCLS,
OSP-GS + ISRA, N-FINDR + UCLS and N-FINDR + ISRA.

N-FINDR OSP-GS

UCLS ISRA UCLS ISRA

0.217 0.189 0.219 0.190

±0.006 ±0.005 ±0.001 ±0.001
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Table 3.5: Percentage of the estimated abundances in the image obtained using 9 USGS mineral spectra
(those used to construct the fractal synthetic scenes used in our experiments) as input to a query on
our database of hyperspectral scenes. The similarity results obtained for the five synthetic scenes (on
average) with different noise ratios, and for the AVIRIS Cuprite scene are reported. The scenes are
catalogued using two spectral unmixing chains: N-FINDR + UCLS and N-FINDR + ISRA.

USGS Abundance Signal to noise ratio AVIRIS

signature algorithm 10:1 30:1 50:1 70:1 110:1 No noise Cuprite

Kaolinite CM9

UCLS 14.473 7.803 7.031 10.634 14.814 8.700 10.937

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.185 8.630 8.565 13.946 12.711 9.480 10.854

±0.503 ±0.456 ±0.023 ±0.001 ±0.001 ±0.001 ±0.001

Muscovite GDS108

UCLS 14.473 14.298 8.345 19.556 9.126 11.378 4.782

±0.004 ±0.003 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.185 9.546 9.121 22.546 14.223 8.486 5.534

±0.522 ±0.448 ±0.081 ±0.001 ±0.001 ±0.001 ±0.001

Halloysite NMNH106236

UCLS 9.275 11.230 13.201 3.057 5.349 13.711 6.074

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.034 10.761 9.356 9.579 8.620 9.383 3.702

±0.308 ±0.221 ±0.091 ±0.001 ±0.001 ±0.001 ±0.001

Pyrophyllite PYS1A

UCLS 8.520 8.530 8.746 3.057 6.753 5.523 6.181

± 0.004 ± 0.002 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.188 8.592 12.039 9.743 8.937 9.383 2.925

±0.736 ±0.608 ±0.131 ±0.001 ±0.001 ±0.001 ±0.001

Sphene HS189.3B

UCLS 8.794 11.041 18.032 4.399 8.407 11.923 6.856

±0.010 ±0.006 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.147 8.591 8.623 8.876 9.171 11.560 5.261

±0.653 ±0.364 ±0.116 ±0.001 ±0.001 ±0.001 ±0.001

Alunite GDS83 Na

UCLS 11.630 11.659 6.409 4.457 15.142 3.149 1.941

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.100 9.298 8.585 8.924 18.231 8.972 3.180

±0.201 ±0.138 ±0.006 ±0.001 ±0.001 ±0.001 ±0.001

Nontronite GDS41

UCLS 15.646 9.542 14.762 6.458 22.560 30.932 4.116

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.130 13.048 13.842 8.762 8.436 8.574 7.785

±0.191 ±0.191 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Dumortierite HS190.3B

UCLS 11.791 9.542 9.338 23.623 3.698 9.265 2.975

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.067 13.048 8.978 8.840 10.023 20.646 8.465

±0.223 ±0.189 ±0.051 ±0.001 ±0.001 ±0.001 ±0.001

KaolineiteKGa-l (wxyl)

UCLS 10.253 8.887 8.345 4.457 3.698 3.149 3.036

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.058 8.952 9.121 8.924 10.023 8.972 4.262

±0.533 ±0.475 ±0.068 ±0.001 ±0.001 ±0.001 ±0.001
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Table 3.6: Percentage of the estimated abundances in the image obtained using 9 USGS mineral spectra
(those used to construct the fractal synthetic scenes used in our experiments) as input to a query on
our database of hyperspectral scenes. The similarity results obtained for the five synthetic scenes (on
average) with different noise ratios, and for the AVIRIS Cuprite scene are reported. The scenes are
catalogued using two spectral unmixing chains: OSP-GS + UCLS and OSP-GS + ISRA.

USGS Abundance Signal to noise ratio AVIRIS

signature algorithm 10:1 30:1 50:1 70:1 110:1 No noise Cuprite

Kaolinite CM9

UCLS 13.112 15.340 8.306 7.607 7.521 7.522 4.808

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 13.754 9.510 8.340 8.369 8.369 7.853 5.147

±0.533 ±0.356 ±0.121 ±0.001 ±0.001 ±0.001 ±0.001

Muscovite GDS108

UCLS 11.761 11.241 18.431 19.130 19.170 19.170 4.390

±0.003 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 12.046 11.979 22.057 21.400 21.396 20.862 5.483

±0.301 ±0.098 ±0.010 ±0.001 ±0.001 ±0.001 ±0.001

Halloysite NMNH106236

UCLS 12.676 10.982 8.306 7.607 7.521 7.523 2.350

±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 13.591 16.500 8.340 8.369 8.369 7.853 6.365

±0.525 ±0.430 ±0.159 ±0.001 ±0.001 ±0.001 ±0.001

Pyrophyllite PYS1A

UCLS 9.951 10.158 10.200 10.565 10.587 10.587 4.811

±0.002 ±0.001 ±0. ±0.001 ±0.001 ±0.001 ±0.001

ISRA 9.093 10.302 9.209 9.183 9.183 9.779 5.209

±0.763 ±0.620 ±0.211 ±0.001 ±0.001 ±0.001 ±0.001

Sphene HS189.3B

UCLS 10.193 6.741 13.570 13.692 13.725 13.726 5.097

±0.008 ±0.006 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 10.740 8.487 9.354 9.4096 9.409 9.909 3.721

±0.598 ±0.418 ±0.078 ±0.001 ±0.001 ±0.001 ±0.001

Alunite GDS83 Na

UCLS 12.961 13.580 16.536 17.128 17.184 17.184 7.667

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 14.371 11.807 14.211 14.531 14.531 15.115 3.973

±0.430 ±0.334 ±0.015 ±0.001 ±0.001 ±0.001 ±0.001

Nontronite GDS41

UCLS 10.748 14.186 7.640 7.764 7.775 7.774 8.615

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 11.181 10.502 8.364 8.374 8.374 7.976 8.850

±0.400 ±0.341 ±0.010 ±0.001 ±0.001 ±0.001 ±0.001

Dumortierite HS190.3B

UCLS 10.988 12.029 10.499 10.869 10.894 10.894 6.994

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 7.909 12.677 11.422 11.544 11.544 12.240 4.269

±0.490 ±0.295 ±0.021 ±0.001 ±0.001 ±0.001 ±0.001

KaolineiteKGa-l (wxyl)

UCLS 13.112 15.341 8.462 7.260 7.254 7.254 4.205

±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

ISRA 13.7548 9.510 8.417 8.462 8.461 7.965 7.675

±0.654 ±0.345 ±0.161 ±0.001 ±0.001 ±0.001 ±0.001
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Table 3.7: Abundance percentage of the 9 spectral signatures in the ground-truth of the synthetic image
used in our experiments.

Kaolinite CM9
Muscovite

GDS108

Halloysite

NMNH106236

Pyrophyllite

PYS1A

Sphene

HS189.3B

7.607 10.805 18.194 14.086 17.182

Alunite

GDS83 Na

Nontronite

GDS41

Dumortierite

HS190.3B

KaolineiteKGa-l

(wxyl)

7.886 11.125 7.066 6.047

Table 3.8: Processing times (in seconds) and speedups achieved for the GPU implementation of VD,
N-FINDR and ISRA algorithms, used to catalog the AVIRIS Indian Pines scene available in our CBIR
system. The table reports the mean values and the standard deviations measured across ten algorithm
executions.

VD N-FINDR ISRA

Initialize VD Total Initialize PCA N-FINDR Total Initialize ISRA Total

CPU
0.063 3.248 3.311 0.021 1.742 0.937 2.700 0.025 44.253 44.278

±0.057 ±0.252 ±0.252 ±0.005 ±0.021 ±0.260 ±0.256 ±0.003 ±0.513 ±0.514

GPU 1
0.498 0.027 0.525 0.512 0.021 0.245 0.778 0.447 0.432 0.879

±0.084 ±0.001 ±0.084 ±0.0136 ±0.008 ±0.140 ±0.140 ±0.089 ±0.001 ±0.089

Speedup - 120.296 6.307 - 82.952 3.824 3.470 - 102.437 50.373

GPU 2
0.586 0.053 0.639 0.539 0.029 0.225 0.793 0.560 0.460 1.020

±0.118 ±0.001 ±0.128 ±0.200 ±0.001 ±0.087 ±0.150 ±0.098 ±0.001 ±0.098

Speedup - 63.283 5.182 - 60.068 4.164 3.404 - 96.202 43.410

Table 3.9: Processing times (in seconds) and speedups achieved for the GPU implementation of HySime,
OSP-GS and UCLS algorithms, used to catalog the AVIRIS Indian Pines scene available in our CBIR
system. The table reports the mean values and the standard deviations measured across ten algorithm
executions.

HYSIME OSP-GS UCLS

Initialize HYSIME Total Initialize OSP-GS Total Initialize UCLS Total

CPU
0.300 13.124 13.154 0.039 0.552 0.591 0.035 0.290 0.325

±0.025 ±3.164 ±3.164 ±0.002 ±0.064 ±0.062 ±0.003 ±0.050 ±0.001

GPU 1
0.450 0.194 0.643 0.523 0.009 0.532 0.479 0.017 0.496

±0.368 ±0.013 ±0.375 ±0.400 ±0.001 ±0.400 ±0.342 ±0.001 ±0.542

Speedup - 63.610 20.457 - 61.333 1.111 - 17.059 0.655

GPU 2
0.613 0.316 0.929 0.576 0.014 0.590 0.619 0.022 0.641

±0.214 ±0.001 ±0.214 ±0.197 ±0.006 ±0.198 ±0.116 ±0.001 ±0.242

Speedup - 41.532 14.159 - 39.429 1.001 - 13.181 0.507
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Table 3.10: Processing times (in seconds) and speedups achieved for the GPU implementation of VD,
N-FINDR and ISRA algorithms, used to catalog the AVIRIS Cuprite scene available in our CBIR system.
The table reports the mean values and the standard deviations measured across ten algorithm executions.

VD N-FINDR ISRA

Initialize VD Total Initialize PCA N-FINDR Total Initialize ISRA Total

CPU
0.340 14.476 14.816 0.125 9.069 2.434 11.628 0.149 120.650 120.799

±0.158 ±2.134 ±2.221 ±0.020 ±0.064 ±0.440 ±0.480 ±0.021 ±0.355 ±0.355

GPU 1
0.579 0.127 0.706 0.583 0.075 0.134 0.792 0.535 2.083 2.618

±0.147 ±0.001 ±0.148 ±0.009 ±0.002 ±0.032 ±0.032 ±0.098 ±0.001 ±0.098

Speedup - 113.094 20.986 - 120.920 18.164 14.682 - 57.921 46.142

GPU 2
0.736 0.217 0.953 0.608 0.122 0.120 0.850 0.570 2.019 2.589

±0.169 ±0.001 ±0.171 ±0.169 ±0.001 ±0.016 ±0.132 ±0.073 ±0.001 ±0.098

Speedup - 66.709 15.547 - 74.336 20.283 13.680 - 59.757 46.658

Table 3.11: Processing times (in seconds) and speedups achieved for the GPU implementation of HySime,
OSP-GS and UCLS algorithms, used to catalog the AVIRIS Cuprite scene available in our CBIR system.
The table reports the mean values and the standard deviations measured across ten algorithm executions.

HYSIME OSP-GS UCLS

Initialize HYSIME Total Initialize OSP-GS Total Initialize UCLS Total

CPU
0.512 63.610 63.122 0.198 2.225 2.423 0.160 1.500 1.660

±0.134 ±0.231 ±0.274 ±0.015 ±0.016 ±0.022 ±0.019 ±0.012 ±0.031

GPU 1
0.567 0.907 1.464 0.564 0.024 0.588 0.493 0.054 0.547

±0.385 ±0.008 ±0.389 ±0.202 ±0.001 ±0.202 ±0.306 ±0.001 ±0.507

Speedup - 70.132 43.116 - 92.708 4.121 - 27.778 3.035

GPU 2
0.736 1.558 2.294 0.619 0.034 0.653 0.763 0.065 0.828

±0.215 ±0.001 ±0.221 ±0.195 ±0.001 ±0.212 ±0.421 ±0.001 ±0.476

Speedup - 40.828 27.516 - 65.441 3.711 - 23.077 2.005

Table 3.12: Processing times (in seconds) and speedwells achieved for the GPU implementation of VD,
N-FINDR and ISRA algorithms, used to catalog the AVIRIS World Trade Center scene available in
our CBIR system. The table reports the mean values and the standard deviations measured across ten
algorithm executions.

VD N-FINDR ISRA

Initialize VD Total Initialize PCA N-FINDR Total Initialize ISRA Total

CPU
0.934 57.629 58.563 0.381 35.210 16.422 52.013 0.521 885.336 885.857

±0.573 ±8.678 ±8.913 ±0.496 ±0.199 ±5.925 ±5.919 ±0.066 ±45.971 ±46.006

GPU 1
0.683 0.279 0.962 0.710 0.216 0.837 1,763 0.679 4.460 5.139

±0.084 ±0.001 ±0.169 ±0.010 ±0.006 ±0.907 ±0.908 ±0.126 ±0.014 ±0.131

Speedup - 202.919 60.876 - 163.009 19.620 29.502 - 198.506 172.379

GPU 2
0.621 0.617 1.340 0.720 0.243 0.927 1.699 0.595 6.595 7.190

±0.084 ±0.001 ±0.169 ±0.010 ±0.006 ±0.907 ±0.911 ±0.113 ±0.006 ±0.122

Speedup - 93.402 43.70 - 144.897 22.312 30.613 - 134.244 123.207
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Table 3.13: Processing times (in seconds) and speedups achieved for the GPU implementation of HySime,
OSP-GS and UCLS algorithms, used to catalog the AVIRIS World Trade Center scene available in our
CBIR system. The table reports the mean values and the standard deviations measured across ten
algorithm executions.

