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RESUMEN

La variabilidad en los cultivos es una de las principales dificultades cuando nos
enfrentamos a la gestion de grandes superficies, la influencia de factores como el suelo,
los nutrientes o el clima dificulta el conocimiento exhaustivo de las grandes superficies
cultivadas, por tanto el uso de herramientas que permitan obtener una vision global de
las superficies agricolas se plantea como una de las soluciones necesarias para mejorar
los rendimientos de una agricultura moderna, la cual tiende a la extensificacion. En los
ultimos afos han surgido herramientas como la agricultura de precision o los modelos
de simulacion que se sitlan como herramientas claves en el manejo de las grandes
superficies en la agricultura. En esta tesis se ha estudiado el uso de algunas de estas
herramientas sobre grandes superficies comerciales de cultivo de tomate para industria.

El objetivo general ha sido tratado en cuatro capitulos.

En el capitulo uno se expone la combinacion de dos parametros que se pueden
muestrear de manera masiva y georreferenciada, dichos pardmetros son la
Conductividad Eléctrica Aparente, parametro relacionado con las propiedades del suelo,
y el Indice Normalizado de Vegetacion (NDVI), pardmetro relacionado con las
propiedades de la planta. El estudio se llevo a cabo en una parcela comercial de tomate
para industria, donde mapas predictivos de CEa y NDVI desarrollados mediante un
analisis geoestadistico fueron comparados con la produccion final obtenida en el
cultivo. A pesar de ser obtenidos mejores resultados con el uso del NDVI, ambos
parametros resultaron buenos indicadores de la potencialidad productiva del suelo, y

ofrecieron una importante informacion a la hora de zonificar y manejar el cultivo.



En el capitulo dos se utiliz6 la fuerte elacion existente entre la textura del suelo y
la CEa para evaluar una metodologia encaminada a zonificar los terrenos agricolas
desde el punto de vista del manejo del riego. Se desarrollaron mapas de contenido de
agua util en tres parcelas comerciales de 40, 80 y 120 ha, mediante el uso de un analisis
geoestadistico de regresion krigeado, donde las variables utilizadas fueron la
conductividad eléctrica aparente del terreno y los datos analizados en laboratorio
derivados de un muestreo de suelo guiado en funcion de la conductividad eléctrica
aparente. El resultado obtenido fue evaluado obteniéndose resultados estadisticamente

satisfactorios.

En el capitulo tres se desarrolld6 una metodologia basada en la capacidad
predictiva del indice de vegetacion normalizado sobre la productividad del cultivo. El
ensayo se desarrollo en dos fincas comerciales de tomate para industria. Se realizd un
mapa de indice de vegetacion normalizo del cultivo que fue utilizado para la posterior
realizaciéon de un muestreo guiado de produccion. Finalmente la técnica de regresion
krigeado fue utilizada para la generacion del mapa final, como variable principal se
utilizaron los datos de produccion obtenidos en campo, y como variable secundaria los
valores de indice de vegetacion normalizado desarrollados sobre el cultivo. El resultado

obtenido fue evaluado obteniéndose resultados estadisticamente satisfactorios.

En el capitulo cuatro tiene por objetivo evaluar la utilidad del uso combinado de
los modelos de simulacion implementados con técnicas de agricultura de precision. El
trabajo se realizd sobre una parcela comercial de tomate para industria de 6.5 ha. En
este capitulo se utilizd6 la metodologia de zonificaciéon de suelo desarrollada en el

capitulo dos para establecer puntos de control, dichos puntos fueron utilizados para
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evaluar la capacidad del modelo de simulacion AquaCrop para determinar la
productividad del cultivo. El resultado obtenido fue evaluado obteniéndose resultados
estadisticamente satisfactorios, tanto desde el punto de vista de la zonificacion de la
parcela como desde la evaluacion del modelo AquaCrop para la estimacion de la

productividad del cultivo.
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SUMMARY

The variability into crops is one of the main difficulties when faced large tracts
of agricultural land are involved, the influence of factors such as soil, nutrients or
weather hampers thorough knowledge of large cultivated areas. Therefore the use of
tools which allow to obtain an overview of agricultural land is seen as one of the
solutions needed to improve the performance of modern agriculture, which tends to
extensification. In last years there have been tools such as precision agriculture or
simulation models, that are positioned as key tools in managing large tracts of
agricultural land. In this work we study the use of some of these tools on processing

tomato crop. The overall objective has been treated in four chapters.

In chapter one the combination of two parameters that can be sampled on
intensive way and georeferenced are expose, these parameters are the Apparent
Electrical Conductivity, parameter related to soil properties, and the Normalized
Difference Vegetation Index (NDVI), a parameter related to the properties of the plant.
The study was conducted in a comercial processing tomato crop, where predictive maps
of Apparent Electrical Conductivity and Normalized Difference Vegetation Index
developed were used in a geostatistical analysis to compared with the final production
of the crop. Despite being obtained better results with the use of Normalized Difference
Vegetation Index, both parameters were good indicators of the potential productivity of

surfaces, and offered an important information for zoning into the crop management.

In chapter two the strong relationship between soil texture and Apparent

Electrical Conductivity was used to evaluate a methodology for improve irrigation

zoning. Available water content maps were developed in three commercial plots, with
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surfaces of 40, 80 and 120 ha. The regression Kriging methodology was used to
combine data obtained on field and laboratory. The result obtained was evaluated

statistically obtaining satisfactory results.

In chapter three a methodology based on the predictive ability of the normalized
vegetation index for determine crop productivity was developed. The field test was
developed in two commercial farms of processing tomato. The map of Normalized
Difference Vegetation Index was used for a guided yield samples. Finally regression
kriging technique was used to generate the final map, the main variable was the yield
obtained on field, and we used as secondary variable the normalized vegetation index,
for this process both variables were related statistically. The result obtained was

evaluated statistically obtaining satisfactory results.

In chapter four was studied the utility of the combined use of simulation models
implemented with precision agriculture techniques. The work was conducted on a
commercial plot of processing tomato crop, with a surface of 6.5 ha. In this chapter the
methodology developed in chapter two was used to locate the control points in field.
These points were used to assess the ability of the FAO model AquaCrop for
simulating processing tomato yield response. The result obtained was evaluated
statistically, obtaining satisfactory results from the point of view of the zoning of the
plot. From the point of view of AquaCrop model for estimating crop productivity, good

results also were obtained.
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INTRODUCCION GENERAL

Segun estimaciones realizadas por FAO (Food and Agriculture Organization) en
el afio 2050 mas de 10 billones de personas necesitaran ser alimentadas, esta situacion
representard un reto que exigird incrementar en un 70% la produccidon actual de
alimentos. El regadio en la agricultura ocupa una extension de 277 millones de
hectareas, produciendo unos rendimientos 3.6 veces superiores al de la agricultura no
irrigada. Sin embargo es dificil incrementar las superficies de regadio debido al alto
impacto y coste medioambiental que acarrean. El aporte de grandes cantidades de agua
desviadas de los rios con fines de riego cambia profundamente el balance de agua en las
tierras regadas. En el regadio una aplicaciéon de 10.000 m3 por ha por afio no es
excepcional, y para cultivos con un requerimiento alto de agua las dotaciones anuales
en climas aridos pueden subir a 20.000 m3 por ha. Otro problema importante es la
degradacion del suelo por problemas de salinidad; Con el aporte de las grandes
cantidades de agua para el riego también se aportan sales. Por ejemplo, asumiendo que
el agua de riego tiene una baja concentracion de 0,3 g/l (igual a 0,3 kg/m3 y una
aplicacion anual modesta de 10.000 m3 agua por ha (casi 3 mm/dia), la irrigacion
introduce 3.000 kg sal/ha cada afio. La importacion continua de sales conduce a la
salinizacion del suelo lo que seriamente disminuye la cosecha de los cultivos.
Aproximadamente un tercio de las extensiones de regadio en los paises mas importantes
en cuanto a agricultura regada experimenta serias problemas de suelos con sales, por
ejemplo: Israel 13 %, Australia 20 %, Chile: 20 %, China 15 %, Egipto 30 %. Los
problemas se manifiestan igualmente tanto en los grandes proyectos de riego como en
los pequetios. A la vista de todos estos datos es dificil incrementar la superficie de riego,

pero si es posible elevar la productividad de las superficies cultivadas, para ello las
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directrices de la PAC (Politica Agraria Comun) ponen énfasis en el uso de os recursos y
la sostenibilidad. Suelo y agua son los recursos bdasicos naturales en los que hacer
hincapié para elevar la productividad de las superficies agricolas de una manera

eficiente y sostenible.

A nivel mundial América del norte, Asia y Europa constituyen las principales
superficies de produccién agronoémica. Dentro de Europa Espaiia tiene un papel
predominante en la produccion de alimentos, siendo uno de los principales exportadores
de frutas y verduras de la unién Europea. Extremadura se enmarca dentro de Espana
como una comunidad eminentemente, donde frutas, cereales y hortalizas son producidos
y exportados hacia el mercado nacional e internacional. El cultivo de tomate para
industria es uno de los cultivos mas importantes de Espafia y cultivo principal en
Extremadura, lugar donde se desarrolla este estudio. El tomate de industria ocupa un
puesto relevante en la produccion total agricola regional, con una produccion
equivalente al 80% de la produccion total nacional y el 6% de la mundial. La superficie
total de cultivo ronda las 25.000 ha, todas ellas de regadio, con un rendimiento medio
de 80.000 kg/ha. En esta region el riego es imprescindible para el desarrollo comercial
del cultivo y se convierte en uno de los principales factores de produccion, determinante
no solo sobre la productividad, sino también de la calidad de la cosecha. Asi, la
modernizacion de los regadios Extremefios ha sido la principal responsable de que la
produccion media en la Vegas del Guadiana, que en afio 1996 era de 50.000 Kg/ha haya
pasado a los actuales 80.000 kg/ha, al pasar de un riego mayoritario por gravedad a
riego localizado por goteo. En los ultimos afios el cultivo ha sufrido una gran
intensificacion debido a la introduccion de nuevas practicas de cultivo y el uso de

nuevas tecnologias para la gestion del mismo, surgiendo empresas capaces de gestionar
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enormes superficies de cultivo, con las consecuentes dificultades que implica este tipo
de gestion. El incremento del tamafio de las explotaciones supone una ventaja en
cuanto a costes de cultivo, pero también conlleva nuevos restos desde el punto de vista
técnico, relacionados con la variabilidad espacial de las parcelas. Dicha variabilidad
provoca diferentes respuestas frente a las practicas de cultivos tradicionales, aplicadas
de manera uniforme. Las nuevas tendencias en la agricultura moderna conducen a un
aumento muy significativo del tamano de las explotaciones, debido a que las nuevas
tecnologias en maquinaria facilitan la gestion de estas enormes superficies. Ademas,
parametros esenciales para cultivo como el riego pasan a ser muy dificiles de controlar
cuando nos enfrentamos a la gestion de grandes superficies, dada la gran influencia de
dicha variabilidad espacial. El célculo de las necesidades de agua o fertilizacion es muy
complicado en este tipo de gestion, ademds de aumentar considerablemente los costes
economicos si no se realiza un uso eficiente de estos. Por lo tanto, el desarrollo de
herramientas que permitan realizar una zonificacion para tomar decisiones adecuadas en
estas nuevas tendencias de gestion agrondmica se convierte en fundamental para el
futuro del sector. A la hora de plantear metodologias o analizar tecnologias utiles en
este sentido debemos conocer los dos pilares fundamentales para el cultivo, estos son el
suelo y la planta. En esta tesis se han estudiado ambos parametros:

El primer factor a estudiar es el suelo que constituye un factor fundamental
desde el punto de vista agrondmico, la diversidad y complejidad del mismo constituye
un factor fundamental a tener en cuenta a la hora de realizar un manejo adecuado de
cualquier tipo de cultivo agrondmico o forestal.

El desarrollo de las ciencias edaficas ha simplificado en gran medida el
conocimiento del mismo, sin embargo, la variabilidad espacial en la distribucion del

suelo complica en gran medida la representatividad de las analiticas cuando nos
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enfrentamos a la caracterizacion de grandes superficies de terreno. Esta variabilidad
suele estar provocada por diversos motivos, como son la orografia, la sectorizacion de
los terrenos originales, nivelaciones en los mismos, el origen geoldgico de los suelos o
incluso el uso antropologico de los mismos. Para disminuir este problema podemos
ayudarnos de las tecnologias auxiliadas por informacion GPS que nos permiten realizar
una caracterizacion del suelo de manera rédpida y masiva con respecto a diferentes
parametros. Uno de ellos es la conductividad eléctrica aparente (CEa) que ha
demostrado ser un indicador eficaz y rapido de la variabilidad y productividad del suelo
(Kitchen et al., 1999), ésta variable mide la capacidad para conducir la corriente
eléctrica a través del suelo, y aunque histéricamente ha sido utilizada para evaluar la
salinidad en el suelo (Rhoades et al., 1976), existen dispositivos comerciales que han
desarrollado medidas rapidas y utiles en la toma de decisiones de gestion agricola (Siri-
Prieto et al., 2006). Estudios realizados por diferentes autores han demostrado la
relacion existente entre la CEa y la textura del suelo (arena, limo y arcilla) (Williams y
Hoey., 1987). Las técnicas de andlisis espacial han permitido obtener mapas muy
precisos para todos los parametros fisicos- quimicos a partir de unas pocas muestras
tomadas en lugares estratégicos (Lopez-Granados et al., 2005), otros estudios la han
relacionado con la capacidad de intercambio catioénico (CIC) o la profundidad de la capa
arable (Sudduth et al., 2001). Debido a que el rendimiento del suelo es extremadamente
dependiente de las propiedades fisicoquimicas del suelo la CEa, puede relacionarse
también con la productividad del mismo (Siri-Prieto et al., 2006). Esto datos también
permiten ser utilizados para tomar decisiones a la hora de elegir cultivos o variedades
mas adaptadas a diferentes zonas de la parcela. La adecuacion de eleccion de zonas
representativas para la instalacion de sensores de suelo puede ser de gran utilidad para

obtener unos valores mas adaptados a la parcela completa. Existen otras medidas de
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suelo que se pueden realizar de manera masiva como es el caso del pH, obteniéndose
una informacion global y localizada de grandes superficies de terreno, permitiéndonos
dirigir de manera efectiva las enmiendas con el consecuente ahorro econdmico que esto
conlleva.