HYSIME OSP-GS ULS

Initialize HYSIME Total Initialize OSP-GS Total Initialize ULS Total

CPU
0.349 240.027 240.376 0.495 18.620 19.115 0.445 16.455 16.900

±0.336 ±64.367 ±64.337 ±0.040 ±0.019 ±0.055 ±0.056 ±0.069 ±0.103

GPU 1
0.678 3.245 3.923 0.612 0.106 0.718 0.651 0.232 0.883

±0.312 ±0.011 ±0.325 ±0.136 ±0.001 ±0.136 ±0.385 ±0.001 ±0.385

Speedup - 73.968 61.274 - 175.660 26.622 - 70.927 19.139

GPU 2
0.657 4.690 5.357 0.451 0.103 0.554 0.711 0.261 0.972

±0.184 ±0.132 ±0.342 ±0.225 ±0.001 ±0.229 ±0.161 ±0.001 ±0.201

Speedup - 51.178 44.871 - 180.777 34.504 - 63.046 17.387
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Chapter 4

Sparse unmixing-based image
retrieval approach

As mentioned in previous chapters, the geometric techniques for endmember identification present some

difficulties in practical application due to two main reasons. First, if the spatial resolution of the sensor

is not high enough to separate different pure signatures classes at a macroscopic level, the resulting

spectral measurement can be a composite of individual pure spectra which correspond to materials

that jointly occupy a single pixel. In this case, the use of image-derived endmembers may not result

in accurate fractional abundance estimations since in this case it is likely that such endmembers may

not be completely pure in nature. Second, mixed pixels can also result when distinct materials are

combined into a microscopic (intimate) mixture, which is independent from the spatial resolution of

the sensor. Since the mixtures in this situation happen at the particle level, the use of image derived

spectral endmember cannot accurately characterize intimate spectral mixtures. For these reasons we

resort in this chapter to a solution based on sparse unmixing techniques [40], which take advantage of

the increasing availability of the spectral libraries made from materials measured on the ground (i.e.

using advanced field spectrometers), thus the results are expressed as linear combinations of several pure

spectral signatures known in advance and available in a library.

More specifically, in this chapter we propose a new CBIR system [101] that improves the unmixing-

based image retrieval system described in the previous chapters (unmixing-based CBIR hereinafter), and

is also available online from http://hypercomp.es/repository. The new system uses linear sparse unmixing

methods in order to extract the features from images stored in the database. In this way, the abundance

maps of the spectral signatures of a library (collected in ideal laboratory conditions) are estimated for

each image in the database. This results in a collection of spectral signatures automatically selected

from the library and their associated abundance maps. In addition, our improved system provides a

sparsity map for each image which shows the subset of signatures that can best model each mixed pixel

in the scene. This approach has several advantages, on one hand, the endmembers are extracted from

the spectral library instead from the original image, which generally enhances the searching process since

the endmembers and the ground-truth spectral signatures are measured in the same conditions. On the

other hand, the catalog process is performed in just one execution while the previous unmixing-based

CBIR system requires executing the full unmixing chain (three stages in total), hence the cataloguing

efforts are now reduced for the user. The sparse-based unmixing method developed in this chapter has

been implemented by resorting to a constrained sparse unmixing by variable splitting and augmented

Lagrangian (CSUNSAL) algorithm, which has been recently proposed [68] to cope with the abundance
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fraction estimation from a set of spectral signatures (or spectral library). In this chapter, we exploit

both serial and GPU implementations of the CSUNSAL method.

The remainder of the chapter is structured as follows. Section 4.1 describes some related work

including the fundamentals of the CSUNSAL algorithm used to extract the spectral information. Section

4.2 describes how the CBIR performs queries to the database through the web interface in a step by step

fashion. Section 4.3 makes a comparison of both CBIR approaches in terms of retrieval accuracy and

parallel performance using real hyperspectral and synthetic scenes with different noise levels.

4.1 Related work

Linear sparse regression [14, 102] is a direction recently explored in spectral unmixing analysis that

can be solved using constrained sparse regression methods such as ADMM [46]. The SUNSAL method

introduced in [68] is an instance on ADMM, which decomposes a difficult problem into a sequence of

simpler ones, resulting in a very fast method. In addition, the results of the method can be improved [40]

by using physical constraints usually imposed on the unmixing problem such as the ASC. In this way,

the CSUNSAL algorithm used in this work combines SUNSAL with the fully constrained least squares

(FCLS) [36] method to include the ASC constraint.

In order to properly identify the image endmembers, spectral libraries with a large number of spectral

signatures are generally fed to CSUNSAL which makes the algorithm quite slow. Indeed the executions on

very large hyperspectral images can reach very long execution times. Hence we resort to an efficient GPU

implementation of this algorithm. A parallel implementation of CSUNSAL has already been published

in [103], in which the most time-consuming operations are performed in the GPU by exploiting of the

architecture characteristics. On the other hand, the simplest operations, i.e. small matrix inversion, are

executed in the CPU.

4.2 Sparse-based CBIR

In this chapter we develop a new cataloguing system based on sparse regression methods, which extracts

the spectral features from every image in the database and stores the results as meta-data associated to

each image. In most of the cases, the spectral resolution of the input signatures in the spectral library

is much higher than the images stored in the database. In this regard, in order to allow to catalog

images using spectral libraries with any resolution, we have implemented a spectral convolution strategy

(described in Algorithm 2) that looks for wavelength values which are present in both the hyperspectral

data and the input spectral library (with the possibility to include a tolerance threshold in the wavelength

matching procedure). So, the resulting endmembers are adapted to the analyzed image, which means

that the dimension of the spectral signatures of those endmembers has as many spectral bands as the

image bands have been matched with the spectral library bands. In addition, we filter the best results by

reducing to the most significant ones by applying a constraint based on a minimum abundance percentage

(described in 3.2.2), since CSUNSAL produces as many endmembers as spectral signatures are present

in the spectral library and most of them have hardly any useful information.

Regarding the searching procedure, the sparse-based CBIR uses the same methodology as the

unmixing-based CBIR. So, for each new hyperspectral data set, the spectral endmembers and their

corresponding abundance maps are obtained using the CSUNSAL algorithm, then the information

provided by the algorithm execution is used as meta-data in the searching procedure. As Fig. 4.1

shows, the system allows an end-user to perform queries to the hyperspectral image database following
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Figure 4.1: Search process work-flow for the sparse unmixing-based CBIR system.

the next work-flow: 1) uploading spectral library, 2) selecting ground-truth, 3) introducing minimum

abundance and spectral angle threshold, 4) executing the query.

On the other hand, the sparse-based CBIR shows new features in the cataloguing process. Fig. 4.2

shows the different steps involved in the cataloguing procedure, which are enumerated from 1 to 5.

1. Uploading spectral library. The catalog procedure is fed by a spectral library, thus the system allows

for uploading standard spectral libraries in the system.

2. Selecting compute cluster. Several computing resources are supported in the system, so we select

the computing resources to perform the algorithm.

3. Introducing the abundance threshold. A minimum abundance limits the catalog results to the most

relevant endmembers.

4. Executing. The algorithm execution returns a set of endmembers and their abundances.

5. Endmember features storage. Ultimately, the system stores the results in the database as meta-data

associated to the processed image.

As we mentioned above, the catalog procedure is fed by a spectral library and the system allows to

upload standard spectral libraries in the system using the same process adopted when using spectral

libraries for searching [see Fig. 4.3 (a)]. Furthermore, as Fig. 4.3 (b) shows, the cataloguing interface

consists of one algorithm (CSUNSAL) which extracts the endmembers and their abundance maps.

Ultimately, Fig. 4.3(c) displays the sparsity map of an execution result, which was performed using
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Figure 4.2: Catalog procedure work-flow.

the USGS spectral library over Cuprite image requiring 1 as the minimum abundance (threshold value).

This sparsity map shows the 60 endmembers that satisfy such minimum abundance value.

4.3 Experiments and results

The performance of the proposed sparse-based CBIR system has been evaluated from two different

perspectives: its ability to retrieve hyperspectral images of interest from the set of catalogued ones

available in the system, and the efficiency in cataloguing new hyperspectral images that are stored in

the repository. In addition, we compare the results of the new proposed CBIR with the unmixing-based

CBIR approach. For this purpose, we use the full unmixing chain given by VD [75], OSP-GS [60] and

ISRA [100] algorithms (described in the previous chapter) because we consider that this chain provides

very accurate retrieval results in quite efficient processing times.

Experiments have been conducted using both synthetic images (described in section 3.6.1.1) and also

the AVIRIS Cuprite real hyperspectral image (described in subsection 3.6.1.2). The AVIRIS Cuprite

scene has several exposed minerals of interest, which are included in the USGS library considered in our

experiments. The full spectral library of minerals from USGS (described in subsection 3.2.1) has been

used to catalog every image considered in our experiments.

The remainder of the section is organized as follows. First, subsection 4.3.1 makes an evaluation of

the system from the viewpoint of retrieval accuracy. Then, subsection 4.3.2 performs an evaluation from

the viewpoint of computational efficiency.
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Table 4.1: Spectral angle distance (degrees) obtained using 9 USGS mineral spectra (those used to
construct the fractal synthetic scenes used in our experiments) as input to a query on our database
of hyperspectral scenes. The similarity results obtained for the six synthetic scenes (on average) with
different noise ratios, and for the AVIRIS Cuprite scene are reported. The scene was catalogued using a
spectral unmixing chain given by VD + OSP-GS + ISRA for the unmixing-based CBIR.

USGS Signal to noise ratio AVIRIS

signature 10:1 30:1 50:1 70:1 110:1 No noise Cuprite

Kaolinite CM9
12.345 1.293 0.158 0.104 0.104 0.104 3.731

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Muscovite GDS108
18.843 1.685 0.192 0.117 0.115 0.115 4.082

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Halloysite NMNH106236
24.203 2.842 0.602 0.568 0.571 0.570 18.625

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Pyrophyllite PYS1A
15.568 1.682 0.352 0.015 0.000 0.000 9.154

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Sphene HS189.3B
26.091 3.544 1.322 0.313 0.309 0.308 9.867

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Alunite GDS83 Na
14.744 1.941 0.234 0.144 0.126 0.124 8.751

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Nontronite GDS41
38.733 1.600 0.201 0.096 0.092 0.092 15.243

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Dumortierite HS190.3B
15.732 4.467 1.994 0.501 0.502 0.502 3.334

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

KaolineiteKGa-l (wxyl)
17.434 27.964 0.182 0.0185 0.000 0.000 10.522

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

4.3.1 Evaluation of image retrieval accuracy

In order to illustrate the performance of the retrieval system, we specifically address a case study in

which synthetic images are used to substantiate retrieval accuracy using different noise conditions. For

illustrative purposes, we also use the AVIRIS Cuprite scene to evaluate the retrieval accuracy with

real hyperspectral data. The spectral information has been extracted using both sparse-based and

unminxing-based CBIR approaches. The two metrics that we have used in our experiments are the

SAD in endmember comparison and the RMSE in the estimated abundance fractions [35], both of them

are described in section 3.5.

Table 4.1 shows the SAD results over the endmembers achieved using the full unmixing chain (VD +

OSP-GS + ISRA). On the other hand, all the SAD results obtained by the sparse-based CBIR approach

using CSUNSAL with the USGS spectral library are really close to zero or zero, thus it is not necessary

to show them in a table. The main reason for this behaviour is that the endmembers come from the same

spectral library and the spectral bands are adapted to the common bands of both the image and the

spectral library pixels by using Algorithm 2. Since the best case for SAD is 0 degrees, this is considered

to be an optimal similarity score. Clearly, these results mean that the new approach has clearly better

accuracy than the previous one using USGS spectral libraries.

On the other hand, we computed the RMSE between the ground-truth abundances and the estimated

abundances by the considered unmixing chain and by the CSUNSAL algorithm. As we expected, Table

4.3 shows worse RMSE scores in the case of using sparse unmixing over the six synthetic images, because

the endmembers come from spectral signatures that are taken from a laboratory measured spectral library
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Table 4.2: Root mean reconstruction error (RMSE) in the reconstructed scene using endmember and
abundances estimated over the AVIRIS Cuprite scene. The scene was catalogued using a spectral
unmixing chain given by VD+OSP-GS+ISRA for unmixing-based approach and the CSUNSAL algorithm
for the sparse-based approach with the full USGS spectral library

Unmixing-Based Sparse-Based

AVIRIS CUPRITE
0.190 0.332

±0.001 ±0.001

and then the achieved abundances are different to the ground-truth abundances of the synthetic scenes.

The RMSE could not be obtained for the AVIRIS Cuprite scene since the ground-truth abundances are

difficult to obtain in real scenarios, but in this case we used the RMSE between the original and the

reconstructed scene using the endmembers and the abundances derived by the considered unmixing chain

and by the CSUNSAL algorithm. As Table 4.2 shows, the RMSE results from the abundances obtained

using CSUNSAL are worse than those obtained using the full unmixing chain because, as aforementioned,

the endmember spectral signatures are taken from a laboratory measured spectral library, and then the

reconstructed image is quite different to the original one. However, the reconstruction errors obtained

in the AVIRIS Cuprite scene were very low [39] in all the cases, indicating that this strategy can also be

used as a retrieval criterion.

On the other hand, the fractional abundance estimations which were obtained for all the signatures

of the spectral library (481 minerals) by the proposed CSUNSAL algorithm over both the synthetic and

the real AVIRIS Cuprite scenes are respectively displayed in Fig. 4.4 and Fig. 4.5. The abundance

maps achieved over the six synthetic scenes are shown in Fig. 4.4, in which the maps show remarkable

abundances in the spectral signatures present in the image. Although the results over the noisier scenes

reveal as more inaccurate than in the rest, all the abundance maps clearly highlight the materials that

compose the synthetic scenes. In addition, Fig. 4.5 shows the abundance map achieved over the AVIRIS

Cuprite scene which shows clearly the predominant minerals in the image that are well-known from other

studies such as [40].

4.3.2 Evaluation of parallel performance

The computational performance of the proposed CBIR system has been evaluated using both CPU and

GPU architectures available in two different clusters. The serial algorithms were executed in one of the

available cores of the CETA Production cluster with multi-cores Quad Core Intel Xeon at 2.93 GHz. On

the other hand, the parallel algorithms were performed in the INFRAGRID GPU cluster with NVidiaTM

TESLA M2070Q GPU devices mounted in a system with two multi-cores Quad Core Intel Xeon at 3.46

GHz with 4 physical cores, and 32 GB of DDR3 SRAM memory. These clusters were widely described in

section 2.3.4. Before describing our results, it is important to emphasize that our GPU implementations

provide exactly the same results as the serial versions of the algorithms, implemented using the gcc (gnu

compiler default) with optimization flag -O3.

In the following, we analyze the processing times (in seconds) used by our system in the process

of cataloguing the synthetic and AVIRIS Cuprite scenes using the two approaches (based on the full

unmixing chain and CSUNSAL algorithms). In each experiment, ten runs were performed and the mean

values were reported. Table 4.4 shows the processing times of the unmixing chain based on VD for

identification of the number of endmembers, OSP-GS for endmember signature finding, and ISRA for
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Table 4.3: Root mean reconstruction error (RMSE) in abundance estimation obtained using 9 USGS
mineral spectra (those used to construct the fractal synthetic scenes used in our experiments) as input to
a query on our database of hyperspectral scenes. The accuracy of the abundance maps estimated from
the six synthetic scenes (on average) with different noise ratios are reported. The scene was catalogued
using a spectral unmixing chain given by VD + OSP-GS + ISRA for the unmixing-based approach and
the CSUNSAL algorithm for the sparse-based approach

USGS CBIR Signal to noise ratio

signature Approach 10:1 30:1 50:1 70:1 110:1 No noise

Kaolinite CM9

Sparse-based 0.203 0.201 0.201 0.201 0.201 0.201

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.147 0.089 0.082 0.083 0.083 0.076

±0.001 ±0.001 ±0.012 ±0.012 ±0.012 ±0.001

Muscovite GDS108

Sparse-based 0.245 0.245 0.245 0.245 0.245 0.245

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.570 0.484 0.409 0.406 0.406 0.406

±0.001 ±0.001 ±0.104 ±0.104 ±0.001 ±0.001

Halloysite NMNH106236

Sparse-based 0.342 0.365 0.368 0.369 0.369 0.369

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.063 0.057 0.099 0.095 0.094 0.080

±0.001 ±0.001 ±0.026 ±0.026 ±0.026 ±0.001

Pyrophyllite PYS1A

Sparse-based 0.289 0.293 0.293 0.293 0.293 0.293

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.086 0.080 0.071 0.071 0.071 0.063

±0.001 ±0.001 ±0.013 ±0.013 ±0.013 ±0.001

Sphene HS189.3B

Sparse-based 0.313 0.310 0.242 0.282 0,275 0,275

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.035 0.118 0.179 0.184 0.184 0.181

±0.001 ±0.001 ±0.006 ±0.005 ±0.005 ±0.001

Alunite GDS83 Na

Sparse-based 0.230 0.264 0.269 0.268 0.268 0.269

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.094 0.058 0.060 0.061 0.061 0.052

±0.001 ±0.001 ±0.017 ±0.017 ±0.016 ±0.001

Nontronite GDS41

Sparse-based 0.232 0.249 0.274 0.272 0.264 0.272

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.035 0.089 0.065 0.068 0.068 0.062

±0.001 ±0.001 ±0.010 ±0.010 ±0.010 ±0.001

Dumortierite HS190.3B

Sparse-based 0.177 0.198 0.182 0.183 0.183 0.183

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.193 0.064 0.075 0.075 0.075 0.065

±0.001 ±0.001 ±0.016 ±0.016 ±0.016 ±0.001

KaolineiteKGa-l (wxyl)

Sparse-based 0.186 0.186 0.185 0.185 0.185 0.185

±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Unmixing-based 0.260 0.063 0.074 0.076 0.076 0.067

±0.001 ±0.001 ±0.012 ±0.011 ±0.011 ±0.001
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non-negative abundance estimation. Furthermore, Table 4.5 shows the timing results obtained by the

CSUNSAL algorithm using the full USGS spectral library of minerals comprising 481 signatures. In both

Table 4.4 and Table 4.5 we display the CPU and GPU times (including the initialization time required

in the GPU cluster) and the speedup of the GPU version over the CPU one, furthermore the total times

required to perform the full catalog process are included. The GPU version shows significant speedups,

which mainly increase with the hyperspectral image size. Furthermore, since CSUNSAL is iteratively

executed until reaching the best set of abundances, the times increase lightly with the noisier synthetic

images.

Due to the very high speedups performed by the GPU version, we study the algorithm behaviour by

using different numbers of spectral signatures, n. Table 4.6 shows the timing and speedups obtained by

the CSUNSAL algorithm using n = 10, n = 95, n = 200, n = 300 and n = 481. In this way, Fig. 4.6

shows the speedup evolution in terms of the number of signatures used by the algorithm. In spite of the

fact that we have observed that there are some peaks in the GPU times (related to the diversity of the

spectral signatures), the times and speedups mainly grow with the number of spectral signatures. The

high increase of the speedups with the number of signatures has been already analyzed in other studies

such as [103].

Although Table 4.4 and Table 4.5 demonstrate that CSUNSAL algorithm is slower than the full

unmixing chain, we consider that the sparse-based approach is faster for cataloguing images since it

can obtain all the needed information relevant to a query in just one execution, while the unmixing-

based approach needs to execute several algorithms (which implies several downloading/uploading

transactions).
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Table 4.4: Processing times (in seconds) and speedups achieved for the GPU implementation of VD, OSP-
GS and ISRA algorithms. The results obtained for the six synthetic and the real AVIRIS Cuprite scenes
(on average) are reported. The table reports the mean values and the standard deviations measured
across ten algorithm executions.

Scenes
VD OSP-GS ISRA

Total
Initialization VD Total Initialization OSP-GS Total Initialization ISRA Total

CPU
0.340 14,476 14.816 0.198 2.225 2.423 0.149 120.650 120.799 138.0.38

AVIRIS ±0.158 ±0.921 ±0.922 ±0.015 ±0.016 ±0.022 ±0.021 ±0.335 ±0.355 -

Cuprite
GPU

0.185 0.324 0.509 0.138 0.045 0.183 0.173 2.343 2.516 3.207

±0.089 ±0.004 ±0.099 ± 0.092 ±0.003 ±0.092 ±0.120 ±0.005 ±0.089 -

Speedup - 44.714 29.108 - 49.955 13.240 - 51.485 48.123 43.042

CPU
0,012 1,170 1,182 0.080 0.050 0.130 0.081 24.653 24.734 26.046

Synthetic ±0.001 ±0.011 ±0.011 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.021 ±0.021 -

SNR 10:1
GPU

0.065 0,087 0.152 0.070 0.004 0.074 0.077 0.267 0.344 0.570

±0.004 ±0.001 ±0.00 ± 0.022 ±0.001 0.021 ±0.006 ±0.004 ±0.006 -

Speedup - 13.431 7.788 - 12.390 1.752 - 92.381 71.984 45.726

CPU
0,053 1,592 1,645 0.090 0.050 0.140 0.057 26.176 26.233 28.019

Synthetic ±0.001 ±0.012 ±0.012 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.022 ±0.022 -

SNR 30:1
GPU

0,064 0,087 0,150 0.079 0.004 0.083 0.076 0.269 0.344 0.578

±0.002 ±0.001 ±0.001 ± 0.003 ±0.001 0.002 ±0.006 ±0.004 0.005 -

Speedup - 18,407 10.940 - 11.745 1.692 - 97.485 76.209 48.507

CPU
0,044 1,160 1,203 0.059 0.005 0.109 0.119 26.201 26.320 27.632

Synthetic ±0.001 ±0.019 ±0.019 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.021 ±0.022 -

SNR 50:1
GPU

0,063 0,087 0,150 0.077 0.004 0.081 0.076 0.267 0.343 0.573

±0.001 ±0.001 ±0.001 ± 0.002 ±0.001 ±0.002 ±0.005 ±0.004 0.005 -

Speedup - 13,362 8.017 - 12.136 1.346 - 98.109 76.814 48.189

CPU
0.060 1.163 1.223 0.080 0.050 0.130 0.102 16.195 26.297 27.649

Synthetic ±0.001 ±0.015 ±0.015 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.020 ±0.021 -

SNR 70:1
GPU

0.063 0.086 0.149 0.078 0.004 0.082 0.076 0.269 0.345 0.576

±0.002 ±0.001 ±0.001 ± 0.003 ±0.001 ±0.003 ±0.005 ±0.022 ±0.021 -

Speedup - 13,523 8.235 - 12.019 1.590 - 97.285 76.167 48.041

CPU
0.044 1.158 1.202 0.061 0.050 0.111 0.079 26.190 26.269 27.581

Synthetic ±0.001 ±0.014 ±0.014 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.001 - -

SNR 110:1
GPU

0.063 0.087 0.149 0.076 0.004 0.080 0.078 0.269 0.347 0.654

±0.001 ±0.001 ±0.001 ± 0.002 ±0.001 ±0.002 ±0.007 ±0.021 ±0.021 -

Speedup - 13.309 8.033 - 12.677 1.380 - 97.520 75.777 47.845

CPU
0.049 1.109 1.157 0.088 0.050 0.138 0.066 26.195 26.261 27.656

Synthetic ±0.001 ±0.017 ±0.017 ± 0.001 ±0.001 ±0.001 ±0.001 ±0.001 - -

No noise
GPU

0.063 0.090 0.153 0.077 0.004 0.081 0.079 0.268 0.347 0.581

±0.004 ±0.002 ±0.002 ±0.002 ±0.001 ±0.002 ±0.010 ±0.022 ±0.022 -

Speedup - 12,279 7.550 - 12.157 1.709 - 97.634 75.658 47.418
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(a)

(b)

(c)

Figure 4.3: Different operations with the sparse unmixing-based CBIR system. (a)Spectral library
uploading. (b) Sparse catalog panel on the system. (c) Sparsity results.
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a)Fractal scene SNR 10 b) Fractal SNR 30 c) Fractal SNR 50

d) Fractal SNR 70 e) Fractal SNR 110 f) Fractal No noise

Figure 4.4: Abundance maps achieved over the synthetic fractal scenes using the CSUNSAL algorithm
and the 481 mineral signatures from the USGS spectral library of minerals.

Figure 4.5: Abundance map achieved over the AVIRIS Cuprite scene using the CSUNSAL algorithm
and the 481 mineral signatures from the USGS spectral library of minerals.
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Table 4.5: Processing times (in seconds) and speedups achieved for the GPU implementation of
CSUNSAL algorithm. The results obtained for the six synthetic and the real AVIRIS Cuprite scenes (on
average) are reported. The table reports the mean values and the standard deviations measured across
ten algorithm executions.

Initialization CSUNSAL Total

AVIRIS Cuprite

CPU
0.460 77447.910 77448.370

±0.008 ±1642.342 ±1642.342

GPU
0.517 10.382 10.899

±0.009 ±0.059 ±0.059

Speedup - 7459.826 7106.007

Synthetic SNR 10:1

CPU
0.021 1865.035 1865.056

±0.003 ±142.997 ±142.997

GPU
0.105 9.924 10.029

±0.005 ±0.024 ±0.024

Speedup - 187.932 185.966

Synthetic SNR 30:1

CPU
0.017 1929.858 1929.875

±0.006 ±181.363 ±181.363

GPU
0.103 6.132 6.235

±0.012 ±0.035 ±0.035

Speedup - 314.719 309.523

Synthetic SNR 50:1

CPU
0.015 1799.920 1799.935

±0.005 ±115.219 ±115.219

GPU
0.103 5.434 5.537

±0.007 ±0.034 ±0.034

Speedup - 331.233 325.074

Synthetic SNR 70:1

CPU
0.016 1897.033 1897.305

±0.007 ±165.876 ±165.876

GPU
0.107 5.452 5.559

±0.006 ±0.036 ±0.036

Speedup - 347.952 341.257

Synthetic SNR 110:1

CPU
0.017 1876.436 1876.453

±0.005 ±177.225 -

GPU
0.103 5.352 5.455

±0.006 ±0.031 -

Speedup - 350.605 343.988

Synthetic No noise

CPU
0.012 1958.481 1958.493

±0.004 ±196.183 ±196.183

GPU
0.106 5.456 5.562

±0.008 ±0.015 ±0.015

Speedup - 358.959 352.120
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Figure 4.6: Speedup of parallel version as a function of the number of spectral signatures(n).