Otro pilar fundamental en la gestion agricola es la planta, conocer el estado
general del cultivo es fundamental a la hora de la gestion de grandes superficies
agricolas, detectar deficiencias sobre el cultivo de manera rdpida permite establecer
medidas correctoras mejorando los rendimientos y calidad del producto final. La
monitorizacion de las superficies agricolas mediante mapas de cultivo ofrece a los
productores una informacién directa para analizar la variabilidad en la superficie de
cultivo, ayudandoles a justificar sus actuaciones de cara a mejorar las practicas
productivas (Kitchen et al., 2003). Realizar mapas de estado nutricional de cultivo
permite ajustar, adaptar y dirigir la fertilizacion, los mapas de estado hidrico en planta
permiten adaptar el riego a las necesidades del cultivo en cada momento de sus ciclos,
los mapas de prediccion de cosecha permiten establecer el momento mas adecuado para
la recoleccién asi como la organizacion de la misma y el andlisis de las zonas mas
productivas. Esta tecnologia permite no so6lo caracterizar diferencias, si no también
cuantificar de forma objetiva las unidades homogéneas que integran la parcela, lo que
permite dirigir actuaciones a zonas especificas o adoptar la solucion global mas
adecuada para el conjunto de la parcela. Toda esta informacién ofrece una vision global
que nos permite localizar las diferentes superficies de actuacidon, con el consecuente
ahorro econdmico y ambiental que ello conlleva. A este respecto el desarrollo de los
indices de vegetacion basados en la reflectancia ha permitido un avance en los métodos
globales de medida de estado de la planta. La reflectancia se basa en el reflejo de la luz

por parte de la plata con una intensidad y en una longitud de onda especifica. Estudios
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sugieren que la reflectancia en el cultivo puede ser utilizada para monitorizar los
condicionantes de la planta a varias escalas (Plant, 2001) asi como sus variables
biofisicas (Thenkabail et al., 2000; Goel et al., 2003). Existen mucho indices de
vegetacion que son utilizados para la monitorizacion de las condiciones de cultivo, el
indice de vegetacion de diferencia normalizado (NDVI) es un buen indicador de la
vegetacion, la biomasa y el estado sanitario del cultivo (Rouse et al., 1973; Tucker,
1979), pero también se suelen usar con frecuencia otro tipo de indices como el indice de
vegetacion de diferencia normalizado en verde (NDVI-G, Ma et al., 1996), el indice de
vegetacion ajustado a suelo (SAVI, Huete, 1988) o el indice de vegetacion ajustado a
suelo optimizado (OSAVI, Rondeaux et al., 1996). La ventaja del uso de estos indices
de reflectancia sobre otros métodos de evaluacion de planta se basa en la obtencion de
informacion de manera directa, masiva y georreferencia mediante el uso de tecnologia
GPS, permitiendo obtener una informacioén global y localizada de la superficie del
cultivo. El gran atractivo de la medida de la reflectancia reside en que al realizarse sobre
cubiertas vegetales se convierte en una medida no destructiva, y que gracias a la
configuracion de los equipamientos de medicion actuales, se pueden medir de manera
rapida, integrando los resultados obtenidos en mapas de cultivo. Numerosos trabajos
ponen de manifiesto el interés de estos indices para caracterizar aspectos de cultivo tan
importante como su estado fenolodgico, fisioloégico, nutricional o hidrico; Sin embargo,
la aplicabilidad de esta informacion exige una puesta a punto las condiciones en las que
se enmarcan los propios cultivos. Sin embargo las posibilidades de esta tecnologia no
han sido explotadas en todo su potencial, establecer los indices més adecuados para la
deteccion de deficiencias en los distintos cultivos, o el desarrollo de nuevos indices
dirigidos a darnos informacion sobre nuevos parametros que resulten interesantes

agrondmicamente se encuentran actualmente en proceso de investigacion.
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Dichas investigaciones siguen generando estudios cientificos que aportan
informacion util sobre los cultivos, dicha informaciéon permite adquirir un conocimiento
preciso acerca del comportamiento de las plantas bajo determinadas condiciones, y de
sus respuestas fisiologicas frente a determinados factores. La integracion de todos estos
conocimientos es la base de lo que se conoce como modelos de simulacion de cultivos.
La agricultura moderna estd haciendo uso de modelos de cultivos / suelo / simulacion
agua basicamente como herramientas de investigacion para analizar y organizar los
conocimientos adquiridos en el campo de la experimentacién. Sin embargo, hay una
necesidad urgente de hacer uso de los modelos también como herramientas para la toma
de decisiones y de transferencia de tecnologia.

Modelos robustos y calibrados localmente, basados en datos y algoritmos fisicos
y fisiologicos, pueden ser utilizados para investigar un gran niimero de estrategias de
gestion del agua en una explotacion comercial, con la implementacion de escenarios
climaticos alternativos, ciclos de cultivo y nuevas zonas de cultivo. A pesar de algunas
limitaciones y la incertidumbre, el enfoque del modelado de cultivos, permite la
cuantificaciéon de la variabilidad espacial y temporal que no seria posible utilizando
metodologias tradicionales o que precisarian de muchos afios de ensayo. Por lo tanto, el
modelado representa una manera eficaz de asimilar diferentes componentes de un
sistema de cultivo, andlisis de datos, e integrar los datos obtenidos en diferentes
experimentos cientificos. Los modelos no son simples mecanismos para analizar la
informacion sino instrumentos capaces de integrar las diferentes fuentes de
investigacion del manejo de cultivos, para ayudar al técnico a proyectar los futuros
cultivos, gestionar las mejores zonas para cada tipo de cultivo, estudiar los a efectos de

reduccion de agua en determinados momentos del ciclo de cultivo y su efecto sobre la
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calidad y producciéon esperada, siendo una gran herramienta en la gestion y
planificacion de las parcela comerciales.

Los cultivos en el campo son afectados por las condiciones meteorologicas, por
los factores fisicoquimicos del suelo, por los insectos, por las enfermedades, por las
malas hierbas, y por las interacciones entre estos factores. En las décadas pasadas,
mucho esfuerzo de investigacion ha sido dedicado al desarrollo de modelos de
produccion de cultivos. Otro grupo de modelos de produccion de cultivos ha sido
disefiado para optimizar el uso y manejo del agua y del nitrogeno sobre un largo periodo
con datos historicos. Los modelos usados para este propdsito se basan en el hecho de
que el agua y el nitrogeno estaran disponibles a la escala que recomienden. Estos
esfuerzos de optimizacion pueden sugerir la mejor estrategia a largo plazo, para definir
las aplicaciones de agua y nitrégeno (a menudo dependiente de etapa de crecimiento).
Los modelos genéricos de cultivos pueden ser aplicados a varias especies mediante la
utilizacion de parametros especificos para cada cultivo. Algunos de estos modelos son
DSSAT, DAISY, SOILN, EPIC, WOFOST, CROPSYST, APSIM, AQUACROP vy
STICS, otros modelos son especificos de cada cultivo como CERES (Maiz y Trigo). En
el caso especifico del cultivo del tomate, diferentes modelos de simulacioén de cultivos
se han utilizado en condiciones de campo. Entre ello podemos destacar la Calculadora
de Impacto Productividad (EPIC), (Cavero et al., 1998; 1999;. Rinaldi et al, 2001),
TOMGRO (Jones et al., 1991; Bertin y Gary, 1993) y CROPGRO (Messina et al,. 2001;
Koo., 2002; Ramirez et al., 2004; Rinaldi et al, 2007) son los modelos mas citados en la
literatura.

Uno de los mas novedosos modelos es el modelo AquaCrop es un modelo de la
productividad del agua para cultivos desarrollado por la FAO para proporcionar una

herramienta de modelado y fécil de usar para una amplia gama de usuarios, desde los
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agricultores y asesores agricolas a los gestores del agua y los responsables politicos
(Steduto et al., 2009). La estructura del modelo se ha disenado con el fin de que pueda
aplicarse a través de localizaciones diversas, el clima y las estaciones. Para alcanzar esa
meta AquaCrop diferencia parametros (para casos especificos) conservadores (fijo) y no
conservadoras. Pardmetros conservadores no cambian con la ubicacion geografica, la
variedad de cultivos, las practicas de gestion o el tiempo, y estdn destinados a ser
determinado con los datos de las condiciones limitantes no favorables y, pero siguen
siendo aplicables a las condiciones de estrés a través de la modulacion de sus funciones
de respuesta al estrés. De hecho, se espera que esta estructura simple y un numero
reducido de parametros podrian facilitar la calibracion del modelo y la utilizacidon para
diferentes cultivos y bajo diferentes estrategias de gestion (Steduto et al, 2009; Raes et
al, 2009).

El modelo se centra en la disponibilidad de agua de la planta como el factor mas
limitante del crecimiento de los cultivos, especialmente en las regiones daridas y
semiaridas, donde la escasez de agua varia en intensidad, duracion y momento de
ocurrencia (Hsiao, 1973; Bradford y Hsiao, 1982).

El modelo AquaCrop ha sido evaluado para diferentes cultivos, como el maiz
(Hsiao et al, 2009;. Heng et al, 2009;. Stricevic et al, 2011;. Abedinpour et al, 2012;
Shrestha et al, 2013), el algodon (Farahani et al, 2009;. Garcia-Vila et al, 2009; Hussein
et al, 2011), girasol (Todorovic et al, 2009;. Stricevic et al, 2011), quinoa (Geerts et al.
2009), cebada (Araya et al, 2010; Abrha et al, 2012), la remolacha azucarera (Stricevic
et al, 2011), trigo (Andarzian et al, 2011; Manasah et al, 2012; Soddu et al, 2013;
Shrestha et al, 2013; Xiangxiang et al, 2013) (Zeleke et al, 2011), tomate (Rinaldi et al.,
2011; Katerji et al 2013), el repollo (Wellens et al., 2013), en diferentes lugares de todo

el mundo. En muchos de estos estudios, existe la evidencia de que el modelo simula
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adecuadamente la productividad del agua para cultivos bajo condiciones riego segin
necesidades hidricas, mientras que tienden a desestimar que en condiciones de estrés
hidrico: estas dificultades comprometen el uso del modelo para escenarios de riego
deficitario o situaciones de déficit hidricos en momentos puntuales (Evett y Tolk, 2009).
La utilidad de un modelo para orientar de forma eficaz las practicas de cultivo requiere
una necesaria fase previa de validacion y calibracion en caso necesario, para poder

hacer uso del mismo con garantias.

OBJETIVOS

El objetivo general de esta tesis es la aplicacion de nuevas metodologias para
una gestion integral del cultivo de tomate de industria basadas en: modelos
matematicos de simulacién , caracterizacion a gran escala de parcelas y desarrollo de
cultivo; que permitan reducir los problemas generados en la heterogeneidad de las
grandes parcelas agricolas y establecer una metodologia para la gestion del riego en
grandes superficies de cultivo que permitan realizar recomendaciones al técnico para un
uso mas eficiente del riego en el cultivo del tomate de industria.

Para alcanzar este objetivo fundamental es preciso lograr una serie de objetivos

secundarios, todos ellos complementarios entre si, que son::

. Desarrollo y validacion de nuevas metodologias de muestreo masivo
para el estudio de la heterogeneidad del suelo, con el objetivo de desarrollar
metodologias de zonificacion que permitan el manejo de riego especifico de cada zona y
adaptacion del cultivo a las mismas. El cumplimiento de este objetivo se ha abordado en

el siguiente articulo: “A methodology based on apparent electrical conductivity and
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guided soil samples to improve irrigation zoning”. Precision agriculture 2015. DOI
10.1007/s11119-015-9388-7.

. Desarrollo y validacion de nuevas metodologias de muestreo masivo para
el estudio de la heterogeneidad del cultivo, que permitan desarrollar mapas de
prediccion de rendimiento para la identificacion de las distintas zonas de produccion en
una parcela comercial. El cumplimiento de este objetivo se ha abordado en el siguiente
articulo: “Using apparent electric conductivity and ndvi measurements for yield
estimation of processing tomato crop”. 2014. Transactions of the ASABE Vol. 57(3):
827-835. DOI 10.13031/trans.57.10456. y “Using NDVI and guided sampling to
develop yield prediction maps of processing tomato crop”. 2015. Spanish Journal of
Agricultural Research, Volume 13, Issue 1. http://dx.doi.org/10.5424/sjar/2015131-
6532

. Calibrar y validacion del modelo de cultivos Aquacrop para las
condiciones locales del cultivo de tomate en las vegas del Guadiana y ajuste de los
parametros en situaciones de estrés hidrico. El cumplimiento de este objetivo se ha
abordado en el siguiente articulo: “Simulating processing tomato yield response with
the FAO Aquacrop model and a geostatistical analyse based on electric conductivity

sensor”’. Sumitt. Computers and Electronics in Agriculture.
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UsING APPARENT ELECTRIC CONDUCTIVITY AND NDVI
MEASUREMENTS FOR YIELD ESTIMATION
OF PROCESSING ToMATO CROP

B Fortes, M H. Prieto, J. M Terrén, J. Blanco, 5. Millan, C. Campillo

ABSTRACT. The uze of predictive yield maps iz an imporfant fool for the delineation of within-field management zomez_ In
particular, appropriate placement in the fisld of organically grown produce, as is the case for the processing temalo crop
in thiz study, will ensure higher crop yield. Accurate sstimation af yisld can be used to plan the best time for harvesting
and transport for induztrial processing. Apparent slectrical conductivity (EC,) and vegetation indices bazed on crop re-
Hectance are two toel:s that can be used to help artain theze olyjectives. Developments in the use of semsors have emablad
massive geargferenced data sampling of these parameters. The aim of this article iz to assess the EC; and normalized dif-
ference vegetation index (NDFI) using geostatiztical techniques to optimize their uze. Principal component analysis was
used to evaluare the predictive yield maps developed. EC, was a reazenably good indicator of crop production potential
rhroughour the plot as a whole, bur NDVI was the best indicator, offering a better rezolution than EC, and a reasonables

estimation gf yield dizstribution over the extensive fested crop surface area.
Keywords. riging, Predictive map, Principal component analysis, Yield momnitoring.

1eld monitonng and mapping have given pro-

ducers a direct method for measunng spatial

vanability m ecrop vield Yield maps have

shown high-vielding areaz to be as much as
150%% tugher than low-yielding areas (Kitchen et al., 1999,
However, yield maps are confounded by the many potential
cauzes of yield vanability (Price et al, 1997), as well as by
potential error sowrces from combined yield sensors (Lamb
et al., 19953). When other georeferenced mformanon is
available, producers naturally want te access it and know
how the vanous layers of data can be analyzed to help ex-
plain vield vanability and gain m=ight inio improving pro-
duction practices {Eitchen et al., 2003). Alonz with vield
mappmg, producers have expressed mncreased interest m
characten=ing so1l and topographic vanability. The devel-
opment of spectral reflectance indices has been extremsly
uzeful i this comtext, with studies suggestng that crop
spectral reflectance can be nsed to assess plant nutnient and
pigment status (Goel et al, 2003a; Osbome et al, 2002} as
well as monstor plant condibions at various scales (Plant,
2001y and crop biophysical vanables (Thenkabail et al.,
2000; Goel et al., 2003b).
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Humerous mnterrelated so1l and plant parameters can be
used to obtain y1eld maps. For soil charactenstics, apparent
electrical conductvity (EC,) has recently been shown to be
an effective and rapid indicator of soid vanability and soul
productivity (Eitchen et al, 1999). Soil EC, measures the
capacity to conduct electnical cwrent through the sol pro-
file. Historically, soil EC, hasz been wsed to evaluate salinyty
(Fhoades et al, 1976), but recently commercial devices
have been developed that rapidly measwre soil EC, for use
in management decisions (Sin-Preto et al, 20068). Studies
have shown that sml EC, reflects texture vanabiliy, as
sand, silt, and elay content have a relatvely low, medium,
and high EC,, respectively (Wilhiams and Hoey, 1987). One
of the most important factors mfluencing EC, 1= the total
volumetie water content of the seal (Bhoades et al | 1989,
and this factor 1= strongly influenced by the soil texture and
bulk density. Crther factors that mfluence soil EC, mclude
salmity, cation exchange capacity (CEC), and topseotl depth
{(Sudduth et al., 2001}. EC, has the potential to indirectly
estimate the vanability of these properties, provided that
the contributions of other soul properties affecting EC, are
known or can be estimated Crop yield 15 extremely de-
pendent on soil chernieal and physical properties, and the
effectiveness of EC, mapping for predicting productivity 1s
dependent on the degree to which these soil propertes af-
fect EC, (Sin-Prieto et al., 2006).