Table 4.6: A comparison of the processing times (in seconds) and speedups achieved for the GPU
implementation of CSUNSAL algorithm using different number of spectral signatures. The results
obtained for the no-noise synthetic and the real AVIRIS Cuprite scenes (on average) are reported. The
table reports the mean values measured across ten algorithm executions.

Spectral Synthetic scene AVIRIS Cuprite scene

Signatures Initialization CSUNSAL Total Initialization CSUNSAL Total

n = 10

CPU 0.020 0.840 0.860 0.271 27.163 27.503

GPU 0.078 0.483 0.561 0.340 2.113 2.384

Speedup - 1.739 1.533 - 12.855 11.536

n = 80

CPU 0.023 52.127 52.150 0.302 2500.540 2500.842

GPU 0.084 0.895 0.979 0.356 2.032 1047.254

Speedup - 58.242 53.269 - 1230.581 1047.254

n = 200

CPU 0.030 317.553 312.583 0.342 14871.910 14872.252

GPU 0.092 2.004 2.096 0.396 3.687 4.083

Speedup - 317.553 151.519 - 4033.607 3642.482

n = 300

CPU 0.042 764.865 764.907 0.384 32024.070 32024.454

GPU 0.101 4.176 4.277 0.432 5.449 5.881

Speedup - 183.157 178.842 - 5877.055 5445.410

n = 481

CPU 0.062 1985.492 1985.554 0.460 77447.910 77448.370

GPU 0.106 5.456 5.562 0.517 10.582 10.899

Speedup - 358.959 356.986 - 7459.826 7106.007
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Chapter 5

Multispectral product repository

A large number of remote sensing data sets have been collected in recent years by Earth observation

instruments such as the MODIS sensor aboard the Terra/Aqua satellite, or the SEVIRI sensor aboard

the geostationary platform MSG. The advanced remote sensing products resulting from the analysis

of these data are useful in a wide variety of applications, but require significant resources in terms of

storage, retrieval and analysis. Despite the wide availability of these MODIS/SEVIRI products, the

data coming from these instruments are spread among different locations and retrieved from different

sources, and there is no common data repository from which the data or the associated products can be

retrieved. In this chapter, we take a first step towards the development of a geo-portal [104] for storing

and efficiently retrieving MODIS/SEVIRI remote sensing products. The products are obtained using

an automatic system that processes the data as soon as they are provided by the collecting antennas,

and then the final products are uploaded one day delay in the geo-portal. Our focus in this work is

on describing the design and efficient implementation of the geo-portal, which allows for a user-friendly

and effective access to a full repository of MODIS/SEVIRI advanced products (comprising hundreds of

terabytes of data) using geo-location retrieval capabilities over the Southwestern Europe area. The geo-

portal, which is available online at http://ceosspain.lpi.uv.es, has been implemented as a web application

composed of different layers. Its modular design provides quality of service and scalability (capacity for

growth without any quality losing), allowing for the addition of components without the need to modify

the entire system. On the client layer, an intuitive web browser interface provides users with remote

access to the system. On the server layer, the system provides advanced data management and storage

capabilities. On the storage layer, the system provides a secure massive storage service. An experimental

evaluation of the geo-portal in terms of efficiency and product retrieval accuracy is also presented and

discussed.

The remainder of this chapter is organized as follows. Section 5.1 introduces the main objectives of

this chapter. Section 5.2 describes the processing chain used to generate the advanced MODIS/SEVIRI

products that are distributed through the geo-portal. This chain is applied as soon as the data are

collected, and the system automatically stores the resulting products in the geo-portal. Section 5.3

describes the implementation of the geo-portal, which is composed of three main layers: 1) client layer,

which defines the interaction between the user and the system through a web interface; 2) server layer,

which efficiently manages the requests coming from end-users; and 3) storage layer, in charge of safe

storage and retrieval of remote sensing products. Section 5.4 presents an experimental validation of the

system, with particular attention to its geolocation retrieval accuracy and to the performance of the

system in responding to the queries carried out by end-users.
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5.1 Main objectives

In the last years, a significant amount of data from satellite Earth Observation instruments has been made

available to the public. Among these, the MODIS and the SEVIRI sensors improve on their predecessors.

MODIS is a key instrument aboard the Terra/Aqua satellite. Terra’s orbit around the Earth is timed so

that it passes from North to South across the Equator around 10:30, while Aqua passes South to North

over the Equator around 13.30. Global coverage of the Earth is provided by Terra/Aqua every one to

two days. On the other hand, the SEVIRI instrument on board the geostationary platform MSG [54]

provides (every 15 minutes) a low resolution scan of the Europe, Africa, the Middle East and the eastern

tip of South America. The images have a sub-nadir resolution of 3 km that deteriorates towards the

poles, reducing to an average of 5 by 3 km2 over Europe.

In recent years, many research studies have been focused on the exploitation of data coming from

the aforementioned instruments. For instance, in [58] an operational algorithm for retrieving the LST

from SEVIRI data is provided. In [66], a technique for estimating the SST from SEVIRI data is given.

A similar strategy is developed in [67, 59] for MODIS data, while [105] assessed the presence of trends

in MODIS time series. In [106], a procedure for water vapor retrieval from SEVIRI observations is

presented. Numerous classic studies, such as [56, 50], have also focused on the retrieval of advanced

vegetation parameters from remote sensing data such as NDVI or FVC, with the ultimate goal of

providing advanced products covering relatively large areas [107]. Several other recent applications

have exploited MODIS data in a diversity of areas, such as estimation of vegetation phenology [108],

mapping of snow cover [109], characterization of soil moisture [110], mapping of impervious cover [111],

agriculture monitoring [112], analysis of LST and environmental factors [113], deriving water fraction and

flood maps [114], or fire characterization [115], among many others [116, 117, 118]. SEVIRI data has also

been recently exploited for phenology estimation [119], detection of tropical cyclones [120], monitoring

aerosols [121], or estimating land surface radiation and energy budgets from ground measurements [122].

These studies are possible thanks to the availability of a wide range of advanced remote sensing products

from the data collected by those instruments.

There are several institutions currently distributing multispectral sensors products. The most

important institutions are NASA and USGS. On one hand, the NASA’s EOSDIS system provides end-

to-end capabilities for managing NASA’s Earth science data from various sources (satellites, aircraft,

field measurements and various other programs) in which the data is distributed through the LAADS

Web[45] system. This system provides quick and easy access to MODIS Level 1, Atmosphere and Land

data products and VIIRS sensor Level 1 and Land data products. On the other hand, LPDAAC from

USGS distributes mainly land products through several web systems, from which two of them are focused

on MODIS products. First, the USGS EE [49] tool offers data from the Landsat missions and a variety

of other data providers, this tool now provides access to MODIS land data products (from the NASA

Terra and Aqua missions) and to ASTER level-1B data products over the United States territories (from

the NASA ASTER mission). The second web system of USGS is MRTWeb 2.0 [44], which is a more

complete data system that combines the interface of USGS Global Visualization Viewer [123] and the

product database of MRT [124]. In our work, we propose a strong standardized repository by combining

two very different resolution sensors: MODIS/SEVIRI, which provide images and products with different

formats.

The Calibration of Earth Observation Satellites in Spain (CEOS-SPAIN) project has recently

developed a full operational chain for advanced retrieval and processing of MODIS and SEVIRI data

acquired in real-time at the UCG/IPL[71], University of Valencia (see Fig. 5.1). These final products are
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Figure 5.1: MODIS (Terra/Aqua) and SEVIRI (Meteosat Second Generation) real-time reception system
at the Global Change Unit (UCG) within the Image Processing Laboratory (IPL) of the University of
Valencia.

validated (quality control) using the on-ground data acquired in a variety of test sites. The UCG/IPL

participated actively in the definition of products to be delivered to users from MODIS and SEVIRI data.

The resulting remote sensing products are of great interest for the wide remote sensing community. These

MODIS products cover Southwestern Europe and most of Northwestern Africa while SEVIRI products

cover half the surface of the Earth. However, the wide availability of these products is difficult due to the

massive volume of information that they comprise. In the case of MODIS, the amount of data acquired

and processed by UCG/IPL from July 2010 to February 2014 exceeds eight thousand images and two

hundred thousand resulting products (more than nine terabytes of data). In the case of SEVIRI, the

amount of data acquired and processed by UCG/IPL from July 2007 to February 2014 comprises more

than two hundred thousand images and four hundred thousand resulting products (more than seventeen

terabytes of data). This massive amount of information can be extremely useful in climate change studies

and in many other studies, specially if the products could be easily retrieved for a given area of interest.

In fact, this capability has the potential to impact the activities of many remote sensing users such as

farmers, engineers, water managers, as well as the scientific community.

In this chapter, we describe a geo-portal that has been specifically designed to provide efficient

access to a large collection of products of MODIS/SEVIRI image acquisitions, which are generated every

day at the facilities of UCG/IPL. This work is the first to be published on the reception system at

IPL. The geo-portal has been designed in the framework of the CEOS-SPAIN project, which ultimately

pursues the development of an integrated system for optical data validation and information extraction,

expected to serve as a reference to the remote sensing community through the heterogeneous data

distribution and dissemination mechanisms planned for the project. The geo-portal has been designed

using an advanced computing infrastructure to speed-up the supported data distribution and processing
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tasks. The geo-portal works as a digital repository which has been designed in order to store and

efficiently retrieve advanced MODIS/SEVIRI products. Of particular importance are the geolocation-

based retrieval functionalities included in the geo-portal, which facilitates searching for remote sensing

scenes (in geolocated form) over a map using Google Maps1 services. Although the geo-portal is focused

on Southwestern Europe, it is designed to store images from any location. Another feature of our geo-

portal is that it provides advanced products in near real-time, which may be useful to end-users without

the possibility to perform advanced processing of the collected remote sensing data. In fact, the idea of

using the final products instead of the raw data is quite appealing from the viewpoint of the end-user,

who can simply retrieve the processed products after applying different types of indices and perform a

more intuitive exploitation of the data.

The proposed geo-portal has been implemented as a web application (available online:

http://ceosspain.lpi.uv.es) which is composed of different layers. Its modular design provides quality

of service and scalability, and allows adding and/or modifying components without the need to modify

the entire system. These properties result from the fact that the geo-portal has been developed as a digital

repository, using advanced software and hardware design techniques with the most advanced tools for

such purposes currently available. On the client layer, an intuitive web browser interface provides to users

with remote access to the system. On the server layer, the system provides advanced data management

capabilities. On the storage layer, the system provides a safe massive storage service handling several

terabytes of data. Combined, these parts provide (for the first time in the literature) a completely open

standardized repository of (easily searchable) MODIS/SEVIRI products that is expected to be useful in

a variety of remote sensing data exploitation tasks, as originally intended by the CEOS-SPAIN initiative.

5.2 Processing chain

We have implemented a processing chain for MODIS (Terra/Aqua) and SEVIRI (MSG) data acquired

in real-time with the antennas located at the UCG/IPL of the University of Valencia. SEVIRI data

encompasses the hemisphere centered on the (0, 0) latitude/longitude coordinates, while acquired MODIS

data consist of Aqua and Terra overpasses within the reach of the antenna located at the IPL, which

covers mostly Western Europe and Maghreb. These data allow for the generation of classic and advanced

remote sensing products for inter-comparison with other sensor products. The proposed chain has been

designed for processing image acquisitions every day. The chain is implemented in the interactive data

language2. This section describes succinctly the process carried out over MODIS (subsection 5.2.2), and

then SEVIRI (subsection 5.2.3) data. Both cases need a previous pre-processing step which is described

in subsection 5.2.1.

5.2.1 Pre-processing

For both MODIS and SEVIRI sensors, images are acquired as digital counts, which are converted to

radiances using the gain and offset values provided in the meta-data associated to the images. Then,

the day-time visible and near infra-red channels of the data are atmospherically corrected using SMAC:

a simplified method for the atmospheric correction of satellite measurements in the solar spectrum

[64]. The choice of standard input values for atmospheric correction with SMAC software results of a

compromise between atmospheric correction accuracy and instantaneous processing of the received data.

1https://www.google.com/maps
2http://www.exelisvis.com/ProductsServices/IDL.aspx
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By using standard values for atmosphere type (continental), atmospheric pressure (1013 hPa), aerosol

optical thickness (0.05) and ozone concentration (0.33 atm.cm), the atmospherically corrected values

may be slightly over or underestimated, although the resulting error is generally lower than the error

resulting from the use of the top of atmosphere values. This method runs on a pixel by pixel basis, and

needs additional information such as (standard values in parentheses): atmosphere type (continental),

atmospheric pressure (1013 hPa), aerosol optical thickness (0.05) and ozone concentration (0.33 atm.cm).

Additionally, a water vapor product (see below) is needed as an input of the SMAC software. Finally,

for thermal infra-red channels, brightness temperatures are estimated by inverting Planck’s law:

Ti =

c2
λeff

ln

(
c1

λeff
5 ·B(Ti)

+ 1

) , (5.1)

where Ti is the brightness temperature in each thermal band, c1 = 1.1491047 · 108W/(m2srµm−4),

c2 = 1.4387752 · 104K · µm, B(Ti) is the at sensor radiance, expressed in W/(m2srµm), and λeff is the

effective wavelength for each band i.