Precision agriculiture 15 an informaton-mtensive agneul-
tural production practice that depends on extensive soil
plant, and wvield data on a site-specific bazis (Eoller and
Upadhyaya, 2005). One potential way of acquinng useful
s01l, plant, and perhaps yield data for use 1n precision agm-
culture 15 through remote sensing (F.5). A green plant can-
opy has speciral characteristics distingmshing 1t from other
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materials, such as soil or dry plants (Koller and Upadhvaya.
2005). Numerous studies have mvestizated the comelation
between vegetation charactenistics and the remotely senzed
reflectance of a canopy (Huete, 1988; Tucker, 1979). There
are different types of vegetation mdices based on crop re-
flectance, the most commonly used of which 1= the nommal-
ized difference vegetation imdex (WNDVI), which 1= grven
by:

NDVI= PHIE ~PRed (1)
PHIR +PRed

where Py 15 reflectance in the near-infrared (WIR) band
(700 to 2500 nm), and pg. 15 reflectance n the red band
{600 to 700 nm).

WDV values are reported to have good correlation with
several vegetafion parameters. It has been shown that
NDWVT 15 a peardy hinear mdicator of photosynthetic capacity
(Sellers, 1985). while other studies have revealed that 1t 15 2
good mmdicator of vegetation, crop biomass, and crop health
in agricultural applicatons (Rouse et al, 1973; Tucker,
1979). Gianquinto et al. (2011) studied vield prediction for
tomato using different vegetation mdices based on crop
reflectance. The indices that used green and NIE wave-
lengths were the best indicators, with high precizion m even
small vanations in vield Koller and Upadhyava (2003)
used 3 vegetation mdex based on plant greemness, which
appeared to be rehable for the evaluation of tomate yvield

While these soil and plant parameters are important sap-
arately, this study aims to find any possible relationship
between them and apply that relationship to the develop-
ment of predictive vield maps for a proceszing tomato crop.
Predictrve vield maps are of great importance to ensure that
the crop 1z harvested at the nght ime and that production
vields are mammized for mdustial processing. Meazure-
ments from the field have tradiionally been gathered as
pomt datz, as samples from mdividual plants, but newly
developed devices allow massive dzta collechion to zive
more weight to predictive yield maps. Spafial amaly=is
methods can be used to mterpolate measwements to create
a contipuous surface map or to descnibe its spafial pattern.
Vanograms {also referred to as semivanograms) are a pow-
erful tool m geostatistics that charactenze the spahal de-
pendence of data and mive the range of spanal comelation
withn which the values are comelated with ezch other and
beyond which thev become mdependent (Eoller and
Upadhyaya, 2005). The parameaters of the best fitted model
for 2 vanogram can be used for knming (Matheron, 1963;
Stemn and Corsten, 1991). For data apaly=is, knging has
been recommended as the best method to imterpolate point
data simee 1t mumitmzes error variance using a werighted
lmear combination of the data (Panagopoulos et al., 2006).

MNumercus studies have demonstrated the benefits of ge-
ostatistical apalysis techmiques for agmcnliural manage-
ment. For example, knging has been used to map the densi-
ty of weeds in winter wheat (Heizel et al., 1996), and geo-
stafishical methods have been used to interpolate data and
produce maps of a field representing the spaftial vanmabality
of all the =01l and wheat properties (Stewart et al., 2002).
Techmgues such as regression-kngmg, which mvelves var-
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wus combinatons of hnear regressions and kngmg, are
uzeful tools to improve geostatistical analysis in prediction
maps. The simplest model 15 based on a normal regression
followed by ordinary kngmg with the regreszion residuals
(Odeh et al., 1995). hence the importance of analyzing the
robustness of the predictive maps using tools such as pnn-
cipal component analysis (PCA), which 15 a multvanate
techoigque commonly used for the analysis of several vana-
bles simultaneously (Balzanm et al | 2011). With the aid of
these maps and empincal modehng technmiques, the rela-
tionships between wheat and soil factors were determined
with an investigatton of the spatial vanabihty of erop bio-
mass and determination of whether site-specific manage-
ment could be appled to a small field by using a vanogram
(Yamagishi et al, 2003). The objectrves of the present
study were to desenbe the poszibility of merging different
soll and plant parameters to produce rehable predictive
vield maps for a processing tomato crop.

MATERIALS AND METHODS
STUDY AREA

The field research was conducted at the “Los Envicia-
dos” farm (38.953482° N, -7.002723° W} near Badajoz
southwestern Spain. The area of the study site was 16 ha.
Figure 1 shows a topographic map of the study field The
climate of this area 15 charactenzed by vanabion in both
temperature and precipitaton typieal of a Mediterranean
climate, with mean annual precipitation of less than
500 mom. One of the most important charactenstics of the
precipitation 1= its interanmaal vanmabelity., There 15 a dry
season, from Tune to September, and a wet season, from
October to May (80% of the precimitation falls befween
these months). Summers are hot, with temperatures on oc-

caston haizher than 40°C.

CROP CHARACTERISTICS

The field was transplanted with processing tomato (So-
lamum lycopersicum, vanety H9661) i Apnl 2012 wath a
planting density of 33.333 plants ha™' in sinzle vows. with
30 cm between plants and 1.5 m betwreen beds. Dnip mmiga-
tion tape was used for the mmgation system with 1 L b
drnppers spaced every 30 cm The tested area only had an
umgation sector, where the same amount of water was ap-
phed in each imigation event. Crop manzgement involved
organic prachices with no morgame nitvogen fartilizer mput.
Crop evapotranspiration (ET.) was caleulated on a daily
basis using: ET, = ET, x K, where ET_ 15 the reference
crop evapoiranspuaiion rate, which was calculated follow-
ing the Penman-Monteith method. modified and adapted to
local conditions (Baselga, 1996). Climate data were ob-
tained from a weather station located near the expermmental
area. K, 15 the crop coefficient for processing tomato (Allen
et al., 1998) A flowmeter was mstalled at different inlet
points to measwre the real volume of water applied.

SAMPLING

EC,; measurements were made in March 2012, before
crop transplanting, with a Vens 3100 sodl electrical condue-

TRANSACTIONS OF THE ASABE

33




Figure 1. Aerial view of the stody site showing soil sampling points (stars), transects of soil EC, and NDVI measurements (individual points that
form lines), and vield sampline points (flags). Topographic contonr lines {in meters above soil level) are also shewn.

tivity sensor (Weris Techrologies, Inc., Salma, Kans ). As
the Vens cart was pulled through the field wath a tractor,
one pair of coulter-electrodes (rotatmg dizcs) njected a
current mio the sedl while the other coulter-electodes
measured the voltaze drop using 2 Wenner array. The Vens
3100 generated two sets of data: topsoil data compnsing
shallow soal EC, readings from 0 to 30 cm (EC,) and deep
soul EC, readings frem 0 to 90 cm (EC,). The EC, readings
were used for thiz smdy smmee development of the pro-
cessing tomato crop root does not extend below 30 cm
depth, and the most important activity takes place mn the
first 30 em. An ARV Atec monitor (AR V Atec, Milan, Ttaly)
with a Topcon GB300 GPS (Topcon Pomtioming Svstems,
Livermore, Cal) and Javad GDD base (Javad Wavigation
Systems, Sam Jose, Cal) with sub-meter accuracy were
used to georeference the EC, measurements. Thus, lanmde,
longiude, and shallow and deep EC, data at 1 s mtervals
were recorded on the Vens data logger m ASCIT text for-
mat using Access 207 (Microsoft Corp., Kedmond,
Wash.). Later, this raw ASCI file was transferred fo other
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software for further analysis. EC, ts were made
along different paralle! fransects, approxmmately 12 m apart,
and the final databaze contamed 2,536 values (mdividual
points that form lines in fig 1).

HNDVI measwrements were made i August 2012, ten
days before crop harvest, with a Crop Cirele ACS5-470 re-
flectance sensor (Holland Scientific. Inc, Lincoln, MNeb.)
held by a tractor at 2 height of 80 cm over the canopy and
covering an area of 63 cm diameter. The Crop Cirele ACS-
470 generated reflectance data m the 670 om (red) and
760 nm (NIE)} wavebands. which were combined to obtain
the NDVT using equation 1. An ARV Ater momtor with a
Topeon GB300 GPS apd Javad GDD baze with sub-meter
accuracy were used to georeference the WDV measure-
ments. NDVI data at 10 s intervals were recorded on the
AC5-470 data logger m ASCII text format using Microsoft
Access 2007, taking a sample each 33 cm at 10 km b’ trac-
tor speed. Later, this raw ASCII file was transferred to oth-
er software for further analysis. NDVI measuwrements were
made along different parallel ransects, approximately 12 m
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Table 1. Values of different soil parameters in test plot.

EC,

Bamze Saed Sift Clay oM
Loction (mSm™} &) (%) (%) SeilTemure (%) pH
Sowh O3 55 10 313 Sandycaylem 08 733
Middle 15w30 45 13 37 Clay 13 717
Mok 12@m16 33 18 49 Clayloam 18 7.03

apart, and the final databaze contained 17,881 values that
form hnes in figure 1. These lines comeide with the lines of
EC: measurement, as the tractor covered exactly the same
route for the two types of measurement.

So1l samples were taken 1n three zones (figz. 1), covenng
the three homogeneous zones described by the EC, analy-
sts. So1l samples were miroduced mnte plashe bags, an-
dried, and analyzed for particle size distribution by gravita-
tional sedmmentation using the Robinson pipette method
(SC5, 1972), after passmg the fine components through a
2 mm sieve. These fine components were also analyzed for
pH m 1:2.5 (soul-water) suspension. Chrganic matter (OW)
was determuned by dichromate ocxidanen (Walkley and
Black, 1934}, and sol texture was determmined by mecham-
cal amaly=is with the bydrometer method (Bouyoucos.
1936). This information 15 shown i table 1.

Yield sampling was performed at the same time as the
crop was harvested. This was done wsing a smngle-lme me-
chanical harvester. Each ime a zampling area was reached,
the harvested tomato was poured into a Pegasus weighing
bopper (Dmamica Generale, Pogpio Kuseo, Italy) to meas-
ure the weight of the crop in the sampling area. The har-
vested zones were measured and georeferenced, with the
meszsurements made zlong different paralle] tramsects, ap-
proximately 30 m long (flags m fiz. 1). Calenlation of pro-
duction yield was made using the following equation:

Production (T ha™') =T fruit harvested
-:-[Mea_mrj.ug length of harvested sampling area
# Crop width of harvested sampling area |>< 10,000

(2)

Table 2 zrves a summary of all the data and statistics for
the measured vanables over the entire plot surface and m
three zones where the maps show differences with respect
to the parameters studied.

STATISTICAL AND GEOSTATISTICAL ANALYSIS

Az stated above, the main objective of the present work
was to study the possibility of using different soil and plant
parameters to develop predictive vield maps for a pro-

cessing tomato crop. With this in mind, we first studied the
areas from which the vield samples were tzken to deter-
mune the relationship betereen wield and plant (NDVT) and
between yield and soul (EC,). A companson was camed out
between the yield obfained in a3 given transect and the aver-
age EC, and NDVI values measured in that transect. Pear-
son’s correlation matnx and 2 coefficient of determination
between yield and EC, and NDVI were obtained using

SPSS for Wmdows (version 13, 5P5S, Chicago, I11). When

the extent of the relationzhip between the parameters was

known, a predictive map of yield, NDVI, and EC, for the
entire plot was developed using a sumple knging techmague;
seg Izaaks and Snvastava (1989) and Goovaerts (1997) for

2 detailed presentation of the knging alzonthms=. The pre-

dictive maps were developed by the geostatistical interpola-

tion techmques desenbed by Moral et al. (2010) in three
phaszes:

1. An exploratory amalysis of the data was performed with-
ouf considering their peographical distnbution. Stabsties
were applied to check data consistency, remove any ex-
ising ocuthers, and identify the statistical distmbution of
the data.

. A struetural analysis of the data was developed m whach
a spatial distribution was made using vanograms of each
vaniable (EC,, NDVL and yweld). The equation of the
mathematical model, nugget effact (micro-scale vana-
fion or measurement emor), sill (vanance of the random
field), and range (distance at which data are no longer
auto-correlated) were stadied to develop these vano-
grams.

3. Predichon maps were created using a data search by

neighborhood copred from the vanograms.

Whale this kind of map 15 extremely useful because it
grves us mformation sbout the entire plot, the problem is to
determine the accuwracy of such maps. PCA can be an effec-
tive tool for this purpose. It 1= used to transform the data
attmbutes mn a multband raster from the mput multvanate
attmbute space to a new multivanate attmbute space whose
axes are rotated with respect to the ongmal space. The axes
in the new space are uncorrelated. The main reasons for
transferming the data in PCA are to compress the data by
elimmating redundancy, to emphasize the vanancs within
the bands of a raster, and to make the data more interpreta-
ble. The result of a PCA 1= a multiband raster with the same
oumber of bands as the onzinal raster (one band per axis in
the new multivanate space). The first prineipal component
has the greatest vanance, the second principal component

[ B%]

Table 1. Descriptive statistics of the sample data in the sindy areas (7= oumber of zamples and 5D = standard deviation)

Parameter n Minipmm Maximom Mean 5D Skewnass Furtosis
Total plot Yield {t ha™) 25 43,313 123.314 T9.115 10,388 0.079 i3
EC, (mSm™) 1336 19 177 298 4109 0.15 1.9
KWDVI 17,881 0.48 0.72 0.61 007 .55 3.08
Tield (tha™) South area of plot F] 42,133 B5.030 62.531 17.117 0.168 101
Middle area of plot 10 79.021 123 314 p3129 13.231 152 i3
Warth area of plot 7 48011 104.033 B3.000 16294 -0.58 375
EC.{mSm™} South ar=a of plot 1031 19 16.7 1.55 EET 028 118
Middle area of plot [0l Xl 173 12.023 349 0.8 134
Narth area of plat 511 27 17.7 10.01 .75 -1.47 117
NDVT Somch arsa of plot 6,651 .48 0.53 0.33 0.071 b6 163
Middle area of plot 5.617 05 0.7 0.52 005 018 235
Warth area of plot 5,603 048 0.72 0.58 0.08 -0.38 1.56
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has the second-greatest vanance not descnbed by the first,
and so forth. The furst three or four rasters of the resulting
multiband raster often deseribe more than #3% of the van-
ance, and the remainmg mdividual raster bands can be
dropped. Smce the new mmloband raster contams fewer
bands, and more than 95% of the vanance of the onginal
multiband raster 15 mtact, the computations will be faster
and the zecuracy will be maintained. PCA requires the m-
put bands to be 1dennfisd, the number of prineipal compo-
nents mfo which to transform the datz, the name of the sta-
tistics output file, and the name of the output raster. The
output raster will contain the same number of bands a= the
specified number of components, and each band will depict
a component. The shifing and rotating of the axes and
transformation of the data for this methodology are de-
senbed by Campbell (1987), Jensen (1986), Lillesand and
Eiefer (1987), and Richards (1986). The geostatistical
analyses were conducted using the Geostatistical and Spa-
tial Analyst extensions of AreGIS (vermion 10.0, ESEI
Inc., Redlands, Cal). All maps were produced with the
AreMap module of AreGIS.

RESULTS AND DISCUSSION

Table 2 shows the summary statistics of the measured
vanables for the entire plot and for three homogenous areas
withmn the plot. Due to differences in the mumbers of meas-
ured samples for the different parameters, a general analy-
sis of the entire plot was difficult to undertake. The maps
developed using the different parameters showed three dif-
ferentiable areas in the plot (north, middle, and sowth).
These three areas were separated. and a mew statisheal
analv=is was carmed out. The hghest muniwam, masmum,
and mean vield values were found for the middle area, per-
baps mdicating higher vanability in more productive areas.
The standard deviatons showed no apparent differences.
The higheszt EC, and NDVI valie: were also obtzired m
the middle area, and the skewness and kurtosis were also
higher, confirmuing greater data vanzbihity. The lowest val-
ues of vield, EC, and NDVI were obtzined m the south
area of the plot. Table 3 and fizure 2 show the respective
relahonships between EC, and yield and between WNDVI
and vield for the selected sample areas. It can be seen that
there is z better comelation between HDVI and vield (R' =
03] and K = 083, p = 0.01) than between EC, and yield
(R*=0.72 and R =0.74. p = 0.01).

NDVI measures real plant status, while EC, 15 related to
some soil properfies that may help to explain potential plant
status but that also depend om other parameters that are
difficult to estmate. This might explain the better results
obtained with the plant-based index than with the soil-
bazed mdex. ND'VT 1z an mdicator that can be related wath
different physiological processes essenfial to achieve a

Table 3. Pearson’s correlation mairiz between all measured variables.
Al valoes are sigmificant at p < 0.0L

Tiald NDWVI EC.
Tield 1 Z E
NDVI 083 1 2
EC. 0.74 0.1 1
5703} 827-833
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Figure 1. Relationships (a) between vield and apparent electrical con-
ductivity (EC.) and (b) between vield and NDVT for the selected sam-
ple areas. B is the coefficient of determination between factors.

good vield For example mitrogen concentration m green
vegetation and chlorophyll content are stnctly related
{(Vomllot et al., 1998), as theyv are crucial for one of the
basic plant physiological processes and therefore promote 2
greater yield of the plant Gianquinto et al (2011} con-
firmed good correlations between many of the caleulated
reflectance mndices (including WD'WT), chlorephyll concen-
tration, mitrogen status, and yield in a2 tomate crop. They
found high coefficients of determmation between
NWIE/R560 and predicted vield, and also obtammed good re-
sults using NDVI and NDVI-G (NIR-560/MIE+560), which
agreed with the results of Elwadie et al. (2005), who ana-
Ivzed the zbility to predict vield using WIRU/R360, NDVL,
and NDVI-G m com. Smmular results were obtained by Ma
et al. (2001}, with hagh performance of the NDVI index for
vield prediction i com. High values of NDVI suggested
higher wield and vice versa. This relationship between
vield and NDVI was studied, with maximum NDVI vahies
of 0.70 comesponding to maximum crop yield values. The
samples were taken at the end of the crop cycle, when
HNDVT values fzll as a result of crop senescence, wath less
canopy cover and an increase in fruit producmg a decrease
in reflectance. However, the influence of red tomatoes
around the green plants was low, as the most productive
plants also had the zreatest canopy cover and highest chlo-
rophyll concentration, which 15 reflected m higher NDWI
values.

EC, also seems to be a good mdicator of potential crop
vield, especially when used with organic practices with no
inorganic nitrogen fertilizer mput, where the soil plavs an
essenfial role, as m our case. In this work, the areas with
the highest EC, values were alzo the most productive. Fig-
ure 2a shows how yield decreased with EC,. Sou zamples
(table | and fiz. 1) were taken from the three homogeneous
areas dezcnibed by the EC, map (fiz. 3). Areas with higher
EC, values have higher orgamic matter (OM) values and
correspond to clay soil, whereas soils with lower EC, val-
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Figure 3. Kriged map of soil apparent electrical conduotvity.

ues have lower OM values and are more sandy m nature.
Moral et al {2010} found no sigmficant comelatons be-
tween EC, and OM, a close positive comelation between
EC, and clav content (which was expected since EC; 15
manly controlled by 1ons near so1l constituents with a hegh
surface area), and a close correlation between EC, and sand
content due to autocommelation with clay content. Smmlar
relationships between EC, and these soil texture fractions
kave been reported elsewhere (Moran et al., 2009; Vitha-
ranz et al 2008). In our case, clay sod can enhance water
avallability for the plants, mammtaiming better plant water
status and mmproving the final yield. Eatchen et al. (2003)
wnvestigated whether productivity zones could be delineatad
using EC, and elevation measurements. A comparnison of
ground truth and hypothetical preductinty zones using an
overall accuracy statistic and the kappa coefficient revealed
a 60% to 70% agreement when combined EC, and sleva-
tion data were used. Productivity zones were also addressed
by Jaymes et al. (2005), who based the delineation of
productivity zones on a series of profiling steps in conjune-
nion with cluster apalysis to determune the relationship be-
tween vield clusters and easily meazured field properties of
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Fizure 4. Kriged map of NDVL

elevation, simple terrain attribute data, and EC, Eaffka et
al (2005} demonstrated the uhlity of EC, measurements to
establish the relation=hip between soul properties and sugar
beet crop vield In terms of the plot as a whole, geostatizhi-
cal amalysis 1= the key to obtaiming the nght information
from prediction maps.

Figures 3, 4, and 5 show the EC,, NDVT, and yield pre-
diction maps, respectively. The maps show three different
areas: a southern area where low vield values coineide with
low WDWVI and EC, values, a central area with higher y1eld
and higher EC, and WDVI valuas, and finally an arez in the
north of the plot with mtermediate values of the three pa-
rameters. The level of resolution differs between the three
measured parameters, especially in the case of vield, where
the pumber of data was lower than for the other parameters.
The chotce of the particular vanogram model depends on
the expected spatial vanability. Vanabies hke soil or plants
can be distnbuted wnevenly at reduced distances, and expo-
nentiz] or spherical models are the most smtable. Spheneal
mathematical models were used to develop the vanograms
im thes work, as the mean and median values were very sum-
1lar, which 1z indicative of data from 2 normal distnbution.
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Figure 5. Kriged map of yield.

The wvanograms showed a considerable nugget effect
(fig. 6); thas 15 a normal situatton because the vamabulity of
s01l and plant properties can occur at a scale smaller than
the minimmm lag distance. Table 4 shows the theoretical
sphenical vanograms fitted to the expenmental vanograms
for the residuzls. ND'WI shows the highest nuggeat-zill ratia
of 70.07%, which suggests a moderate spatal autocorrela-
tion, while EC, and yield show lower mmgget-sill mbos of
13.67% and 2.05% respectively, indicating that spatial de-
pendence was generally strong. According to Cambardella
et al (1994}, the nugget-s1ll ratio can be used to denote the
spatial dependence of attributes: a ratie of <23% indicates
strong spatial dependence, a ratio between 25% and 73%
indicates moderate spatial dependence. and a2 ratio of =73%
indicates weak spatial dependence. Table 5 chows that
NDVI was a better index for yield predichon (K = 0.72)
than EC, (B = 0.63). Similar results were obtained when
applying geostatishical analy=zis ke knging to the entire
plot. Although the level of resolution was lower than when
analyzing the selected areas mdnidually, the same tenden-
oy was observed m the three prediction maps, with the
NDVI predichon map bemg most closaly related to yisld
and the EC, prediction map revealing a good but slightly
lower relationship with vield.
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Figure 6. Experimental variogram: (peinis), theorefical spherical
variograms (limes), and average valnes (crosses) for (top to bottom)
vield, EC,, and NDVL

Table 4. Thecrefical spherical vamiogram: fitted to experimental
wariograms for the residmals.

Mugget-5il Fange
Variabls Huzest Sill Eario %3] (m)
EC, 0289 2.113 11.67 158
NDVI 12435 1758 70.07 113
Yiekd 0.013 [ui3d 2.05 101

Table 5. Correlation matriz between the ordinary knging prediction

maps for vield NDVL and EC,.
Prediction Pradiction Predicdon
Map Vicld Map NDVI Map EC
Predic ton map yield 1 - -
Prediction map WIVT 0.7 1 -
Brediction map EC, n.43 052 1
833
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CONCLUSIONS

HDVI 15 2 good estmator for prediciing the yield of a
processing tomato crop. This direct plant measurement 15
more accurate than other indwect measurements such as
EC., a soul parameter that also gave good results. The ad-
vantage of these measurements i1s the possibility of taking
mass georeferenced samples, which enables the develop-
ment of prediction maps for large plots uwsing geostanistical
analy=is with sufficient resolution to produce helpful n-
formation zbout crop management. It can therefore be con-
cluded that this methodology 1= very useful for assessmg
potential crop vield and 15 a good estmator when planning
crop harvesting.

This kind of study i1s very important for orgamcally
gFrown crops, as in the case for the processing tomato crop
in this study, where the prineipal factor for hugh vield de-
pends fundamentally en soil productivity, as oppeosed to
other parameters, due to restrictions on the use of fernhzers
and pesticides.
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and guided soil samples to improve irrigation zoning
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Abstract The spatial variability of soils is one of the main problems faced when planning
irrigation management, especially when large tracts of agricultural land are involved.
Pamameters such as soil textare or soil water content are fundamental for understanding the
determining factors of a soil with respect to water. Available water capacity (AWC) is a
vital indicator when considering soil properties from the point of view of irrigation
management. An analysis was made in this study of the relationship berween the apparent
electrical conductivity (ECa), a parameter which can be determined through intensive data
sampling, and AWC. Afier demonstrating the relationship, a geostatistical methodology
was used to develop efficient predictive maps for soil characterisation from the point of
view of irrigation with the help of guided soil sampling based on the ECa. Ordinary and
regression kriging models were used to generate predictive maps of AWC. When the maps
Ahstract The spatial variability of soils is one of the main problems faced when planning
irrigation management, especially when large tracts of agricaltoral land are involved.
Parmameters such as soil texture or soil water content are fundamental for understanding the
determining factors of a soil with respect to water. Available water capacity (AWC) is a
vital indicator when considering soil properties from the point of view of irrigation
management. An analysis was made in this study of the relationship between the apparent
electrical conductivity (ECa), a parameter which can be determined through intensive data
sampling, and AWC. Afier demonstrating the relationship, a geostatistical methodology
was used to develop efficient predictive maps for soil characterisation from the point of
view of irrigation with the help of guided soil sampling based on the ECa. Ordinary and
regression krging models were used to generate predictive maps of AWC. When the maps
were statistically evaluated, those generated using a regression kriging approach were
found to be more robust, though the resolution of the maps generated through ordinary
kriging was acceptable. This information is of interest when considering the design of more
efficient irrigation systems.

Keywords Predictive map - Ordinary kriging - Regression kriging - Awvailable water
capacity - Precision irrigation

Introduction

The spatial variability of soils is one of the most important problems that need to be dealt
with when managing large tracts of agricultural land. This is particularly true for the
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question of irrigation management, where knowing the characteristics of the soil is the key
to accurate calculation of the amount of water that the crop will need.

From the point of view of irrigation management, it is vital to know the soil texture as
this is one of the key parameters that need to be taken into account when caleulating crop
water needs (Hedley 2008). The total amount of water a soil can supply to a crop is usually
measured by the volume that it can hold between field capacity and wilting point, which
can be assessed in the field (Hedley et al. 2005). Scil water status is the amount of this total
available water that is available to a crop on any 1 day; and is commonly expressed as mm
water per mm rooting depth in soil. However, the spatial varability of this status, as indeed
is the case for many soil properties, will vary across the landscape, a fact largely ignored
before the 1980s (Cook and Bramley 1998). When dealing with large tracts of agricultural
land, it is common to find very different types of soil. This raises the question of whether
the irrigation system being used has been adequately designed to adapt to differences that
are often difficult to define. Unless the problem of the spatial varability of soils is taken
into consideration, an irrigation design may not be efficient. Tools to solve this problem
nead to be developed and precision agriculture may be able to provide a possible solution.
One of the aims of precision agrculture is to use in-field zoning in order to enable the
establishment of different management strategies. Many authors have attempted to relate

different types of soil with the spatial distribution of different soil attributes using digital
elevation models (McBratney et al. 2003), while others have related apparent electrical

conductivity (ECa) to different topographical variables (Kithn et al. 2009). The ECa
parameter has been used in many studies as an important secondary variable when per-
forming this type of in-field zoning (Moral et al. 2010; Fulton et al. 2011; Serrano et al.
2014). Geospatial measurement of ECa is an efficient ground-based sensing technology
that is helping to bring site-specific crop management from a concept to a reality (Corwin
and Lesch 2003). ECa can be intensively recorded in an easy and inexpensive way, and it is
usually related to various soil physicochemical properties across a wide range of soils
(Sudduth et al. 20035). ECa can therefore be used to improve the estimation of soil vari-
ables, when they are spatially comelated (Moral et al. 2010). Moral et al. (2010) found a
high positive correlation between ECa and clay content. This was expected since ECa is
mainly controlled by ions near soil constituents with a high surface area. This fact allows
ECa to be used as a guided soil sampling tool, and as a secondary variable to improve the
principal variable. A spatial analysis method can be used to manage all this information.
Spatial analysis methods can be used to interpolate measurements in order to create a
continuous surface map or to describe the spatial pattern. Numerous studies have shown
the benefits of spatial analysis techniques in agrcultural management { Stewart et al.
2002). The present study is based on the work developed by Moral et al. (2010}, in which a
high positive correlation between ECa and textural typology was shown and successful
results were obtained using ECa data as an auxiliary variable in the regression kriging
technique to estimate soil texture in large tracts of agricultural land. The main parameter
studied in this work was the available water capacity (AWC), which is directly related to
soil texture in the first 300 mm of depth which is where the most imporant activity takes
place with horticulture crops. AWC is the amount of water that can be stored in soil and be
available for growing crops. The methodology described by Moral et al. (2010) was tested
and developed in three commercial plots with large surface areas (40, 80 and 120 ha) used
for horticultural crops.
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Materials and methods
Study area

The field research was conducted in three farms with no salinity problems, "Los Envi-
ciados™ (38°.953482-7°.002723), “Alcazaba™ (38°.962065-6°.707918) and “BuenaVista"
(38°.937571-6°.719712)., with a study area of 120, 40 and 80 ha, respectively. All the
farms are situated in the proximity of Badajoz (southwest Spain). The climate of this area
is characterized by variation in both temperature and precipitation typical of a Mediter-
ranean climate, with mean annual precipitation of less than 500 mm. One of the most
important characteristics of the precipitation is its inter-annual variability. There is a dry
season, from June to September and a wet season from October to May (80 5% of the
precipitation falls in these months). Summers are hot, with emperatures on occasions
higher than 40 °C.