5.2.2 MODIS products

The complete set of products available in our system is described hereafter. Ancillary data include

Latitude, Longitude, Elevation (Height), Sensor Azimuth Angle, Sensor Zenith Angle, Solar Azimuth

Angle, Solar Zenith Angle. Several masks can also be downloaded: LSM, day/night mask (Day), cloud

mask (Clouds), fire mask (Fire), and snow mask (Snow). These masks have been calculated with MOD35

and MOD14 software3. Advanced products, including VCI [74] and BRDF [48] corrected NDVI and

reflectances for bands 1 to 7, will be included in a close future. Besides, other products are available in

our system:

• NDVI [56] is traditionally calculated as NDV I = (NIR − RED)/(NIR + RED), where NIR

stands for reflectivity in Near Infra-Red, and RED for reflectivity in red channels, which for

MODIS correspond, respectively, to MODIS bands 2 and 1:

NDV I =
ρ2 − ρ1
ρ2 + ρ1

, (5.2)

where ρ1 and ρ2 are the at-surface reflectivities obtained from sensor bands located in RED and

NIR spectral regions.

• FVC is estimated from the NDVI following [50] for day-time acquisitions, as a normalization of

NDVI between standard bare soil and dense vegetation values. In the case of MODIS, these values

are 0.15 and 0.90, respectively [107]:

FV C =
NDV I − 0.15

0.90− 0.15
(5.3)

• Emissivities are estimated for day-time acquisitions from FVC and MODIS band 1 information,

following the methodology presented in [59]. These emissivities correspond to MODIS thermal

bands 31 and 32, and are estimated differently depending on the vegetation proportion within

a given pixel. In the case of night-time acquisitions, such method cannot be implemented due

3http://eostation.scanex.ru/software.html
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Table 5.1: MODIS emissivity values

ε ∆ε

vegetation: NDV I > 0.5 0.99 0

Mixed: 0.2 ≤ NDV I ≤ 0.5 0.971 + 0.018FV C 0.006(1 − FV C)

Bare soil: NDV I < 0.2 0.9832 − 0.058ρ1 0.0018 − 0.060ρ1

to the lack of solar radiation; therefore the emissivity estimates during the previous day are re-

projected to a latitude/longitude grid, averaged and re-projected back to the night-time acquisition

configuration for further calculations. Due to computational constrains, the re-projection algorithm

is limited to the Iberian Peninsula and North West Africa. Therefore, night products are also

limited to this area. As Table 5.1 shows, the emissivities are expressed as average emissivities ε

(for bands 31 and 32) and spectral difference of emissivities ∆ε.

• Water vapor is then estimated using the method developed in [59]. This method is based on the

attenuation of surface reflected solar radiation and clouds in near infra-red due to water vapor. To

this end, water vapor absorbing bands centred at 0.905, 0.936 and 0.94µm (bands 17, 18 and 19)

are used in addition to a water vapor transparent band centred at 0.865µm (band 2) as follows:

W = 0.192 ·W17 + 0.453 ·W18 + 0.355 ·W19 (5.4)

where:

W17 = 28.449 ·G17
2 − 54.434 ·G17 + 26.314,

W18 = 27.884 ·G18
2 − 23.017 ·G18 + 5.012,

W19 = 19.914 ·G19
2 − 26.887 ·G19 + 9.446,

with:

G17 = L17/L2,
G18 = L18/L2,
G19 = L19/L2,

where W is the atmospheric water vapor (g · cm−1), and L2, L17, L18 and L19 are the radiance

values (RAD-TOA) of MODIS in 2, 17, 18 and 19 bands respectively. In the case of night-time

acquisitions, such method cannot be implemented due to the lack of solar radiation, therefore the

water vapor estimates during the previous day are re-projected to a latitude/longitude grid, av-

eraged and re-projected back to the night-time acquisition configuration for further calculations.

Even though different water vapor values are estimated for any given day, only one water vapor

value (daylight average of valid values) is considered per day. Assuming a constant water vapor

during 24 hour may lead to over and under-estimations of this parameter, resulting in small differ-

ences in final LST. A sensibility analysis shows that an error of 1g · cm2 in water vapor leads to a

0.23 K error in LST.

• Land surface temperature (LST) is estimated for day- and night-time acquisitions using the method

developed in [59]:

LST = T31+a1+a2(T31−T32)+a3(T31−T32)+(a4+a5 ·W)(1−ε)+(a6+a7 ·W)δε, (5.5)

92



5.2 Processing chain

Table 5.2: SEVIRI emissivity values

ε108 ε120

vegetation: NDV I > 0.5 0.99 0.99

Mixed: 0.2 ≤ NDV I ≤ 0.5 0.968 + 0.021FV Cseviri 0.976 + 0.015FV Cseviri

Bare soil: NDV I < 0.2 0.977 − 0.048V is06 0.981 − 0.026V is06

where T31 and T32 are brightness temperature for MODIS bands 31 and 32 respectively, ε and

δε are respectively the average emissivity and the spectral emissivity difference for these bands,

W is the total amount of water vapor estimated above, and a1 = 1.02,a2 = 1.79,a3 = 1.20,a4 =

34.83,a5 = −0.68,a6 = −73.27 and a7 = −5.19.

• Sea surface temperature (SST) [125] is estimated for day- and night-time acquisitions using:

SST = T31 + (a1 + a2 ·W)(T31 −T32) + a3 ·W + a4, (5.6)

where T31 and T32 are brightness temperature for MODIS bands 31 and 32 respectively, W is the

total amount of water vapor estimated above, and a1 = 1.90,a2 = 0.44,a3 = 0.05 and a4 = 0.34.

5.2.3 SEVIRI products

The SEVIRI products available in our processing chain can be summarized as follows:

• NDVI is retrieved as in the case of MODIS data, by using red (visible band at 0.6 microns) and

near-infra-red (visible band at 0.8 microns) information.

• Emissivities are estimated for day-time acquisitions from NDVI and red information at 0.6 microns

(V is06), following the threshold method. These emissivities correspond to SEVIRI infrared T108

and T120 spectral bands centred at 10.8, and 12.0 µm, and are estimated differently depending on

the vegetation proportion within a given pixel. These emissivities are expressed as ε108 and ε120.

Table 2 shows the coefficients for emissivity estimation for different NDVI ranges of value:

where FV Cseviri =
(NDV I − 0.2)

2

0.009
.

• Water vapor is then estimated using the method developed by [59]. This method is based on

the difference in temperature between two different acquisitions (TA and TB) for both infra-red

channels (T108 and T120) centred at 10.8, and 12.0 µm, and depends of the observation zenith

angle (θ). This temperature difference should be greater than 10 K for the method to be accurate:

W = a · arg2 + b · β + c, (5.7)

where a = −15.1 · secθ + 5.1, b = 16.4 · secθ − 2.8, c = 0.336 · secθ − 0.117, and β =
1

secθ
ln

(
TA

108 −TB
108

TA
120 −TB

120

)
. However, this method provides only a few values per day, which can

lead to errors in the case of rapidly evolving weather conditions. To address this issue, methods

for instantaneous estimation of water vapor are being investigated.

• LST is estimated for day- and night-time acquisitions using the method developed in [106] as

follows:
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LST = T108

+
[
1.34− 0.11

cos2θ

]
· (T108 −T120)

+
[
0.29 + 0.08

cos2θ

]
· (T108 −T120)

2

+
[
60.67− 10.01

cos2θ

]
· (1− ε)

+
[
−6.71 + 2.47

cos2θ

]
·W · (1− ε)

+
[
−125.91 + 15.09

cos2θ

]
·∆ε

+
[
19.44− 4.27

cos2θ

]
·W ·∆ε

+
[
−0.44 + 0.57

cos2θ

]
,

(5.8)

where T108 and T120 are brightness temperature for the infra-red bands centred at 10.8 and 12.0

µm (Ir108 and Ir120) respectively, ε and∆ε are respectively the average emissivity and the spectral

emissivity difference for these bands, W is the total amount of water vapor estimated above, and

θ is the observation zenith angle.

• SST is estimated for day- and night-time acquisitions using the method developed by [66]:

SST = T108+(0.99·cosθ+0.21)·(T108−T120)+

(
0.364

cosθ
+ 0.15

)
·(T108−T120)+

0.327

cosθ
+0.11, (5.9)

where T108 and T120 are the brightness temperatures for MSG bands Ir108 and Ir120, respectively.

5.3 Geo-portal

This section is devoted to the description of our proposed geo-portal system. In subsection 5.3.1

we describe the system architecture of the geo-portal and the different layers that compose it. In

subsection 5.3.2, we describe the structure of the database that stores the associated meta-data of the

MODIS/SEVIRI scenes and their products. Subsection 5.3.3 describes how the queries to the database

are performed in the system. Finally, subsection 5.3.4 describes the procedure used by the geo-portal to

retrieve and provide advanced remote sensing scenes and their products to end-users.

5.3.1 System architecture

As shown in Fig. 5.2, the architecture of the proposed system is composed by different layers, which can

be defined by their roles. The system follows a modular design in which the communication between

layers is performed using standard data exchange formats and transfer protocols, so that any layer

can be easily modified and/or enhanced as long as its connectivity with the remaining layers of the

system is maintained. More specifically, our design has been carried out using free software tools such

as Symfony2 (described in chapter 2), a full-stack web framework, while the adopted format for data

exchange is JSON4, an open standard format that uses human readable text to transmit data objects.

In the following, we describe the different layers that compose the geo-portal.

4http://www.json.org
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Figure 5.2: Architecture of the proposed geo-portal.

5.3.1.1 Client layer

This layer defines the interactions between the users (through an internet web browser) and our geo-

portal, and is responsible for providing users with remote and interactive access to the system. The web

interface has been designed using HTML55, which is the most widely used web programming language,

and CSS36, which is a standard style language for improving the HTML5 web appearance. In addition,

we also used jQuery7, which is a JavaScript library for controlling the web behaviour. The interaction

between the user and the web interface is captured by the event handlers of the jQuery libraries. The

web interface transmits the requests to the server layer via HTTP, an application protocol for distributed,

collaborative, hypermedia information systems and the foundation of data communication for the World

Wide Web. Most of the views are actually generated in the server, using Symfony2, a robust web

5http://www.w3.org/TR/html51
6http://www.w3.org/Style/CSS
7http://jquery.com
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development framework.

5.3.1.2 Server layer

The system is implemented as a web application, in the sense that it provides remote access to a set of

clients (i.e., the end-users of our system) through internet connexions, so that web pages are delivered to

the clients while user requests are received and immediately processed. An advantage of this approach

is that no additional software has to be installed on the client node, since only a web browser is required

for interacting with the geo-portal. The services provided by the system are managed and executed on

the server layer, which is composed of several elements with different roles. As Fig. 5.2 shows, the web

server handles web interface requests (via HTTP) and manages the system resources, such as meta-data

and file data storage. The meta-data are associated to the image scene and their products, and are

used for efficient data retrieval as it will be explained in subsequent sections. The server layer can be

considered as the main engine of the system since it is in charge of managing and connecting the different

components that integrate it. The server layer is also in charge of storing image and product meta-data,

following a database scheme that is described in subsection 5.3.2. For the management of the database we

have selected MySQL8, an open-source database manager which provides all the necessary requirements

for our system, such as stored functions and procedures, fast queries, and low computational cost. This

database manager is widely used for building high performance webs. The MySQL database manager

allows for the efficient execution of stored procedures directly, which is needed in our context in order

to deal with the high computational cost of executing a matching algorithm for data retrieval involving

several terabytes of data. On the other hand, we also used a FTP9 file storage server in this layer for

providing remote user access to non-remotely accessible storage layer files. This module is ultimately

in charge of providing a temporal file storage of the files related with the user download requests. The

files are automatically deleted once a given limit time (parametrized value) is expired. This strategy

allows for efficient downloads of the products retrieved by the geo-portal after the end-user queries are

completed.

5.3.1.3 Storage layer

The proposed geo-portal has been specifically designed bearing in mind the need to manage and share a

large amount of remote sensing data products obtained after applying the MODIS/SEVIRI processing

chain described in section 5.2. The hardware resources utilized in the storage layer comprise a set of

DELL NAS10 processing nodes. First, a DELL PowerVault NX320011 system is dedicated to storing

the MODIS related products. It consists of a chassis with up to 12 hard SAS12 drives, and an Intel

Xeon E5-260913 CPU with 32 GB of RAM memory. Security and high availability is provided by

a PERC H71014 integrated RAID controller which combines multiple hard disks into a logical unit for

storage purposes. The overall storage capacity comprises 30 terabytes, using RAID 5 and a hot spare

unit. On the other hand, a second DELL node is dedicated to storing SEVIRI products. It consists of

another DELL PowerVault NX3200 connected to a DELL PowerVault MD120015 which provides

8http://www.mysql.com
9http://www.w3.org/Protocols/rfc959/

10http://www.dell.com/us/business/p/network-file-storage
11http://www.dellstorage.com/WorkArea/DownloadAsset.aspx?id=2966
12http://www.dell.com/learn/us/en/04/campaigns/dell-hard-drives
13http://ark.intel.com/products/64588/intel-xeon-processor-e5
14http://www.dell.com/downloads/global/products/pvaul/en/perc-technical-guidebook.pdf
15http://www.dell.com/us/business/p/powervault-md1200/pd
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24 terabytes of additional storage capacity, for a total of 54 terabytes capacity for the SEVIRI products.

Both the PowerVault MD1200 and the PowerVault NX3200 are connected through PERC H80016

adapters. As mentioned before, the main purpose of this layer is to provide advanced storage capabilities,

so all interactions are performed through other layers of the system that access the layer directly. The

storage layer and the server layer are located inside a private network which is remotely non-accessible.

Both layers are connected by using CIFS17, a protocol that defines a standard for remote file access

allowing up to millions of connections at the same time.

5.3.2 Database structure

Fig. 5.3 illustrates the database scheme used to store remote sensing products in the proposed geo-portal.