Sampling

The ECa survey was conducted in March 2011, with a 3100 Veris soil electrical con-
ductivity sensor (Veris Technologies Inc., Salina, KS, USA). As the Vers cart is pulled
through the field by a tractor, one pair of coulter-electrodes (rotating discs) injects a current
into the soil while the other coulter-electrodes measure the voltage drop using a Wenner
array. Veris 3100 generates two sets of data: topsoil data comprising shallow soil ECa from
0 to 0.30 m and deep soil ECa from 0 to 0.9 m. The first type were used for this study,
since the root development of the horticultural crops that are typically grown in these areas
does not extend beyond a depth of 0.5 m and the most important activity takes place in the
first 0.3 m. An ARVATEC monitor with a Topcon HiPer Pro-GPS (Topcon Corporation,
Tokyo, Japan) and Maxor-GGDT (Javad Navigation System, San José, CA, USA) base
with sub-meter accuracy was used to georeference the ECa measurements. Latitude and
longiude and shallow and deep ECa data were recorded at 1 s intervals on the Veris data
logger in an ASCII text format. Later, this raw ASCII file was transferred to other software

B CHECKPONTS
L PONT sAMPLES
© ECaSAMPLES

9..230.500_1500 2000 0_250 500 750 1000 0_250 500 750 1000
METERS - METERS METERS

Fig. 1 Smwudy sites at three locations, a Enviciados, b Buenavista and ¢ Alcazaba. Soil sampling points (red
flag), check points (green flags) and ECa samples (vellow dors that appear as fines) (Color figure onling )
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for further analysis. ECa measurements were made along different parallel transects which
were spaced approximately 20 m apant and with 4 m between each measurement point.
Different parallel transects and with different distances were tested in a representative area
(10 ha). Variogram information emphasizing nugget effect, sill and range was studied and
the comect densities to obtain a correct resolution were estimated. Resolution of the pre-
diction map with the data obtained was evaluated from the spherical variograms, Ordinary
kriging was used to develop an ECa map for the three plots. These maps were used for
guided soil sampling of soil properties, taking into consideration a good sample distri-
bution over the different plot areas and trying to cover the different ECa ranges. Soil
samples were taken covering homogeneous zones described by the ECa prediction maps
for use in the methodology (red flag in Fig. 1), other samples were taken manuallyover the
field in a more or less even density to evaluate the methodology (green flag in Fig. 1). The
soil samples were placed in plastic bags, air-dried and analysed for paricle-size distri-
bution by gravitational sedimentation using the Robinson pipette method (Soil Conser-
vation Service 1972) after passing the fine components through a 0.02 m sieve. These fine
components were also analysed for pH in 1:2.5 (soil:water) suspension, organic matter
(OM) was determined by dichromate oxidation { Walkley and Black 1934), and soil texture
was determined by mechanical analysis using the hydrometer method (Bouyoucos 1936).
Calculation of AWC was made using the following equation:

AWC = field capacity (FC) — permanent wilting point (PWP) (1)

The equations of Saxton et al. (1986) were used to calculate FC and the PWP values of
each type of soil.

Statistical and geostatistical analysis

Firstly, a predictive ECa map for each entire plot was developed using the ordinary kriging
technique (see Isaaks and Srivastava (1989) and Goovaerts (1997) for a detailed presen-
tation of the kriging algorithms). The predictive maps were developed in three phases using
the geostatistical interpolation techniques described by Morl et al. (2010): (i) An
exploratory analysis of the data in which the data were studied without considenng their

250 500 1500 2000
e ———
METERS

0 250 500 750 1000 0 250 500 750 1000
T METERS METERS

Fig. 2 ECa prediction map at three locations. a Enviciados, b Buenavista and ¢ Alcaraba
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geographical distribution and in which statistics were applied to check data consistency,
removing any existing outliers and identifying the statistical distribution; (ii) development
of a structural analysis of the data, in which a spatial distribution was analysed using
variograms of the ECa variable: the equation of the mathematical model, the nugget effect
{micro-scale variation or measurement error), sill (variance of the random field) and range
(distance at which data are no longer auto-correlated) were studied to develop these
variograms: (iii) the prediction maps were developed using a data search by neighbourhood
copied from the variogram. The ECa prediction maps were used for guided soil sampling
i(Fig. 2). The areas were then studied from which the soil samples were taken in order to
determine the relationship between ECa, AWC and other soil properties. A companson
was made between the ECa obtained at cenain measured points and the AWC and soil
properties values measured at the same points, and a Pearson’s correlation matrix and
coefficient of determination between AWC, soil properties and ECa were obtained using
SPSS v.13 Windows Package (SPSS, Chicago, IL, USA). When the extent of the rela-
tionship between the parameters was known, a predictive map of AWC (Fig. 3) for each
entire plot was developed using the simple kriging technique described above, Regression
kriging technique was then used to develop a final AWC prediction map (Fig. 4). Pre-
dictions were made separately for the trend and residuals and then added back together. So,
any parameter at a new unsampled point, %, could be estimated, Z*RK(x), using regression
kriging as follows:

Z*RK(x) = m(x) + r(x) (2)

Where the trend, m(x), is fitted using linear regression analysis and the residuals, r(x), are
estimated using the ordinary kriging algorthm. If ¢j are the coefficients of the estimated
trend model, vjix) is the jth predictor at location x, p is the number of predictors and wi(x)
are the weights determined by solving the ordinary kriging system of the regression
residuals, r(xi), for the n sample points, then the prediction is made by:

Z*RK(x)=Zpj = Ocj vj(x)+Zni = Iwi(x) r (xi) (3)

AWC

.Hgn 0.142

B Lo 0,013

0 __250 500 1500 2000 0 250 500 750 1000
METERS METERS

Fig. 3 AWC Ordinary Kriging at three locations, a Enviciados, b Buenavista and ¢ Alcazaba
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Fig. 4 AWC Regression Kriging at three locations, a Enviciados, b Buenavista and ¢ Alcazaba

METERS

Vix)=

0 250 500 750 1000
METERS

In this case study, only one predictor is used, ECa, so mix) = a + be(ECaix)). In
CONSequence:

Z*RK(x) = a + b ECa(x)+Zni = Iwi(x) r (xi)

(4)

The residual at each sampling point, r (xi), is calculated as the difference between the value
of the parameter and the estimate by the trend (r (xi) = Z (Xi)}—m (xi)).

Table 1 Descriptive statistics of the sample data in the smdy areas: n, number of samples, SD, standard

deviation

Parameter Location n Min Max Mean Median SD Skewness  Kurtosis
ECa (m5/m} Enviciadoes 165% 0.8 6 123 11.8 44 (46 23
ECa (mS/m) Buenavista 10 292 1 143 6.3 58 i4 04 214
ECa (mS/m} Alcazaba 6236 02 15.4 T3 7 1.6 .67 29
Sand (%) Enviciados 44 295 725 33 52 11.2 -0.03 21
Sand (%) Buenavista 21 296 834 60.8 L] 17.18 —-0.54 1:7
Sand (%) Alcaraha 17 3735 64.2 50.8 48 4 0.22 1.9
Clay (%) Enviciados 4 13 43 28 274 8.7 016 1.9
Clay (%) Buenavista 21 6 54 25 18 17 057 1.6
Clay (%) Alcazaba 17 143 g 23 23 B 0.24 1.6
OM (%) Enviciados 44 D3 23 1.2 1.4 T2 0.12 1.6
OM (%) Buenavista 21 0.6 21 12 13 53 0.14 1.2
OM (%) Alcazraba 17 06 24 1.3 1.4 42 0.16 1.4
AWC Enviciados 4 0105 0159 0136 0143 1.5 ~{).44 2
AWC Buenavista 21 0081 0134 0109 0103 1.8 018 15
AWC Alcazaba 17 0113 0142 0131 0.133 09 ~0.67 22
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The geostatistical analyses were conducted using the geostatistical and spatial analyst
extensions of the GIS software ArcGIS (version 10.0, ESRI Inc., Redlands, CA, USA). All
maps were produced with the ArcMap module of ArcGIS.

Finally, a comparison was made between the AWC obtained at the measured validation
points and the AWC values measured on the prediction maps (ordinary kriging and
regression kriging). To assess the accuracy of the maps in predicting AWC, the statistical
procedure proposed by Loague and Green (1991), consisting of the best fit of the pre-
dictions, was adopted. This procedure is based on the relative root mean square ermor
(RRMSE), calculated from the following equation:

Rm5E=¢—Z,=|{PJ—ﬂ,]__E (5)
n o

where n is the number of observations, Pi is the value predicted, Oi is the measured value,
and O is the mean of the measured values. The validation is considered to be excellent
when the RRMSE is <10 %, good if the RRMSE is between 10 and 20 %, acceptable if the
REMSE is between 20 and 30 %, and poor if it is =30 % (Jamieson et al. 1991).

Results and discussion

Table 1 shows an exploratory analysis of the data distribution described using classical
descriptive statistics. From the point of view of the number of samples, there is a notable
difference between the amount of ECa data compared to that of the other parameters. The
mean and median values were very similar which was indicative of data coming from a
normal distribution.

Although normality is not a prerequisite for kriging, it 15 a desirable property. Kriging
will only generate the best absolute estimate if the random function fits a normal distri-
bution (Goovaerts 1997). This was ratified by the fact that low skewness values were
obtained. Furthermore, most of the coefficients of kurtosis were close to two. Similar
results were obtained by Moral et al. (2010) for soil properties in the same parameters.

In this study, only the parameters directly related to soil water characteristics were
studied. A correlation matrix between soil properties in the study areas was developed
{Tables 2, 3, 4). It was necessary to study the three plots separately as the soil conditions
when taking the ECa samples may have been different.

Though ECa showed a trend in different possible soil properties, the exact soil char-
acteristics at a particular moment will have to be discovered by analysis of the soil itself;
the ECa values will change over time influenced by weather conditions, but the trend will
be the same. The coefficients of correlation between variables with respect to ECa were
positively correlated with clay (0.71, 0.74 and 0.70) and AWC (0.70, 0.68 and 0.67) in the

Table 2 Correlation matrix

between soil properties in Parameter Eca Sand Clay oM AW
Enviciados :

ECa 1

Sand - (.68 1

Clay 071 -0.79 1

OmM (.06 -0.03 0.03 1

AWC 07 —=(.67 0.69 0.16 1
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Tabhle 3 Correlation matrix

between soil properties in Parameter Eca Sand Clay oM AWC
Buenavista ]

ECa |

Sand — (.66 1

Clay 074 -0.76 1

oM 004 -0.02 004 1

AWCE .68 -{.69 071 0.17 1
Table 4 Correlation matrix 7
between soil properties in Parameter Eca Sand Clay oM AWC
Alcazaba

ECa |

Sand -0.71 1

Clay o7 -0.73 1

Oom 002 -0.02 0.05 1

AWCE 0.67 -0.73 074 0.21 1

three locations, and negatively with sand (—0.68, —0.66 and —(0.71). Serrano et al. (2014)
found a significant correlation between the ECa measured by the Veris sensor in clay, silt
and sand (negative) on a pasture field. Similar results were obtained by Hedley and Yule
(2009%); they used ECa measurements using an ordinary krging geostatistical analysis to
relate AWC (0.76) and FC (0.77).

In this case, regression equations were available to predict the soil AWC and FC for
each soil ECa value, due to the relationship of soil ECa to soil water holding properties,
reflecting the major influence of soil texture and moisture on soil Eca (Hedley et al. 2004;
Sudduth et al. 2005).

In another study (Hedley et al. 2004), significant differences were obtained in the soil
waterholding characteristics of each ECa-defined zone that could therefore be used as an
irrigation management zone on the basis of its soil water holding properies. In that study,
the high, medium and low soil ECa management zones reflect decreasing or increasing
AWC. In the siudy developed by Hezarjaribi and Sourell (2007), sensor-based measure-
ments of ECa using VERIS 3 100 at field capacity and in the non-saline conditions of fields
in the current study could provide important information on within-field variation of the
AWC in an upper shallow socil profile: There was a good correlation between ECa readings
by VERIS 3100_sh and volume per cent of scil field capacity.

In this study, the regression equations were used in the geostatistical analyst to improve
the predictive maps. Other relationships between ECa and these soil texture fractions have
been reported elsewhere (Moral et al. 2010; Morari et al. 2009; Vitharana et al. 2008).

Table 8 shows these linear regression correlations in the study site. No significant cor-
relations were found between ECa and OM, with the same result obtained by Moral et al.
(2010). The correlation between AWC and OM was low, but higher with respect to ECa,
since OM is used to calculate AWC. From the point of view of the total surface area of the
plot, geostatistical analysis is the key to obtaining the right information from prediction
maps. The choice of the particular variogram model is dependent upon the expected spatial
variability. Variables, like soil, can be distributed unevenly in reduced distances and
exponential or spherical models are the most suitable. Spherical mathematical models were
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used to develop the variograms in this work, as the mean and median values are very similar,
which is indicative of data coming from a normal distribution.

In this work, the variograms showed a considerable nugget effect (Figs. 5.6). This is a
nommal situation because the variability of soil properties can occur at a scale smaller than
the minimum lag distance. Table 5 shows the theoretical spherical variograms (models that
provided the best fit for all cases) fitted to experimental varograms for the residual data for
different parameters and locations. AWC showed the highest sill-nugget ratio (around
70 % in the three locations), which suggests moderate spatial autocorrelation. ECa showed
the lowest values for the sill-nugeet ratio (24, 35 and 22 %), indicating that spatial
dependence was generally strong. According to Cambardella et al. ( 1994), the nugget-to-
sill ratio can be used to denote the spatial dependence of attributes (ratio <25 % indicates
strong spatial dependence; between 25 and 75 % denotes moderate spatial dependence and
greater than 75 % indicates weak spatial dependence). The range, the maximum distance
of spatial dependence, varied from 122 o 174 m. It was very similar for the three soil
variables.

The parameters of the best fitting model for a variogram can be used for kriging
{Matheron 1963; Stein and Corsten 1991). From the point of view of data analysis, kriging
has been recommended as the best method to interpolate point data since it minimizes error
variance using a weighted linear combination of the data (Panagopoulos et al. 2006). The

Fig. § Experimental variograms AlB
(periniz), theoretical spherical 1.6
varingrams (lines) and average 1.4
(¢rows) for ECa at Enviciados (a), 1.2
Buenavista (b) and Alcazaba (c) 1.0
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Fig. 6 Experimental variograms A i.8
(proinis), theoretical spherical 1.6
variograms (lines) and average 1.4
(crows) for AWC at Enviciados 1.2
(a), Buenavista (b) and Alcazaba 1.0 o
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Table 5 Theoretical spherical . ; ] .
variograms fitted to experimental Wariable Location Ratio nugget—sill (%) Range (m})
variograms for the residuals data : s
ECa Enviciados 4 122
ECa Buenavista 35 146
ECa Alcazaba 22 134
AW Enviciados [ 147
AW Buenavisin 71 151
AW Alcazaba 74 174
Table 6 Linear relationships (Y = aX <+ b) between ECa (X) and WAC (Y)
Y a b r*
AWC Enviciados 0.0015 0.117 L%
AWC Buenavista 000349 00864 58
AWC Alcazaba 0.0016 0.1183 7
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methoedology proposed by Moral et al. (2010) to develop regression kriging was followed.
In that study, regression kriging was chosen as the optimum interpolation al gorithm for the
soil texture variables and ECa was used as the independent variable because it showed
higher correlations with textural soil data. In the current case, the textural data was
replaced with AWC, which also had a good correlation with ECa. This was expected since
soil textural data are used for AWC caleulation. To develop the proposed regression
kriging methodology, the best linear relationship for each location had to be defined
(Table 6; Fig. 7).