The database has been designed in order to store information not only from the products, but also from

the original remote sensing data (although in our current version only the products are available through

the geo-portal). The information stored in the database for each image entry comprises the number of

samples, lines, bands, data type, byte order, wavelength information, interleave, thumbnails, geolocation

and sensor used (limited to MODIS/SEVIRI in the present version but fully extensible to other sensor

data in future developments). Most importantly, our system also contains information about the presence

of cloud areas (called cloudinesss hereinafter) in the scene. Clouds were identified through IMAPP [126]

Level2 Cloud Mask (MOD35) software. In order to minimize the database size, the geolocation data is

confined to the four extreme image coordinates of each data set. In practice, each image is decomposed

into thirty parts (called quarters) and we store the geolocation and cloudiness information for each

quarter. In addition, relevant information about the data products is also stored in the geo-portal,

including type of product, resolution, sensor of acquisition, etc. All this information can be used for

retrieval purposes using different queries. At this point, we reiterate that the database structure has

been designed to store not only the final products but also the raw data. Although in the current version

of the geo-portal we only make available the final products to external users, the system is prepared to

provide also other different data levels (including the raw data). In the following we describe widely the

database tables design.

The database scheme tables could be classified, according to the above statement, as follows, first the

tables which contain features about the image, second tables related with product storage and last the

authentication/authorization data tables.

5.3.2.1 Image features

This subsection describes the features of each of the tables which are related with the image features.

1. Images

The images table is the main table of the database, since its attributes have been designed

to describe the relevant information used for image analysis; furthermore it includes additional

information through related tables such as image sensor, quick-look, geolocation coordinates or

cloudiness. In the following, the table attributes are listed:

• Id. The identifier of the images table.

• Name. Name given by the image owner.

16http://www.dell.com/downloads/global/products/pvaul/en/perc-technical-guidebook.pdf
17http://www.samba.org/samba/docs/man/Samba4-HOWTO/protocol.html
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• Interleave. Interleave feature of the image, following the ENVI standard notation. This

attribute refers to whether the data are band sequential (BSQ), band interleaved by pixel

(BIP), or band interleaved by line (BIL).

• Lines. Lines feature of the image, following the ENVI standard notation. It refers to the

number of lines per image for each band.

• Samples. Samples feature of the image, following the ENVI standard notation. It refers to

the number of samples (pixels) per image line for each band.

• Bands. Bands feature of the image, following the ENVI standard notation. It refers to the

number of bands per image file.

• DataType. Data type feature of the image, following the ENVI standard notation. It is

a parameter identifying the type of data representation, where 1=8 bits (byte); 2 = 16 bits

signed integer; 3 = 32 bits signed long integer; 4 = 32 bits floating point; 5 = 64 bits double

precision floating point; 6 = 2∗32 bits complex, real-imaginary pair of double precision; 9

= 2∗64 bits double precision complex, real-imaginary pair of double precision; 12 = 16 bits

unsigned integer; 13 = 32 bits unsigned long integer; 14 = 64 bits signed long integer; and 15

= 64 bits unsigned long integer.

• ByteOrder. Byte order feature of the image, following the ENVI standard notation. It

describes the order of the bytes in integer, long integer, 64 bits integer, unsigned 64 bits

integer, floating point, double precision, and complex data types. Byte order value 0 is Least

Significant Byte First (LSF) data (DEC and MS-DOS systems) and byte order value 1 is Most

Significant Byte First (MSF) data (all others - SUN, SGI, IBM, HP, DG).

• Wavelenght. Lists the center wavelength values of each band in an image.

• WavelenghtUnit. Wavelength values metric.

• ThumbnailSmall. Special attribute which contains a small image quick-look encoded as

text base64 encoded .

• ThumbnailLarge. Special attribute which contains a medium resolution quick-look of the

image. Foreign key to Thumbnail table.

• URL. Special attribute which contains the image link to the location in the file storage server,

it is assigned automatically by the server in the upload image process.

• Date. Image acquisition date.

• Coordinates. Coordinates that specify the image location. Foreign key to Coordinates

table.

• SensorID. Sensor that acquired the image. Foreign key to Sensor table.

• Products. Products performed over the image in processing chain. Foreign key to Image

Products table.

2. Thumbnails

Medium resolution quick-looks of the image are stored in this table. In the following, the table

attributes are listed:

• Id. The identifier of the thumbnails table.

• ImageID. Foreign key to Image table.
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• Data. Quick-look binary data encoded as base64 text.

3. Sensor type

This table stores the information about the sensors which have acquired the images. In the

following, the table attributes are listed:

• Id. The identifier of the sensor type table.

• Name. Short name of the sensor.

• LongName. Descriptive name of the sensor.

4. Coordinates

This table stores the coordinate points of the images. In the following the table attributes are

listed:

• Id. The coordinates table identifier.

• Longitude. Longitude value.

• Latitude. Latitude value.

5. Zones

Predefined map zones are defined in the system. In the following the attributes of the involved

table are listed:

• Id. The zones table identifier.

• Name. Short name of the zone.

• Coordinates. Set of coordinates that geo-locate the zone.

6. Clouds

This table stores the information of each part of the image (30 parts) and the cloudiness rate in

them. In the following, the table attributes are listed:

• Id. The clouds table identifier.

• Coordinates. Set of coordinates which defines a quarter of the image.

• Clouds. Cloudiness degree.

5.3.2.2 Product description

This subsection describes the database tables related with the advanced products achieved over the

images in our system.

1. Image products

This table stores products which are performed with different algorithms over images from a variety

of heterogeneous sensors and resolutions. In the following, the table attributes are listed:

• Id. The image products table identifier.

• Url. Link to the product location on the storage layer.

• ResolutionID. Product spatial resolution. Foreign key to Resolution table.

• ImageID. Foreign key to Image table.

100



5.3 Geo-portal

• ProductID. Foreign key to Products table.

2. Resolution

The resolution table is designed to store the product spatial resolution, since products can be

obtained from images with different spatial resolutions. In the following, the table attributes are

listed:

• Id. The resolution table identifier.

• Name. Descriptive name of the resolution.

• Resolution. Resolution value.

3. Products

This table defines available products in the system and the their access constraints. In the following,

the table attributes are listed:

• Id. The identifier of the products table.

• Name. Short name of the product.

• LongName. Descriptive name of the product.

• Role. Minimum user role required to access to the product. The system follows a hierarchical

role constraints.

4. Product types

Products are grouped according to their characteristics. In the following, the attributes of the

involved table are listed:

• Id. The identifier of the product types table.

• Name. Descriptive name of the product type.

• LongName. Descriptive name of the product type.

5. Sensor products

This table specifies what products are available for each sensor. In the following, the table attributes

are listed:

• Id. The identifier of the sensor products table.

• SensorId. Foreign key to Sensor table.

• ProductId. Foreign key to Products table.

5.3.2.3 Access features

This subsection describes tables related with the system authentication/authorization data in our system.

1. Users

User authentication/authorization data is stored in this table. In the following, the table attributes

are listed:

• Id. The identifier of the users table.

• Name. User name.
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• Password. User authentication password .

• Email. Email user address.

• Role. Foreign key to Role table.

2. Roles This table describes the roles which are used to restrict user access to the system. In the

following, the table attributes are listed:

• Id. The identifier of the roles table.

• Name. Descriptive name of the role.

5.3.3 Queries

Although the aim of our system is to offer remote sensing products, it has been designed to retrieve

remote sensing scenes which have associated products. Thus, the queries are performed using the image

associated meta-data, which is the fastest procedure since all the products of an image have the same

query parameters.

In this subsection, we outline the queries that can be performed to retrieve remote sensing products

in the proposed geo-portal system. The geo-portal includes an advanced retrieval system which provides

high query performance. The query filters include acquisition date, used sensor, geolocation or cloudiness.

It should be noted that the last two filters are only available for MODIS images, due to the geostationary

character of the MSG platform, geolocation information for SEVIRI data needs not being included within

each image. As for cloud information for SEVIRI data, it is still not available, although we plan to

include this information in the geo-portal in near future. In the following, we first describe the searching

methodology, which relies on a newly developed geolocation matching algorithm. Then, we describe the

procedure used to perform the search from an end-user’s point of view (with particular emphasis on the

developed web browser interface and the searching options available in the system). Finally, we describe

the procedure used by the system to allow for remote downloads of data from end-users.

5.3.3.1 Searching methodology

In order to deal with the time needed to perform image retrieval on a large database such as the one

available in our geo-portal, the searching functionality has been designed in a way that the queries

are completely executed on the database manager engine. This is a very important aspect, since the

possibility to perform the queries directly in MySQL allows for much increased performance as the queries

are executed as simple SQL calls embedded in the database manager. In previous versions of the geo-

portal we intended to use an external programming language such as C++ in order to perform the queries,

which resulted in a much slower response time. As a result, the embedding of the queries into MySQL

is considered to be one of the most attractive features of the proposed geo-portal system as this design

choice guarantees a high quality of service. The interest region-based searches are implemented by means

of a newly developed geolocation matching algorithm, which works as a stored procedure in the database

to resolve geolocation-based queries. This algorithm is particularly useful for the retrievals based on the

MODIS sensor, since this instrument provides images with irregular geolocation that makes it difficult

to link the data with a set of given geo-coordinates. This introduced significant difficulties since our idea

was to visualize and retrieve the obtained products in interactive fashion, based on available map services

such as Google Maps. In order to address this issue, we have developed a fast matching algorithm which

compares two geographic regions using their four extreme coordinates. This methodology is summarized

in Algorithm 4.
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Algorithm 4 Geolocation matching algorithm

1: procedure GelocationMatching(IMAGES,selectedPoints,maxCloudiness)
2: vectorResults= new Vector
3: for all IMAGES do
4: imagePoints = image.Points
5: resultIn = false
6: if (No selectedPoints) OR PlaneIntersection(imagePoints, selectedPoints) OR AnyPointInPolygon(imagePoints,

selectedPoints) then
7: resultIn=true
8: if (maxCloudiness) then
9: quarters=image.quarters
10: for all quarters do
11: quarterPoints=quarter.Points
12: if (PlaneIntersection(quarterPoints, selectedPoints) OR AnyPointInPolygon(quarterPoints, selected-

Points)) then
13: if quarter.cloudPercent > maxCloudiness then
14: resultIn=false
15: Break For loop
16: end if
17: end if
18: end for
19: end if
20: end if
21: if resultIn then
22: vectorResults.push(image)
23: end if
24: end for
25: return vectorResults;
26: end procedure

As shown by Algorithm 4, the main idea of the proposed geolocation procedure is to establish the

overlapping between a user-defined region and the corresponding image region. In other words, the

user interactively defines an area of interest over a map service (in our case, by drawing a polygon in

Google Maps) and the system should retrieve all the stored products of the images that have some

area overlapping with the region defined by the user in interactive fashion. The matching procedure is

described in detail in Algorithm 5. As shown by this algorithm, all comparisons are based on the four

extreme coordinates for the user-defined region and for the associated quarters. In order to manage

the computational cost of the geolocation procedure, this technique has been designed in the form

of an efficient stored procedure implementation, which exploits the high performance of MySQL stored

procedure engine and provides low latency in the associated complex queries. At this point, it is important

to reiterate that the geographic matching of the regions/quarters is performed using geometric concepts

which are based on interpreting the coordinates as points and the regions as planes formed by those

points, as described in detail in Algorithm 5. In order to cover all the matching possibilities, we first

evaluate if there is any intersection of lines from both planes and, if this is not the case, we evaluate if

any point from either plane is inside the other plane by using a point-in-polygon approach developed in

[127]. As described in Algorithms 4 and 5, the geolocation matching technique executes different queries

based on different filter inputs, which can be simply summarized as follows:

• No filters: all the scenes from the same sensor are retrieved.

• Interest region filter: only those scenes in which its geographic region matches with the interest

region are retrieved.

• Cloudiness threshold filter: only those scenes in which all quarters contain cloudiness below the

threshold are retrieved.

• Cloudiness threshold and interest region filters: only those scenes in which all quarters within the

region of interest contain cloudiness below the threshold are retrieved.
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Algorithm 5 Matching procedure used by the geolocation matching algorithm

1: procedure PointInside(polygonPoints,testx,testy)
2: NUMPOINTS=4
3: out=0
4: if testx < MIN(polygonP.x) OR testx > MAX(polygonP.x) OR testy < MIN(polygonP.y) OR testy > MAX(polygon.y)

then
5: j=NUMPOINTS-1
6: for i = 0 to NUMPOINTS do
7: z = polygonP[j].x - polygonP[i].x)* (testy - polygonP[i].y) / (polygonP[j].y - polygonP[i].y) + polygonP[i].x
8: if (polygonP[i].y > testy =! polygonP.y[j] > testy) AND (testx < z) then
9: c =! c
10: end if
11: j=i
12: end for
13: end if
14: return out
15: end procedure
16: procedure AnyPointInPolygon(imagePoints,selectedPoints)
17: NUMPOINTS = 4
18: for i = 0 to NUMPOINTS-1 do
19: point = imagePoints[i]
20: if PointInside(selectedPoints,point.x,point.y) then
21: return true
22: end if
23: end for
24: for i = 0 to NUMPOINTS-1 do point = selectPoints[i]
25: if PointInside(imagePoints,point.x,point.y) then
26: return true
27: end if
28: end for
29: return false
30: end procedure
31: procedure PlaneIntersection(imagePoints,selectedPoints)
32: NUMPOINTS = 4
33: j = NUMPOINTS − 1
34: for i = 0 to NUMPOINTS-1 do
35: if (Line(imagePoints[j], imagePoints[i]) ∩ Line(selectedPoints[0], selectedPoints[1])) OR
36: (Line(imagePoints[j], imagePoints[i]) ∩ Line(selectedPoints[1], selectedPoints[2])) OR
37: (Line(imagePoints[j], imagePoints[i]) ∩ Line(selectedPoints[2], selectedPoints[3])) OR
38: (Line(imagePoints[j], imagePoints[i]) ∩ Line(selectedPoints[3], selectedPoints[0])) then
39: return true
40: else
41: j=i
42: end if
43: end for
44: return false
45: end procedure

5.3.3.2 Searching Procedure from End-User Point of View

In this subsection, we outline how the searching procedure is conducted from an end-user’s point of view.

Fig. 5.4 shows the browser interface of the geo-portal, which allows the user to select several filters

using a friendly interface. As shown by Fig. 5.4, the leftmost panel of the browser allows specifying

the type of sensor for the retrieval of associated image products, as well as the maximum percentage

of clouds allowed in the data to be retrieved. The leftmost panel also allows for the retrieval of image

products by date (or range of dates) and by geographic coordinates. On the other hand, as Fig. 5.4

shows the main panel of the browser includes a map obtained from Google Maps service. The map panel

is fully interactive, and allows the user to draw a polygon directly on the map so as to perform the

retrieval only in the geographical area delimited by the polygon. In order to achieve this functionality,

the geolocation matching technique described in Algorithm 4 and its associated matching procedures,

described in Algorithm 5, are used. In the following, we summarize the different steps that a simple

query involves:

• First, the user can define simple criteria for the query, such as sensor or dates of acquisition, in the

leftmost panel of the browser as indicated in Fig. 5.4.
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• In a second step, the user can refine the query by drawing a polygon in the map panel. The

geolocation matching technique will be used to retrieve only the images located in a geographic

area that has some overlapping with the polygon. The system provides other additional options

for selecting the region of interest coordinates, such as simple input form or a set of pre-established

zones, as indicated in the leftmost panel (see Fig. 5.4).

• As an optional step, the system allows defining a maximum cloudiness filter, which is used to

restrict images with low visibility due to cloud contamination. After the user clicks the search

button, all the images matching the aforementioned searching criteria are retrieved and the user

can now download the desired image products. As Fig. 5.5 shows, the system retrieves, in a table,

a list of the image acquisitions together with their associated products, this table is fully interactive

and allows to browse among the image meta-data and products. In the following subsection, we

explain how the downloads (which can involve multiple users accessing concurrently the database)

have been implemented in our geo-portal.

5.3.4 Downloading

The developed geo-portal has been designed to facilitate the access to the products which are required

by users. Once the scenes of interest have been retrieved using the searching procedure described in the

previous subsection, the user can select and download the products associated to the image matching the

search criteria. In this regard, the geo-portal offers the capability to browse among the products of the

Figure 5.4: Browser interface of the developed geo-portal.
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images resulting from the filtering procedure and to select them individually for download. In addition,

as Fig. 5.5 shows, the main panel of the browser includes a list of the available products which offers the

capability to download the selected products of all the images selected in the table. A file storage server

(based on the FTP protocol) is used for downloading purposes, so that the server creates a folder with

all the requested products that are available for the user to download. The selected products will be

deleted from the server after a number of hours (variable value). In this way, once the user executes the

download option by clicking the corresponding button in the browser (see Fig. 5.5), the system creates

the temporal folder, copies the selected products to the folder and shows a pop-up message to the user

together with the FTP download link. As mentioned before, the system has been implemented so as to

support a very large number of simultaneous connections and concurrent data downloads, being able to

execute the queries with high performance and with significant quality of service. In the following section

we provide an experimental evaluation of the system in terms of geolocation accuracy and computational

efficiency in resolving the incoming queries.

5.4 Experimental results

In this section, we evaluate the proposed geo-portal from two different perspectives: the efficiency in the

retrieval of data products and the accuracy of the proposed geolocation matching algorithm. The section

is organized as follows. In subsection 5.4.1, we describe the MODIS/SEVIRI data sets and products

used for our experimental validation. In subsection 5.4.2, we illustrate the accuracy of the proposed

Figure 5.5: Search results retrieved by the browser interface.
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geolocation matching algorithm used to retrieve products from our geo-portal. Finally, subsection 5.4.3

performs an evaluation of the computational performance and response times measured in the retrieval

process.

5.4.1 Data and products

The experiments have been carried out using the full database of MODIS/SEVIRI images which have

been processed (using the methodology described in section 5.2) at UCG/IPL from July 2010 to January

2014 (in the case of MODIS) and from July 2007 to January 2012 (in the case of SEVIRI). This comprises

a total of 7626 scenes and 165406 products of MODIS (occupying a total space of more than five terabytes

of products) and a total of 163813 scenes and 313530 products of SEVIRI (occupying a total space of

more than twelve terabytes of products). For the MODIS data, it should be noted that the MODIS

instrument provides images from (plus/minus) 55-degree scanning pattern at the EOS orbit of 705 km,

thus achieving a 2330-km swath. Thus, the features of these images are different in every acquisition.

This includes width, height or geolocation. In this way, two images from the same area can have different

dimensions (width of 1354 plus/minus 10 pixels and height of 5000 plus/minus 200 pixels). This aspect

complicated the geolocation process for these images, as indicated before. In order to illustrate this issue

further, the following subsection provides an evaluation of the geolocation retrieval accuracy in the case

of MODIS data.

5.4.2 Geolocation retrieval accuracy

The accuracy of the proposed geolocation-based retrieval system has been evaluated using a case study

based on a query centred in the Canary Islands (35 degrees north latitude, minus 9 degrees south

latitude, 20 degrees east longitude and minus 20 degrees west longitude), as indicated in the user-drawn

polygon depicted in Fig. 5.4. For illustrative purposes, the query was performed for a specific day (July

12, 2010), in which five different MODIS image were returned. For simplicity, we did not apply the

cloudiness threshold in this experiment to remain focused on the evaluation of the geolocation results.

For illustrative purposes, Fig. 5.6 graphically illustrates the geolocation accuracy achieved by our system

in this particular experiment. More specifically, in Fig. 5.6 the red polygons represent a region of interest

defined by the user (see Fig. 5.4), and the blue polygons represent the available MODIS images collected

at different times on July 12, 2010. The intersection areas are displayed in cyan color. As shown by

Fig. 5.6, three different images exhibited some degree of overlapping with the user-defined area. Note

that the images acquired by MODIS at 01h24m and 12h29m did not overlap at all with the user-defined

area, hence these images were not retrieved by the geo-portal. In turn, the image acquired by MODIS at

03h02m, 10h48m and 21h52m exhibited some (partial) overlapping with the user-defined search area, thus

being retrieved. We conducted several additional experiments using a larger number of involved images

and user-defined searching areas with the same accuracy results, which confirmed the high precision of

the geolocation matching algorithms developed for the geo-portal.

5.4.3 Efficiency in retrieval

In this subsection we evaluate the retrieval performance of the proposed geo-portal. For this purpose, we

considered three different types of queries and measured the time in seconds from the query execution

to the query completion, i.e. the effective time that the geo-portal took in order to provide the data

solicited by the user for download purposes. Specifically, the types of queries considered in our tests were

the following ones:
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• In the first type of query, we used a no filter scenario so that all the images from the same sensor

could be retrieved. We performed this query for all the MODIS data and also for all the SEVIRI

data, so that we can evaluate the performance of the system in retrieving all the data stored in the

system by sensor type.

• In the second type of query, we analyzed the performance of the interest region filter. In this case,

we used the same case study illustrated in the previous subsection, in which a query centered in the

Canary Islands (35 degrees north latitude, minus 9 degrees south latitude, 20 degrees east longitude

and minus 20 degrees west longitude) was used after a user-defined region was established in the

map panel of the geo-portal browser as depicted in Fig. 5.4.

• The third type of query analyzed the cloudiness threshold filter in combination with the interest

region filter. This means that, for the considered user-defined region of interest centered in the

Canary Islands and depicted in Fig. 5.4, we retained only those images that contain less than 80%

cloudiness and discarded the rest. In all cases, we avoided establishing a filter for the retrieval

of images based on the date, in order to have a complete exploration of the whole database in

multi-temporal fashion.

As shown by Table 5.3, the retrieval times were quite fast for the three types of considered queries.

The fastest cases correspond to the retrieval of all MODIS images and all SEVIRI images, which took

less than one second to be completed. This is because the only filter applied in the query was the one

Figure 5.6: A case study illustrating the geolocation matching accuracy of the developed geo-portal.
The red polygons represent a region of interest defined by the user (centered over the Canary Islands,
as depicted in Fig. 5.4) and the and blue polygons represent the available MODIS images at different
hours on July 12, 2010. The intersection areas are displayed in cyan color. In our experiment, only the
cases in which there was overlapping between the user-defined area and the available images resulted in
data retrievals, which confirmed the good performance of the geolocation matching algorithm.
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Table 5.3: Time (in seconds) that the geo-portal took to complete several types of queries applying
different filters when exploring the whole database of MODIS/SEVIRI images. The images are filtered
by date from July 2010 to January 2014 (in the case of MODIS) and from July 2007 to January 2012
(in the case of SEVIRI). In the queries based on a region of interest, we used an area centred over the
Canary Islands depicted in Fig. 5.4. The cloudiness threshold considered in experiments was 80%, so
that we filtered out the images containing more clouds than established in this threshold.

Only Date filter
(SEVIRI images)

Only Date filter
(MODIS images)

Region of interest
(MODIS images)

Cloudiness
and region of interest
(MODIS images)

Images retrieved 163813 7626 5153 2592
Time (seconds) 0.008 0.008 9.101 37.078

given by the sensor type, which allowed for a very fast retrieval of the images corresponding to each type

of sensor. In any event, given the very high number of images retrieved (7626 for MODIS and 163813 for

SEVIRI), we consider that the retrieval times were extremely fast. This indicates that the architecture

of the proposed system can handle large volumes of data while providing very fast response times for the

queries, implemented directly in the MySQL database manager. When the region of interest was defined,

the query based on the considered region centered around the Canary Islands returned 5153 MODIS

scenes, which is also a considerable amount of information. In this case, the geo-portal could provide the

result of the query in approximately 9 seconds. Finally, the most complex query executed was completed

in approximately 37 seconds. Such response time is due to the fact that the cloudiness threshold was

applied in combined fashion with the region of interest filter, which means 30 combined comparisons

for each image, since the cloudiness into the image is split into 30 quarters. Thus, this query is more

complex in terms of execution than the previously considered ones. Still, the retrieval time in this case

is considered to be quite appropriate bearing in mind that the query took as input the whole MODIS

image database which comprises approximately nine terabytes of data. At this point we reiterate that

the queries retrieve the images and also their products, no product-related filters are available in the

searching process, since all the products of an image have the same query parameters.
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Chapter 6

Conclusions and future work

In this thesis we have presented several new techniques and methodologies for storing and managing

remotely sensed images and their products, with the ultimate goal to develop and make available online

new digital repositories for sharing a big amount of remotely sensed multispectral and hyperspectral

data. A particularly innovative feature of our newly developed repositories is that they have the

capacity to exploit algorithms implemented on GPUs for efficient remote sensing data retrieval. Here, we

implemented several algorithms for spectral unmixing purposes in order to generate suitable meta-data

for retrieval purposes, based on relatively complex queries including both endmember and abundance

information (in the case of hyperspectral image repositories) and advanced products (in the case of

multispectral image repositories). With regards to the latter, we have developed a standardized repository

for storing a wide amount of remote sensing image products, which is also available on-line providing geo-

location retrieval capabilities. The work developed in this thesis is expected to increase the value of the

data acquired by available and new airborne/satellite hyperspectral/multispectral imaging instruments,

and to improve the availability of these data and their associated information and meta-data. More

precisely, the main achievements of this thesis can be summarized as follows:

• First and foremost, we have presented a new digital repository for hyperspectral image data

(available online from http://hypercomp.es/repository) that allows uploading and retrieving high-

dimensional hyperspectral images. The current version is implemented as a web service, which

allows remote user access through a web interface while a server is in charge of managing the

repository database and performing algorithm executions. The system is fully available for public

use and represents a first step towards a standardized hyperspectral data repository data intended

to distribute and share hyperspectral data sets in the community.

• Second, we have included CBIR capabilities based on spectral unmixing concepts in the

aforementioned system. State of art of unmixing algorithms such as geometric techniques are

used to generate effective meta-data for image retrieval purposes. In order to deal with the high

computational cost of extracting spectral information from hyperspectral images, these algorithms

have been implemented in parallel, so that, the system executes the algorithms in remote distributed

computing resources (always using GPU implementations). The performance of the retrieval

system was evaluated using synthetic data sets which allowed an evaluation of the system in a

fully controlled scenario, while real image data sets provided a practical illustration of the system

using well-known hyperspectral data sets.

• Third, we have extended the aforementioned system by the inclusion of sparse unmixing techniques
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for the process of cataloguing and retrieving hyperspectral scenes. The use of sparse unmixing offers

an important advantage: the generation of meta-data and the CBIR process can be guided by a

spectral library of laboratory measured endmembers instead of endmembers extracted from the

hyperspectral image. Since the endmembers in the library are acquired in ideal conditions, this

allows us to have a more reliable process for the generation of meta-data and the retrieval itself,

while circumventing problems related to the potential impact of the mixture problem, which may

prevent the existence of completely pure spectral signatures in the hyperspectral images. The

sparse unmixing-based CBIR approach also offers the possibility of a more robust catalog since

the meta-data is not generated from the image but extracted from a previously available spectral

library with high-quality signatures measured in ideal conditions.