After developing the AWC prediction maps with both geostatistical analysis models
iordinary and regression kriging ), RRMSE was used to measure the resolutions. Table 7
shows this analysis, with the best results obtained with the maps developed by regression
kriging with values of 11, 13 and 15 % in the three locations (good between 10 and 20 %
according to Jamieson et al. 1991). The wvalues obtained by ordinary kriging were
acceptable, 24, 29 and 33 % in the three locations (acceptable between 20 and 30 %
according to Jamieson et al. 1991). These results show that the use of an intensive sampling
parameter such as ECa is a good indicator of where different kinds of soil are located.

CLAY SAND
A 100 100
o0 oy
BO 80
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60 604 *+ -
50 504 P, e &
40 . ' o egtoe a0, b e
2[' & * * L 2[).
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Fig. 7 Plots of percent clay and sand (independent variable %) in relation to ECa (dependent variable mS/
m) measured at the Enviciados (a), Buenavista (b} and Alcazaba (c) sites
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Table 7 Relative rool mean

square error (RRMSE in per- AWC Geostatistical Estimation n RRMSE (%)

centage) determined on different e : = 5

location with the two geosiatisi-  Enviciadoes Ordinary kriging s =

cal estimation applied Buenavista Ordinary kriging 10 29
Alcazaba Ordinary kriging 17 i3
Enviciados Regression kriging 14 11
Buenavista Regression Kriging 10 13
Alcazaba Regression kriging 17 15

Table 8 Linear regression correlations between ECa and the clay and sand soil content in the different sites

Location Dependient Independient Sample Slope  Correlation P
variable (%) variable (mS'm) size (n) coeficient (R) value
Enviciados Clay ECa 44 079 060 <101
Enviciados Sand ECa 44 -1.06 (.67 <1).01
Buenavista Clay ECa 21 091 0.71 <1101
Buengvista Sand ECa 21 -0.93 (.66 <101
Alcazaha Clay ECa 17 129 060 <101
Alcazaba Sand ECa 17 -1.45 0.74 =101

It is also important to remember that a single recording of ECa over a field already
provides a general pattern of soil properties and delivers insight into the spatial hetero-
geneity within a field (Benson et al. 1988). Mobile soil ECa measurements constitute one
of the most efficient ways to quickly map soil spatial variability (Moral et al. 2010). In
consequence, the use of ECa as a guided sampling tool could provide the best locations to
take samples that would allow the development of prediction maps using geostatistical
analysis techniques such as krging or inverse distance weighting (IDW) with good results.
However, due to the relationship of ECa with the soil parameters, it will be more effective
to use ECa as a dependent variable in multi-variable analysis so that prediction maps can
be developed that give information about homogeneous areas from the point of view of
irrigation scheduling. This information would be useful in the design of the irrigation
installation, the amount of water that the different surfaces needs or location of better
places to install soil moisture probes Table 8.

Conclusions

The results of this study showed that using ECa to improve guided soil sampling offers an
interesting tool for the agricultural management of soils. This information may be helpful
for planning of more efficient irrigation management, through the adaptation of the design
of the irrigation installation according to soil factors. It can indicate optimal locations for
humidity probes to ensure that the information they give represents the entire plot, or the
application of irrigation strategies which differ according to the water characteristics of the
different soils.
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Abstract

The use of yield prediction maps is an important tool for the delineation of
within-field management zones. Vegetation indices based on crop reflectance are of
potential use in the attainment of this objective. There are different types of vegetation
indices based on crop reflectance, the most commonly used of which is the NDVI
(normalized difference vegetation index). NDVI values are reported to have good
correlation with several vegetation parameters including the ability to predict yield. The
field research was conducted in two commercial farms of processing tomato crop,
Cantillana and Enviciados. An NDVI prediction map developed through ordinary
kriging technique was used for guided sampling of processing tomato yield. Yield was
studied and related with NDVI, and finally a prediction map of crop yield for the entire
plot was generated using two geostatistical methodologies (ordinary and regression
kriging). Finally, a comparison was made between the yield obtained at validation
points and the yield values according to the prediction maps. The most precise yield
maps were obtained with the regression kriging methodology with RRMSE values of
14% and 17% in Cantillana and Enviciados, respectively, using the NDVI as predictor.
The coefficient of correlation between NDVI and yield was correlated in the point
samples taken in the two locations, with values of 0.71 and 0.67 in Cantillana and
Enviciados, respectively. The results suggest that the use of a massive sampling
parameter such as NDVI is a good indicator of the distribution of within-field yield
variation.

Additional key words: Solanum Ilycopersicum L.; ordinary kriging; regression
kriging; vegetation index; precision agriculture.

Abbreviations used: ETc (Crop evapotranspiration); ETo (Reference crop
evapotranspiration); Kc (Dual crop coefficient); Kcb (Basal crop coefficient); ke

(Evaporation coefficient) NDVI (Normalized difference vegetation index); NIR (Near
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infrared); PCA (Principal components analysis); RRMSE (Relative root mean square

error)

Introduction

The processing tomato is one of the most important crops in Spain, producing
around 1.97 million tonnes. In recent years, the management regime of this crop has
undergone a series of changes as a result of an increase in average field size. New tools
are consequently required to enable a global view of these larger-sized fields and to
determine the heterogeneous zones that often appear within them. The use of yield
prediction maps is an important tool for the delineation of within-field management
zones. In particular, appropriate placement in the field of organically grown produce, as
is the case of the processing tomato crop in this study, will result in higher crop yield.
Yield prediction maps are of great importance to ensure that the crop is harvested at the
right time and that production yields are maximized for industrial processing
(Gianquinto et al., 2011). Accurate estimation of yield can be used for zonal
management of the most productive areas, to plan the best time for harvesting and its
transport for industrial processing, and to locate any water and nutritional deficiencies
in the crop. Yield monitoring and mapping have given producers a direct method for
measuring spatial variability in crop yield. Yield maps have shown high-yielding areas
to be as much as 150% higher than low-yielding areas (Kitchen et al., 1999). However,
yield maps are confounded by many potential causes of yield variability (Price et al.,
1997). When other geo-referenced information is available, producers naturally want to
know how these various layers of data can be analysed to help explain yield variability
and provide insight into improving production practices (Kitchen et al., 2003). Along
with yield mapping, producers have expressed increased interest in characterizing soil
and topographic variability. Vegetation indices based on crop reflectance are of
potential use in the attainment of these objectives. Developments in the use of sensors
have enabled massive geo-referenced data sampling of this parameter and numerous
studies have investigated the correlation between vegetation characteristics and
remotely sensed canopy reflectance (Xue et al., 2004; Jongschaap, 2006; Gianquinto et
al., 2011). There are different types of vegetation indices based on crop reflectance, the

most commonly used of which is the NDVI (normalized difference vegetation index).
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NDVI values are reported to have good correlation with several vegetation parameters.
It has been shown that NDVI is a near linear indicator of photosynthetic capacity
(Sellers, 1985), while other studies have revealed that it is a good indicator of
vegetation, crop biomass and health in agricultural applications (Koller & Upadhyaya.,
2005). Gianquinto et al. (2011) studied the ability to predict tomato yield using different
vegetation indices based on crop reflectance. The indices that used green and near
infrared (NIR) wavelength were the best indicators, with high precision also obtained
for small variations in yield. In a previous study, Koller & Upadhyaya (2005) used a
vegetation index based on plant greenness which appeared to be reliable for evaluation
of tomato yield. Field measurements have traditionally been gathered as point data, such
as samples from an individual plant, but newly developed devices allow mass data
collection to give more weight to yield prediction maps (Fortes et al., 2014). Spatial
analysis methods can be used to interpolate measurements to create a continuous surface
map or to describe its spatial pattern. Variograms (also referred to as semivariograms)
are a powerful tool in geostatistics which characterize the spatial dependence of data
and give the range of spatial correlation within which the values are correlated with
each other and beyond which they become independent (Koller & Upadhyaya, 2005).
The parameters of the best-fitted model for a variogram can be used for kriging
(Matheron, 1963; Stein & Corsten, 1991). From the point of view of data analysis,
kriging has been recommended as the best method to interpolate point data since it
minimizes error variance using a weighted linear combination of the data
(Panagopoulos et al., 2006). There are also numerous studies demonstrating the benefits
of geostatistical analysis techniques for agricultural management. For example, kriging
has been used to map the density of weeds in winter wheat (Heisel et al., 1996) and
geostatistical methods have been used to interpolate data and produce maps of a field
representing the spatial variability of all the soil and wheat properties (Stewart et al.,
2002). Techniques like regression kriging, which involves various combinations of
linear regressions and kriging, are useful tools to improve geostatistical analysis in
prediction maps. The simplest model is based on a normal regression followed by
ordinary kriging with the regression residuals (Odeh et al., 1995), hence the importance
of analysing the robustness of the prediction maps using tools like principal components
analysis (PCA), a multivariate technique commonly used for the analysis of several
variables simultaneously (Balzarini et al., 2011). The aim of the present study is to

describe the possibility of merging guided yield point sampling with massive sampling
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(NDVI) to produce yield prediction maps for the processing tomato crop in a reliable

way, using a multivariate analysis technique like regression-kriging.

Material and methods
Study area

The field research was conducted in two farms, “Los Enviciados™ (-7.009427
38.950592 decimal degrees) and “Cantillana de Mesas” (-6.942781 38.946368 decimal
degrees), with study areas of 6.50 ha and 7 ha, respectively. The farms are situated in
the proximity of Badajoz (southwest Spain). The climate of this area is characterized by
variation in both temperature and precipitation typical of a Mediterranean climate, with
mean annual precipitation of less than 500 mm. One of the most important
characteristics of the precipitation is its interannual variability. There is a dry season,
from June to September, and a wet season, from October to May (80% of the
precipitation falls between these months). Summers are hot, with temperatures
sometimes rising above 40°C.
Crop characteristics

The field was transplanted with processing tomato (Solanum lycopersicum L.,
cv. H9661) in April 2013, at a planting density of 33,333 plants/ha in single rows, with
a distance between plants of 30 cm and width between beds of 1.5 m. The total water
applied was 750 mm to all study surface. A drip irrigation tape was used with drippers
of 1 L/h each 30 cm. The tested area comprised a single irrigation sector, where the
same amount of water was applied in each irrigation. Crop management involved
organic practices with no inorganic nitrogen fertilizer input. Organic nitrogen fertilizer
units (280) were applied before transplanting. Crop evapotranspiration (ETc) was
calculated on a daily basis using equation ETc = ETo-Kc, where ETo is the reference
crop evapotranspiration rate. It was calculated following the Penman-Monteith method,
modified and adapted to local conditions (Baselga, 1996). Climate data were obtained
from a weather station located near the experimental area. Kc is the dual crop
coefficient for processing tomato (Allen et al., 1998), Kc = Ke + Kcb; considering the
basal coefficients (Kcb), Kcb ini (0.20); Keb mid (1.11); Kcb _end (0.60), and Ke
being the evaporation coefficient. Although the tape was buried (not evaporation), we

have considered an evaporation coefficient of 0.1, because surface water was observed
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during growth and we measured the width of the wet part. A flow meter was installed at
different inlet points to measure the real volume of water applied.
Sampling

The NDVI survey was conducted in August 2013, 12 days before harvesting,
with a Crop Circle ACS-470 reflectance sensor (Holland Scientific Inc., Lincoln, NE,
USA) held by a tractor at a height of 80 cm above the canopy. The Crop Circle ACS-
470 generated reflectance data in the wavebands 670 (red) and 760 (NIR) which were
combined to obtain the NDVT following equation: NDVI=..

Where is a reflectance valor of the waveband (760nm) and is the waveband
(670nm).

An ARVATEC monitor with Topcom GB500 GPS and JAVAD GDD base with
sub-meter accuracy was used to geo-reference the NDVI measurements. NDVI data at
10 second intervals were recorded on an ACS-470 data logger in an ASCII text format.
Later, this raw ASCII file was transferred to other software for further analysis. NDVI
measurements were made along different parallel transects approximately 8 m apart
(yellow dots with the appearance of lines in Fig. 1) and the final database contained
11,497 and 15,878 values for the Enviciados and Cantillana locations, respectively.
Ordinary kriging was used to develop an NDVI prediction map for the two locations
(Figs. 2A and 2B). These maps were then used to guide yield sampling to cover the
different homogeneous zones described by the NDVI prediction maps for use in the
methodology (red flags in Fig. 1), while other samples were randomly taken for
validation of the methodology (green flags in Fig. 1). The harvested zones were
measured and geo-referenced, with the measurements made along different parallel
transects, approximately 8 m long. Calculation of production yield was made using the
following equation:

Statistical and geostatistical analysis

Firstly, an NDVI prediction map for each entire plot was developed using
ordinary kriging technique [see Isaaks and Srivastava, (1989) and Goovaerts, (1997) for
a detailed presentation of the kriging algorithms]. The prediction maps were developed
by the geostatistical interpolation techniques described by Moral et al. (2010) in three
phases:

(1) an exploratory analysis in which the data were studied without considering their
geographical distribution and statistics were applied to check data consistency,

removing any outliers and identifying the statistical distribution of the data;
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(1)  a structural data analysis was developed, in which spatial distribution was
evaluated using variograms of the variable (NDVI); the equation of the mathematical
model, nugget effect (micro-scale variation or measurement error), sill (variance of the
random field) and range (distance at which data are no longer auto-correlated) were
used to develop these variograms;

(iii))  the prediction maps were developed using a data search by neighbourhood
copied from the variogram; the NDVI prediction maps were used to guide yield
sampling.

A study was then made of the areas from which the samples were taken to
determine the relationship between NDVI and yield properties (Table 1). A comparison
was made between the NDVI obtained at the sampled points and the yield values
measured at those points. A Pearson’s correlation matrix and a coefficient of
determination between NDVI and yield were then obtained (Table 2) using SPSS v.13
Windows Package (SPSS, Chicago, IL, USA). When the extent of the relationship
between the parameters was known a prediction yield map (Figs. 2C and 2D) for each
entire plot was developed using ordinary kriging technique as described above.
Regression kriging technique was then used to develop a final yield prediction map
(Figs. 2E and 2F). With this technique, predictions are made separately for the trend and
residuals and then added back together. Thus, any parameter at a new unsampled point,
X, 1s estimated, Z*RK(x), using regression kriging as follows:

Z*RK(x) = m(x) + 1(x)
where the trend, m(x), is fitted using linear regression analysis and the residuals, r(x),
are estimated using ordinary kriging algorithm. If cj are the coefficients of the estimated
trend model, vj(x) is the jth predictor at location x, p is the number of predictors and
wi(x) are the weights determined by solving the ordinary kriging system of the
regression residuals, r(xi), for the n sample points, then the prediction is made by:
Z*RK(x) = Zpj=0cj vj(x) + Zni=1wi(x) r (xi)
V(x)=1

In this case study, only one predictor is used, NDVI, so m(x) = a + bs(NDVI(x)).

In consequence:
Z*RK(x) =a+ b NDVI(x) + Zni=1wi(x) r (xi)
The residual at each sampling point, r (xi), is calculated as the difference

between the value of the parameter and the estimate by the trend (r (xi) = Z (x1) [] m

(x1)).
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The geostatistical analyses were conducted using the Geostatistical and Spatial
Analyst extensions of the GIS software ArcGIS (v. 10.0, ESRI Inc., Redlands, CA,
USA). All maps were produced with the ArcMap module of ArcGIS.