• Last but not least, an on-line geo-portal has been developed (available online from

http://ceosspain.lpi.uv.es) to manage a standardized data repository for multispectral images

and their advanced products, which includes the possibility of performing geolocation-based data

retrieval by defining regions of interest (and applying several types of filters) in a user-friendly

browser that allows for a complete interaction with a map server such as Google Maps. The

geo-portal has been implemented using advanced software and hardware infrastructures, allowing

for the fast execution of queries embedded into our database engine as stored procedures. In the

newly developed system the data processing is accomplished in one day, i.e. the multispectral

data (e.g., data collected from MODIS/SEVIRI) collected by the receiving antenna is processed

by our system once a day. Then the system obtains the resulting products and stores them in our

database, which also handles the raw data. This system currently provides impressive features:

more than eight thousand MODIS acquisitions (with products that occupy a total space of more

than nine terabytes of data) and more than two hundred thousand SEVIRI acquisitions (with

products that occupy a total space of more than seventeen terabytes of data). This results in a

massive amount of information that is fully available to the remote sensing community through

the developed geo-portal.

As future extension of the developed systems, we will implement multicore versions of the spectral

unmixing algorithms used to implement the system and explore in more details its potential multi-GPU

functionality. Specifically, a multicore implementation would perhaps exhibit less restrictions in terms of

communication overhead than a GPU cluster, due to the availability of shared memories. In both cases

(multi-GPU and multicore) our CBIR system is expected to adapt quite well to these architectures since

the searching part can be efficiently performed in parallel, and the cataloguing part (in spite of the fact

that it would depend on the considered endmember extraction implementation in multiple processors)

would only need to be used once for each scene. Regarding the multispectral product repository, our

future work will be mainly focused on including additional and products collected from other sensors.

However, another possible development is to integrate both systems (CBIR and geo-portal). Another

important future research line is a full standardized repository for multispectral/hyperspectral data with

a retrieval retrieval system based on image content and geolocation criteria. This may bring some

challenges, as the characteristics of multispectral images and hyperspectral images are different, and

particularly the way to exploit them and extract information may be quite different depending on the

considered scenario. However, the idea to combine all developments into a unified repository is appealing

and we are currently exploring ways to achieve such desired integration. In terms of data storing, we

plan to migrate the proposed systems to big data services in the cloud, in order to overcome current

storage limits and foster the adoption of our proposed framework as a standard for data sharing in the
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Apendix A

Publications

The results of this thesis work have been published in several international journal papers and peer-

reviewed international conference papers. Specifically, the candidate candidate is the first author of 4

journal citation reports (JCR) papers (2 submitted and the rest already published), and 8 peer-reviewed

international conference papers directly related to this thesis work. This thesis work has been partially

supported by the following programs, fund and resources:

1. CEOS-SPAIN project funded by the Spanish Ministry of Science and Innovation, reference

AYA2011-29334-C02-02.

2. High Performance Computing Service Centre project of West University of Timisoara (Romania),

reference FP7-REGPOT-CT-2011-284595-HOST.

3. Basic support to research groups by the ”Gobierno de Extremadura” (Spain), reference GR10035.

4. CAPAP-H4 network, funded by the Spanish Ministry of Science and Innovation, reference TIN2011-

15734-E.

The computing resources used in this work have been provided by two institutions. First,

Extremadura Research for Advanced Technologies center (CETA-CIEMAT) which is funded by the

European Regional Development Fund (ERDF). This center belongs to the Spanish Ministry of Science

and Innovation. And last but not least, the High Performance Computing center at West University of

Timisoara, Romania.

The candidate has been a pre-doctoral researcher in the Hyperspectral Computing Laboratory

(HyperComp), Department of Technology of Computers and Communications, University of

Extremadura, Spain, funded by the project AYA2011-29334-C02-02. Below, we provide a description of

the publications achieved by the candidate providing also a short description of the journal or workshop

where they were presented.

A.1 International journal papers

1. J. Sevilla, A. Bernabe and A. Plaza. Unmixing-based content retrieval system for remotely sensed

hyperspectral imagery on GPUs. Springer Journal of Supercomputing, accepted for publication,

in press, 2014 [JCR(2013)=0.841]. This paper was published in the Journal of Supercomputing,

which is a very important journal in the second quartile of the Computer science, hardware and
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architecture category of JCR. This paper, which provided the core of chapter 2 of this thesis, shows

a new unmixing-based retrieval system for remotely sensed hyperspectral imagery using spectral

information. It particularly focuses on the system design and its efficient implementation on GPUs.

The spectral information relevant to a query is extracted through a partial unmixing chain which

includes algorithms such as VD and HySime for estimation of the number of endmembers of a

given scene and N-FINDR and OSP-GS for extraction of these endmembers.

2. J. Sevilla and A. Plaza. A new digital repository for hyperspectral imagery with unmixing-based

retrieval functionality implemented on GPUs. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 7, no. 6, pp. 2267-2280, June 2014 [JCR(2013)=2.827].

This paper was published in the journal IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, which is a very important journal in the first quartile of the

remote sensing and electrical and electronic engineering areas of JCR. This paper presents a new

digital repository for hyperspectral image data that allows to upload and retrieve images through

a CBIR (content-based image retrieval ) functionality based on spectral unmixing concepts. The

paper, which provided the core of chapter 3 of this thesis, is focused on the efficient implementation

of the system as web service, particularly, it describes widely the digital repository design and CBIR

implementation on GPUs, furthermore, it presents a new methodology for image retrieval. Such

retrieval is based on spectral/spatial information which is extracted using several full spectral

unmixing chains which, on the one hand, extract the spectral information through algorithms such

as VD and HySime for estimation of the number of endmembers of a given scene and N-FINDR

and OSP-GS for extraction of these endmembers and, on the other hand, incorporate the spatial

information in the search using algorithms to estimate the endmember abundance, such as UCLS

or ISRA.

A.2 International journal papers (submitted)

1. J. Sevilla, L.I. Jiménez and A. Plaza. Sparse unmixing-based hyperspectral imagery retrieval

system implemented on GPUs. Submitted to IEEE Geoscience and Remote Sensing Letters

[JCR(2013)=1.809]. This paper has been submitted for publication to the journal IEEE Geoscience

and Remote Sensing Letters which is a journal in the second quartile of the Remote Sensing category

of JCR. This paper, which provided the core of chapter 4 of this thesis, is focused on developing

a content-based image retrieval system which uses sparse unmixing techniques to generate the

relevant information to a query. The retrieval is based on spectral/spatial information which is

efficiently extracted using the implementation of CSUNSAL algorithm on GPUs. The paper shows

a comparison, in terms of efficiency and accuracy, between the proposed system and a previous

CBIR implemented using a full spectral unmixing chain which derives the endmembers from the

images to be processed.

2. J. Sevilla, Y. Julien, G. Sória, J.A. Sobrino and A. Plaza. A new geo-portal for MODIS/SEVIRI

image products with geolocation-based retrieval functionality. Submitted to the Journal of Applied

Remote Sensing [JCR(2013)=0.892]. This paper, which provided the core of chapter 5 of this thesis,

has been submitted for publication to the Journal of Applied Remote Sensing, which is a journal

in the second quartile of the Remote Sensing category of JCR. The paper describes a new data

repository for multispectral imagery products. Particularly, it describes a standardized repository

for storing a wide amount of remote sensing image formats and products. The paper is focussed
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on the efficient implementation of the system as web service, particularly, it describes the digital

repository design and the efficient implementation of the geo-portal, which allows for a user-friendly

and effective access to a full repository of MODIS/SEVIRI advanced products using geolocation

retrieval capabilities.

A.3 Peer-reviewed international conference papers

1. J. Sevilla, S. Bernabe, P. Garcia and A. Plaza. A new digital repository for remotely sensed

hyperspectral imagery with unmixing-based retrieval functionality, SPIE Optics and Photonics,

Satellite Data Compression, Communication, and Processing Conference, San Diego, USA. This

work was presented as an oral contribution in the SPIE Optics and Photonics workshop, which

is a very important event held yearly and which gathers more than 2000 international researchers

in the area of remote sensing in the city of San Diego, California. In this paper we presented

the first step towards the development of a digital repository for remotely sensed hyperspectral

data. Particularly, it describes the design of the repository and the integration of the the different

unmixing algorithms. The proposed system in this work allows searching for images stored in the

database using spectral unmixing concepts.

2. J. Sevilla, S. Bernabe and A. Plaza. Unmixing-based retrieval system for remotely sensed

hyperspectral imagery on GPUs, 13th the International Conference on Computational and

Mathematical Methods in Science and Engineering, Almeŕıa, Spain. This work was presented as an

oral contribution in the workshop CMMSE 2013 - Minisymposium: HPC. This symposium is often

attended by hundreds of worldwide researches with a fair knowledge/interest in high performance

computing applied to complex large-scale computational problems. In this work, we introduced a

new unmixing-based image retrieval system for remote sensed hyperspsectral imagery which deals

with the computational cost of executing spectral unmixing algorithms using GPUs.

3. J.M. Franco, J. Sevilla and A. Plaza. Parallel implementation of pixel purity index for a GPU

cluster, 13th the International Conference on Computational and Mathematical Methods in Science

and Engineering, Almeŕıa, Spain. This work was presented as an oral contribution in the workshop

CMMSE 2013 - Minisymposium: HPC. This symposium is often attended by hundreds of worldwide

researches with a fair knowledge/interest of high performance computing applied to complex

large-scale computational problems. In this work, we presented a parallel implementation of the

Pixel Purity Index (PPI) algorithm, a well-known algorithm for the analysis of remotely sensed

hyperspectral data sets, targeted to a GPU cluster, and showed a comparison of execution times

and speedups among different parallel implementations of the algorithm.

4. J. Sevilla and A. Plaza. A new digital repository for remotely sensed hyperspectral imagery

on GPUs, 15th International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing, Timisoara, Romania, published in IEEE as proceeding. This work was presented

as an oral contribution in the workshop SYNASC 2013 -HPCReS. This workshop is focused on

applications needing high-performance computing, physical modeling of large-scale problems, and

the development of scalable algorithms for solving large scale problems on modern parallel and

distributed high-performance computing platforms. This paper introduces an on-line spectral

unmixing-based content based image retrieval (CBIR) system which allows searching for images
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from the database using spectral/spatial information of the scene. The relevant information to a

query is performed using efficient implementations of spectral unmixing algorithms on GPUs.

5. R. Ramos-Pollan, J.M. Franco, J. Sevilla, M.A. Guevara-Lopez, N. Gonzalez de Posada, J. Loureiro

and I. Ramos. Grid infrastructures for developing mammography CAD systems, Proceedings

of the IEEE Conference of the Engineering in Medicine and Biology Society (EMBC), 2010

Annual International Conference. The conference program consisted of plenary lectures, symposia,

workshops and invited sessions of the latest significant findings and developments in all the major

fields of biomedical engineering. This work was presented as an oral contribution in the EMBC

2010 conference. This paper presents a set of technologies developed to exploit Grid infrastructures

for breast cancer CAD, that include (1) federated repositories of mammography images and clinical

data over Grid storage, (2) a workstation for mammography image analysis and diagnosis and (3)

a framework for data analysis and training machine learning classifiers over Grid computing power

specially tuned for medical image based data.

6. R. Ramos-Pollan, J.M. Franco, J. Sevilla, N.G. Posada, N.P. Perez, M.A.P. Vaz, J. Loureiro, I.

Ramos and M.A. Guevara-Lopez. Grid computing for breast cancer CAD. A pilot experience

in a medical environment, Ibergrid: 4th Iberian Grid Infrastructure Conference. This work

was presented as an oral contribution in the Ibergrid 2010 conference. The conference presents

joint research and development agreements between Portugal and Spain in the field of advanced

computing infrastructures for e-Science. This paper presents a novel Grid based software platform

to store and manage large mammography digital image repositories (MDIR) including associated

patient information (clinical history, biopsies, etc.), a mammography image workstation for analysis

and diagnosis (MIWAD) and a data training and analysis framework (DTAF). MDIR simplifies

and reduces the cost of hosting digitalized content and meta-data stored on Grid infrastructures,

exploiting its features such as strong security contexts, data federation, and large storage and

computing capacities.

7. A. Calanducci, R. Barbera, J. Sevilla, A. De Filippo, M. Saso, S. Iannizzotto, F. De Mattia and

D. Vicinanza. Data grids for conservation of cultural inheritance, Proceedings of the 1st ACM

workshop on Data grids for eScience, Ischia, Italy, published in ACM as proceeding. This work

was presented as an oral contribution in the DataGreS 2009 workshop. The main purpose of this

workshop was to bring researchers and practitioners to identify and explore open issues as well as

discuss and propose novel data grid oriented solutions for e-Science. This paper presents the online

gLibrary platform, which is a grid-based system to host and manage digital libraries. In order

to demonstrate how digital libraries on the grid can guarantee enduring preservation of literary

heritage, a working prototype of the digital repository for manuscripts of an italian writer called

Federico de Roberto was implemented on gLibrary.

8. A. Calanducci, J. Sevilla, R. Barbera, G. Andronico, M. Saso, A. De Filippo, S. Iannizzotto,

D. Vicinanza and F. De Mattia. Cultural heritage digital libraries on data grids, 13th European

Conference on Digital Libraries (ECDL), Corfu, Grecia. This work was presented as an oral

contribution in the ECDL 2009 conference. ECDL conference is the major European forum focusing

on digital libraries and associated technical, practical, and social issues, meeting the needs of a large

and diverse constituency, which includes practitioners, researchers, educators, policy makers and

users. This work shows how we deployed some digital repositories of ancient manuscripts making

use of gLibrary, a grid-based system, to host and manage digital libraries.
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