Finally, a comparison was made between the yield obtained at the validation
points and the yield values according to the prediction maps (ordinary kriging and
regression kriging). In order to assess the quality of the maps in terms of yield
prediction we adopted the statistical procedure proposed by Loague & Green (1991),
consisting of the best fit of the predictions. This procedure is based on the relative root

mean square error (RRMSE), calculated from the following equation:

[§-n 32
RRMSE = \/ZH(H— 0;)” 100
n 19,

where n is the number of observations, Pi is the predicted value, Oi is the measured
value, and O is the mean of the measured values. Validation is considered to be
excellent when the RRMSE is <10%, good if it is between 10% and 20%, acceptable if
the RRMSE is between 20% and 30%, and poor if it is >30% (Jamieson et al., 1991).

Results

Table 3 shows an exploratory analysis of the data distribution, described using
classical descriptive statistics. Coefficient of variation (CV) values are similar for all
parameters. Mean and median values were very similar, which could be initially
indicative of data from a normal distribution. This was ratified by the fact that low
skewness values were obtained. The skewness value is based on the size of the tails of a
distribution and provides a measure of how likely the distribution will produce outliers.
Thus, in this work, outliers should be scarce, and in fact there were not any, which is
important to obtain accurate estimates. And, moreover, most of the coefficients of
kurtosis were close to 3 (kurtosis of a normal distribution). Although normality is not a
prerequisite for kriging, kriging will only generate the best absolute estimate if the
random function fits a normal distribution (e.g., Goovaerts, 1997). A correlation matrix
between NDVI and yield in the study areas was also developed (Table 2). The
coefficient of correlation between NDVI and yield was correlated in the point samples

taken in the two locations, with values of 0.71 and 0.67 in Cantillana and Enviciados,
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respectively. Spherical mathematics models were used to develop the variograms. In
this work, the variograms showed a considerable nugget effect (Fig. 3). This was not
unexpected since the variability of crop properties can occur at a scale smaller than the
minimum lag distance. Table 4 shows the results of theoretical spherical variograms
(models that provided the best fit for all cases) fitted to experimental variograms for the
residual data. Yield shows the highest nugget-to-sill ratio (~60% in the two locations),
suggesting moderate spatial autocorrelation. NDVI had lower nugget-to-sill ratio values
(19% in Cantillana and 23% in Enviciados), indicating that spatial dependence was
generally strong. The range, that is the maximum distance of spatial dependence, varied
from 57 to 163 m, with higher values being obtained for yield than for NDVI. To
develop the proposed regression kriging methodology it was necessary to define the
best linear relationship for each location (Table 1). After generating the yield prediction
maps with both geostatistical analysis models (ordinary and regression kriging),
RRMSE was used to measure their resolution. Table 5 shows this analysis, with the best
results obtained using the maps developed by regression kriging, with respective values
of 17% and 14% in Cantillana and Enviciados. The values obtained with ordinary
kriging of 31% and 27% in Cantillana and Enviciados, respectively, can also be
considered acceptable (Jamieson et al., 1991). Figs. 2 A and 2B show the NDVI
prediction map for the two sites. Darker green colours correspond to higher NDVI
values and their distribution, lighter green colours correspond to lower NDVI values.
Figs. 2C and 2D show yield estimated by ordinary kriging at the two locations. A very
similar trend can be observed to that of NDVI in Fig. 2, with higher yield values for
those areas where NDVI also showed higher values (blue colours), though a larger
transition area (green and yellow colours) can also be seen as a result of the fewer
samples used in the geostatistical analysis. With this in mind, a third map was generated
(Figs. 2E and 2F) in which yield was estimated for the two locations using regression
kriging. With the higher yield values shown in blue and the lower values in red and
orange, it can be seen that the transition surfaces are practically negligible as occurred
in the NDVI prediction maps, because the smaller number of samples of the primary
variable (yield) was associated with a broadly sampled secondary variable (NDVI). This
was confirmed by the RRMSE geostatistical analysis comparing the regression and
ordinary kriging prediction maps. Theoretical spherical models are represented on Fig.
3. Lower nugget effects were obtained for NDVI in both plots (Figs. 3A and B),

consequence of the sampling density, the structural analysis was more accurate that for
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yield (Fig. 3C and D), also their sills were different because their variances were
different as well. The ranges for both NDVI were similar, and lower than yield. Table 5
shows that better results were obtained with the maps developed with regression
kriging, with RRMSE values of 14% and 17% in Cantillana and Enviciados,
respectively, compared to 27% and 31 % when using ordinary kriging.
Discussion

The exploratory analysis of the data distribution in this work could indicate a
normal distribution of the data, as it is indicated in the results chapter, corroborating the
choice of kriging for this work. Kriging has been recommended as the best method to
interpolate point data since it minimizes error variance using a weighted linear
combination of the data (Panagopoulos et al. 2006). Given the large number of sampling
points taken, and the spatial distribution of them in our work, a method as kriging was
needed to minimize error variance. Panagopoulos et al., (2014) used kriging
successfully to describe the spatial distribution pattern of variance in the spatial analysis
of yield parameters in organic agriculture, which can only be roughly understood by
descriptive statistics. In our study case, with an organic crop too, the influence of soil
should be important, as occurred in the study of Panagopoulos et al. (2014), but we do
not have these data. Variables like soil or plants can be distributed unevenly in reduced
distances and exponential or spherical models are the most suitable (Isaaks &
Srivastava, 1989). For this reason, spherical mathematical models were used to develop
the variograms in this work. These variograms showed a considerable nugget effect
(Fig. 5), with yield showing the highest nugget-to-sill ratio (~60% in the three
locations), suggesting moderate spatial autocorrelation. NDVI had lower nugget-to-sill
ratios (~20%), indicating that spatial dependence was generally strong. According to
Cambardella et al. (1994), the nugget-to-sill ratio can be used to denote the spatial
dependence of attributes (ratio < 25% indicates strong spatial dependence; between 25
and 75% moderate spatial dependence and greater than 75% weak spatial dependence).
The NDVI index is an indicator that can be related with different physiological
processes essential to achieve yield (Gianquinto et al, 2011). Many parameters are
crucial for the functionality of the basic plant physiological processes and affect crop
yield, parameters as chlorophyll concentration has been studied for many authors using
the vegetation index based on plant greenness with good results (Vouillot et al., 1998;

Koller & Upadhyaya, 2005, Gianquinto et al., 2011). In our study case, this parameter
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not was studied, but it is a parameter related with the health status of the plant, which is
necessary to reach the suitable level of yield. Vegetation indices based on plant
greenness also have been used to predict yield in differents crops (Ma et al., 2001). In
the specific case of processing tomato, Gianquinto et al. (2011) confirmed correlations
between many of the calculated reflectance indices (including NDVI), with yield in
processing tomato crop. We obtained similar results in our work for NDVI in
processing tomato too, where areas with high NDVI values were also the most
productive.

There are no studies showing the benefits of geostatistical analysis techniques to
develop NDVI-based yield prediction maps for the processing tomato, though numerous
studies have shown the benefits of geostatistical analysis techniques for agricultural
management (Heisel ef al., 1996; Stewart et al., 2002; Yamagishi et al., 2003). This
study shows that prediction maps based on the normalized difference vegetation index
(NDVI) were suitable for describing crop yield. The NDVI data, analyzed by a
geostatistical method, variogram, regression and ordinary kriging, gave a description of
within-field spatial variation. And regression kriging was effective for predicting
processing tomato crop yield. The study considered only one variety at two different
locations subject to similar constraints, with samples taken at a specific phenological
time. Different varieties, irrigation and fertilization management methods should be
included in future studies.
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Table 1. Linear relationships (Y = aX + b) between NDVI (X) and Yield (Y).

Y a b R’
Yield Cantillana 63179 20318 0.82
Yield Enviciados 57828 25684 0.78

Table 2. Correlation matrix between yield and NDVI for the two locations.

Parameter NDVI Cantillana NDVI Enviciados
Yield Cantillana 0.71
Yield Enviciados 0.67

Table 3. Descriptive statistics of the sample data in the study areas

Parameter Location n Min Max Mean Median SD Cv Skewness Kurtosis
NDVI Cantillana 15878  0.65 0.8 0.71 0.72 0.057 8.03 -0.93 4.07
Enviciados 11497 0.66  0.78 0.73 0.74 0.065 8.90 -1.83 4.39
Yield (t/ha)  Cantillana 15 41 73 62 64 2.6 4.19 -0.51 1.99
Enviciados 15 43 74 67 66 3.5 5.22 -0.54 2.24

n = number of samples, SD = standard deviation, CV = coefficient of variation.

Table 4. Theoretical spherical variograms fitted to experimental variograms for the

residual data.

Nugget/Sill ratio
Variable Location Range (m)
(o)
NDVI Cantillana 19 61
Enviciados 23 57
Yield (t/ha) Cantillana 38 163
Enviciados 42 159
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Table 5. Relative root mean square error (RRMSE, in %) determined for the different

locations with the two applied geostatistical estimation methods.

Yield Geostatistical estimation n RRMSE (%)
Cantillana Ordinary kriging 10 31
Enviciados Ordinary kriging 12 27
Cantillana Regression kriging 10 17
Enviciados Regression kriging 12 14
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Figure 1. Study site of two locations Cantillana (A) and Enviciados (B). Yield sampling
points (red flag), validation points (green flags) and NDVI samples (vellow dots).
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Figure 2. NDVI prediction map for Cantillana (A) and Enviciados (B), ordinary kriging
yield prediction map for Cantillana (C) and Enviciados (D), and regression kriging
yield prediction map for Cantillana (E) and Enviciados (F).
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Figure 3. Experimental variograms (points), theoretical spherical variograms (lines) and
average (cross) for NDVI at Cantillana (A) and Enviciados (B) and for yield at
Cantillana (C) and Enviciados (D).

: | | :
0 20 40 80 80 100 120 140 160 180 200 220 5 0 40 60 8O 100 120 140 160 180 200 220
R meters = Mosel - Bimes +Averazed

vz @ ‘D meters

0 200 40 60 80 100 120 140 160 180 200 220 O 20 40 60 80 100 120 140 160 180 ZbD 220
—Model + Binned 4 Averaged meters — Model « Binted + Averaged retars

73



CAPITULO 4. Simulating processing tomato yield response with the fao aquacrop
model and a geostatistical analyse based on electric conductivity sensor
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ABSTRACT:

The use of crop prediction maps is an important tool for the delineation of within-
field management zones. Accurate estimation of yield can be used to locate the most
productive areas, the amount of water that the crops needs in the different surfaces
and to plan the best time for harvesting and transport for industrial processing. The
spatial variability of soils is one of the main problems faced when planning crop
management, especially when large tracts of agricultural land are involved.
Parameters such as soil texture or soil water content are fundamental for
understanding the determinant factors of a soil with respect to water or yield. The
strong relationship between soil properties and the ECa was used to develop a
prediction map of the differents soils surfaces in a processing tomato crop, using
Available Water Capacity (AWC) as the main soil parameter, and the FAO AquaCrop
model was used to estimate the virtual production of each area determined. Crop
parameters were measured in the differents soil zones that were determined, to
compare real values obtained on field with virtual values obtained using AquaCrop
model. Crop physiological measurements and comparisons between simulated and
observed final yield were compared to determine the suitability of the model to predict
the crop parameters appropriately. The model simulated properly, however, the
accuracy of the model was variable in function of the different type of soils studied,
therefore, in future studies analyzing other parameters such as slope or aspect must
be taken into account.

Key Words: Predictive Map, Ordinary Kriging, Regression Kriging, Available Water
Capacity, Precision Agriculture and Precision Irrigation.
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INTRODUCTION

The processing tomato is one of the most important crops in Spain, producing around
1.97 million tonnes. In recent years, the management regime of this crop has undergone
a series of changes as a result of an increase in average field size. New tools are
consequently required to enable a global view of these larger-sized fields and to
determine the heterogeneous zones that often appear within them. The use of yield
prediction maps is an important tool for the delineation of within-field management
zones. Yield prediction maps are of great importance to ensure that the crop is harvested
at the right time and that production yields are maximized for industrial processing.
Accurate estimation of yield can be used for zonal management of the most productive
areas, to plan the best time for harvesting and its transport for industrial processing, and
to locate any water and nutritional deficiencies in the crop. Yield monitoring and
mapping have given producers a direct method for measuring spatial variability in crop
yield. Yield maps have shown high-yielding areas to be as much as 150% higher than
low-yielding areas (Kitchen et al., 1999). However, yield maps are confounded by many
potential causes of yield variability (Price et al., 1997), as well as by potential error
sources from combine yield sensors (Lamb et al., 1995). When other geo-referenced
information is available, producers naturally want to know how these various layers of
data can be analysed to help explain yield variability and provide insight into improving
production practices (Kitchen et al., 2003). Along with yield mapping, producers have
expressed increased interest in characterizing soil and topographic variability. The
spatial variability of soils is one of the most important problems that need to be dealt
with when managing large tracts of agricultural land. This is particularly true for the
question of irrigation management, where knowing the characteristics of the soil is the

key to accurate calculation of the amount of water that the crop will need. From the
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point of view of irrigation management, it is vital to know the texture typology as this is
one of the key parameters that need to be taken into account when calculating the crop
water needs (Hedley, 2008). The total amount of water a soil can supply to a crop is
usually measured by the volume it can hold between field capacity and wilting point,
which can be assessed in the field (Hedley et al., 2005). Water status is the amount of
this total available water that is available to a crop on any one day; and is commonly
expressed as mm water per mm rooting depth in soil. However, the spatial variability of
this status, as indeed is the case for many soil properties, will vary across the landscape,
a fact largely ignored before the 1980s (Cook and Bramley, 1998). When dealing with
large tracts of agricultural land it is easy to find very different types of soil. This raises
the question of whether the irrigation system being used has been adequately designed
to adapt to differences that are often difficult to define. Unless the problem of the spatial
variability of soils is taken into consideration, an irrigation design cannot be efficient.
Tools to solve this problem need to be developed and precision agriculture may be able
to provide a possible solution. One of the aims of precision agriculture is to use in-field
zoning in order to enable the establishment of different management strategies. Many
authors have attempted to relate different types of soil with the spatial distribution of
different soil attributes using digital elevation models (McBratney et al., 2003), while
others have related apparent electrical conductivity (ECa) with different topographical
variables (Kiihn et al., 2009), but the predictive model values are very limited. The ECa
parameter has been used in many works as an important secondary variable when
performing this type of in-field zoning (Moral et al., 2009). Geospatial measurement of
ECa is an efficient ground-based sensing technology that is helping to bring site-
specific crop management from a concept to a reality (Corwin and Lesch, 2003). ECa

can be intensively recorded, in an easy and inexpensive way, and it is usually related to
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various soil physico-chemical properties across a wide range of soils (Sudduth et al.,
2005). ECa can therefore be used to improve the estimation of soil variables, when they
are spatially correlated (Moral et al., 2009). Moral et al in 2009 found a close positive
correlation between ECa and clay content. This was expected since ECa is mainly
controlled by ions near soil constituents with a high surface area. This fact allows ECa
to be used as a guided soil sampling tool, and as a secondary variable to improve the
principal variable. A spatial analysis method can be used to manage all this information.
Spatial analysis methods can be used to interpolate measurements to create a continuous
surface map or to describe the spatial pattern. Numerous studies have shown the
benefits of spatial analysis techniques in agricultural management (Heisel et al., 1996;
Stewart et al., 2002). Examining the yield response to different water applications in
field and/or controlled experiments is laborious and expensive (Andarzian et al., 2011).
Crop models can be used to interpret experimental results and as agronomic research
tools for research knowledge synthesis. In the specific case of tomatoes, different crop
simulation models have been used in field conditions. Erosion Productivity Impact
Calculator (EPIC) model, (Cavero et al., 1998; 1999; Rinaldi et al., 2001), TOMGRO
(Jones et al., 1991; Bertin and Gary, 1993) and CROPGRO (Messina et al., 2001; Koo.,
2002; Ramirez et al., 2004; Rinaldi et al., 2007) are the most cited models in literature.
AQUACROP (Steduto et al., 2009; Raes et al., 2009a), is a new mathematical crop
model, developed for environments, as Mediterranean area, in which the water is the
limiting factor for the crop yield, focusing the core of simulation on component linked
to water and water use efficiency (Rinaldi et al., 2011). Such models can be used as
decision support tools for system management (Steduto et al., 2009) and to design and
optimize deficit irrigation strategies (Pereira et al., 2009). In addition, they can be used

in rural areas where daily weather data are not available (Andarzian., 2008). Model
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simulations could also be used to achieve a specific target yield as required by the
Common Agricultural Policy, or to develop a deficit irrigation strategy when irrigation
water is scarce (Garcia-Vila et al., 2009). One important application of simulation
models such as AquaCrop could be to compare attainable against actual yield in a field
or region, and to identify constraints in crop production and water productivity (Salemi
et al., 2011). AquaCrop has been developed by the Food and Agriculture Organization
(FAO) of the United Nations. The model strikes a balance between accuracy, simplicity,
robustness and ease of use, and is aimed at practical end users such as extension
specialists, water managers, personnel of irrigation organizations, and economic and
policy specialists who use simple models for planning and scenario analysis (Hsiao et
al., 2009). The aim of this study was to evaluating the AquaCrop model response to
different surfaces of management on processing tomato crop in the Spanish Southwest,
combining the use of the model with a geostatistical analysis based on massive ECa

measures of soil.
Materials and methods

2.1. Study area

The field research was conducted in the farm “Los Enviciados” (-7.009427 38.950592)
decimal degrees with study area of 6.50 hectares. The farm is situated in the proximity
of Badajoz (southwest Spain). The climate of this area is characterized by variation in
both temperature and precipitation typical of a Mediterranean climate, with mean annual
precipitation of less than 500 mm. One of the most important characteristics of the
precipitation is its interannual variability. There is a dry season, from June to
September, and a wet season, from October to May (80% of the precipitation falls
between these months). Summers are hot, with temperatures sometimes rising above 40°

C.
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Crop characteristics

The field was transplanted with processing tomato (Solanum lycopersicum, variety
H9661) in April 2013, at a planting density of 33,333 plants/ha in single rows, with a
distance between plants of 30 cm and width between beds of 1.5 m. A drip irrigation
tape was used with drippers of 1 L/h each 30 cm. The tested area comprised a single
irrigation sector, where the same amount of water was applied in each irrigation. Crop
management involved organic practices with no inorganic nitrogen fertilizer input.
Different irrigation meters were located in the plot to determine the volume of water
applied to the crop in the control points established.

2.3. Aquacrop Model

A short description of aqua crop

The AquaCrop crop model simulates attainable yields for herbaceous crops as a
function of water consumption under different irrigation regimes (Steduto et al., 2012).
AquaCrop directly links crop yields to water use and, estimates biomass production
from actual crop transpiration through a normalized water productivity parameter,
which is the core of the AquaCrop growth engine (Steduto et al., 2012). A full
description of the conceptual basis and principles of AquaCrop are found in Steduto et
al. (2012).

Relative to other crop simulation models, AquaCrop requires a low number of input
data to simulate the yield response to water (Steduto et al., 2012). In AquaCrop, the
input files can be grouped into projects. Each project contains up to 11 input files (text
files with the appropriate extension for each file type) aggregated by topics. Thus, a
single run requires up 12 files as listed in Table 1, which includes the project file. Those

files marked with an asterisk are not mandatory for a simulation run of AquaCrop. Input
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files could be easily created or changed using the user-interface of Aqu- aCrop software
(Raes et al., 2009).

When running a simulation, the user can track changes in the soil water content and the
corresponding changes in the crop development, soil evaporation, transpiration,
evapotranspiration rate, biomass production and yield. Simulation results are stored in
output files and the data can be retrieved in spread sheet format for further processing
and analysis.

2.3.1.Climate model data

For each day of the simulation period, AquaCrop requires a minimum (Tn) and
maximum (Tx) of air temperature and a reference evapotranspiration (ETo) as a
measure of the evaporative demand of the atmosphere and rain events. The other
parameter required is the average annual concentration of CO,. Temperature affects
crop development (phenology) and biomass growth. Rainfall and ETo are crucial for the
water balance of the root zone and the concentration of CO; in air affects the crop water
productivity. Climate data were obtained from a meteorological station located a few
meters from the test plot. The CO, concentration was obtained from the Mauna Loa
Observatory, in Hawaii.

2.3.2. Soil Data

The ECa survey was conducted in March of 2013, with a 3100 Veris soil electrical
conductivity sensor (Veris Technologies Inc., Salina, KS, USA). As the Veris cart is
pulled through the field by a tractor, one pair of coulter-electrodes (rotating discs)
injects a current into the soil while the other coulter-electrodes measure the voltage drop
using a Wenner array. Veris 3100 generates two sets of data: topsoil data comprising
shallow soil ECa readings from 0 to 30 cm and deep soil readings from 0 to 90 cm. The

first type of readings were used for this study, since root development of the
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horticultural crops that are typically grown in these plots does not extend beyond 50 cm
depth, and the most important activity takes place in the first 30 cm. An ARVATEC
monitor with a Topcon HiPer Pro-GPS (Topcon Corporation, Tokyo, Japan) and
Maxor-GGDT (Javad Navigation System, San José, CA, USA) base with sub-meter
accuracy was used to georeference the ECa measurements. Latitude and longitude and
shallow and deep ECa data were recorded at 1 s intervals on the Veris data logger in an
ASCII text format. Later, this raw ASCII file was transferred to other software for
further analysis. ECa measurements were made along different parallel transects,
approximately 14 m apart and the final database contained 619 values (individual blue
points in figure 1). Ordinary kriging was used to develop an ECa map for the plot
(figure 2). This map was used for guided soil sampling of soil properties (Table 2),
taking into consideration a good sample distribution over the different plot surfaces and
covering the different ECa ranges. Soil samples were taken covering homogeneous
zones described by the ECa prediction maps for use in the methodology (black flags in
figure 1). Other samples were randomly taken to evaluate the methodology (soil check
point flags in figure 1). The soil samples were analysed for particle-size distribution by
gravitational sedimentation using the Robinson pipette method (Soil Conservation
Service, 1972) after passing the fine components through a 2 mm sieve. These fine
components were also analysed for organic matter (OM) that was determined by
dichromate oxidation (Walkley and Black, 1934), and soil texture was determined by
mechanical analysis using the hydrometer method (Boyoucos, 1936). The equations of
Saxton et al. (1986) were used to calculate soil depth, saturated hydraulic conductivity,
water content at the field saturation, water content at the field capacity, water content at

the wilting point and Total available soil water the PWP values of each type of soil
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(Table 2). A soil profile study was carried out to determine the number of horizons and

the depth of each one in the surfaces studied.
2.3.3. Crop model data

The crop inputs on model must be separated on conservatives and non conservative
parameters.

Conservative parameters

Conservative crop parameters do not change materially with time, management
practices, or geographic location. For simulating productivity, evapotranspiration, and
water use efficiency of processing tomato, they were assumed to be the same as those

listed in the AquaCrop files (Raes et al., 2009a).

Non Conservative parameters

Yield sampling were taking to cover the different homogeneous zones of the plot (red
flags in Figure 1 and numbers on figure 3). Three replicates were performed for each
crop control point. The harvested zones were measured and geo-referenced. Calculation

of production yield was made using the following equation:

T fruit harvested

Production(T/ha) = x 10000

(Measuringﬁlengthiof harvested sampling area) X (Cropiwidthiof harvested sampling area)

Another non-conservative parameters were also taked in the control zones. Table 3
shows non-conservative parameters used in this work. Crop development is one of the
essential non-conservatives parameters, to assess it along the crop cycle as a non
destructive mode the methodology proposed by Campillo et al., (2008, 2010) was used,
this methodology was used to quantify the percentage of vegetation cover, employing
the shade contour (SC) method as a measure of canopy cover (CC). The same

methodology was also used to calculate the Canopy growth coefficient (CGC),
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Maximum canopy cover (CCx) and Canopy decline coefficient (CDC). This
methodology is based on photograph taken weekly to process it and obtain values, but
in the first two week of the trials photographs were taken daily to determinate the
moment where the crop started the recovered phase. These photographs also were used
to measure the amount of yellow (flowers) that presented the plants during the
flowering phase, allowing to measure start and duration of flowering. Development of
root is another of the main non-destructives parameter to take in count at time to input
into the model, the method used perpendicular soil pits dug along the crop line to
measure the maximum depth and width of roots. The pits were dug each 15 days a long
the crop cycle. The Harvest Index (HI) values were determined (yield/total biomass)
from samples collected at the end of the crop cycle. Biomass was calculated cutting five
plants at ground level. The surface areas occupied by these plants were measured, with
this area being the result of multiplying the length of the five plants by the width of the
crop bed. Measurements were taken with a metric tape after harvesting. The five plants
were weighed together, and a representative plant was selected. This plant was
separated into its different organs (leaves, stems and fruits), which were weighed and,
after passing through a forced air oven at 65 °C until a constant weight was reached,
were also dry-weighed. Using these data, the total aerial biomass in g/m2 and its

distribution in the different organs were calculated.

2.4. Crop management data
During the crop cycle 100% of the crop water needs was applied. The crop water need

was obtained from the ETc by the expression:

ETc = ETo x (Ke+Kcb)

ETo is the reference crop evapotranspiration, calculated using the formula of Penman

and Monteith, as amended (Allen et al., 1998), and adapted to local conditions (Baselga,
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1996) using data from a weather station near the test plot, Ke is the evaporative

coeficient and Kcb the processing tomato crop coefficient (Allen et al., 1998).

The amount of water applied in each treatment was introduced as input into the model
using the data reported by counter irrigation located into the different surfaces of the
plots (crop control points). Water meters showed differences among them. There was
not take in count the effect of soil fertility, since it was applied the same amount of
fertilizer in all the surface, previously, a nutrients balance into the soil was made to
adequately cover the needs of the crop.

2.5.8tatistical and geostatistical analysis

Firstly, a predictive ECa map for each entire plot was developed using ordinary kriging
technique (see Isaaks and Srivastava (1989) and Goovaerts (1997) for a detailed
presentation of the kriging algorithms). The predictive maps were developed in three
phases using the geostatistical interpolation techniques described by Moral et al.,
(2010). Sill and range) were studied to develop these variograms (table 4). The ECa
prediction maps were used for guided soil sampling. The areas were then studied from
which the soil samples were taken in order to determine the relationship between ECa,
AWC and other soil properties. A comparison was made between the ECa obtained at
certain measured points and the AWC and soil properties values measured at the same
points, and a Pearson’s correlation matrix and coefficient of determination between
AWC, soil properties and ECa were obtained (Table 5) using SPSS v.13 Windows
Package (SPSS, Chicago, IL). Regression kriging technique was then used to develop a
final soil management prediction map based on WAC (figure 3). Predictions are made
separately for the trend and residuals and then added back together. The methodology
used was described by Fortes et al. (2015). Finally a prediction map comparing virtual

and simulated yield obtained was developed (figure 4), for this, the ordinary kriging
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technique was used used as described previously. The geostatistical analyses were
conducted using the geostatistical and spatial analyst extensions of the GIS software
ArcGIS (version 10.0, ESRI Inc., Redlands, CA, USA). All maps were produced with
the ArcMap module of ArcGIS.

Model validation:

A statistical measure of the performance of the model were calculated, comparing
simulation results with measured data. This measure is based on the Relative Root

Mean Square Error (RRMSE), calculated from the following equation:

it

f
RRMSE = \/ZLIEPI - 01}2 _ 100
= _ =

Where n is the number of observations, P; is the value predicted, O; is the measured
value, and O is the mean of the measured values. The validation is considered to be
excellent when the RRMSE is<10%, good if the RRMSE is between 10 and 20%,
acceptable if the RRMSE is between 20 and 30%, and poor if >30% (Jamieson et
al.,1991).

RESULTS AND DISCUSSION:

Table 7 shows an exploratory analysis of data distribution described using classical
descriptive statistics. From the point of view of the number of samples, there is a
notable difference between the amount of ECa data compared to that of the other
parameters. The standard deviation reach the minimum values in the AWC values, but
in all the other parameter shown relative low values too, shown the good distribution of
the punctual samples taken. The mean and median values were very similar which was

indicative of data coming from a normal distribution. Although normality is not a
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prerequisite for kriging, it is a desirable property. Kriging will only generate the best
absolute estimate if the random function fits a normal distribution (Goovaerts, 1997).
This was ratified by the fact that low skewness values were obtained. Furthermore, most
of the coefficients of kurtosis were close to 2. Table 5 show that the coefficient of
correlation between variables with respect to ECa were positively correlated with clay
(0.65) and AWC (0.67), and negatively with sand (-0.66), in figure 5 it can see
graphically the percent sand and clay in relation to ECa measured at the study site.
Similar results were obtained for Hedley and Yule (2009), they used ECa measurements
using a ordinary kriging geostatistical analysis to related with AWC (0.76) and FC
(0.77), in this case the regression equations were available to predict soil AWC and FC
for each soil ECa value, due to the relationship of soil ECa to soil water holding
properties reflects the major influence of soil texture and moisture on soil ECa (Hedley
et al., 2004; Sudduth et al., 2005). In our study the regression equations were used in the
geostatistical analyst to improve the predictive maps. Another relationships between EC
and these soil texture fractions have been reported elsewhere (Serrano et al., 2014,
Moral et al., 2010, Morari et al., 2009 and Vitharana et al., 2008).

Variables like soil can be distributed unevenly in reduced distances and exponential or
spherical models are the most suitable, soil can be distributed unevenly in reduced
distances and exponential or spherical models are the most suitable. Spherical
mathematical models were used to develop the variograms in this work. Table 4 shows
the theoretical spherical variograms (models that provided the best fit for all cases)
fitted to experimental variograms for the residual data in WAC and ECa. AWC showed
the highest sill-nugget ratio (68%), which suggests moderate spatial autocorrelation.
ECa showed the lowest values for the sill-nugget ratio (31 %), indicating that spatial

dependence was generally strong according to Cambardella et al. (1994). The range, the
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maximum distance of spatial dependence, varied from 125 to 172 m in this study.
Regression kriging was chosen as the optimum interpolation algorithm for the soil
texture variables using WAC as main parameter (dependent variable), and ECa was
used as the independent variable because it showed higher correlations with textural soil
data. To develop the proposed regression kriging methodology the best linear
relationship had to be defined (Table 6). RRMSE was used to measure the resolutions.
In the table 7 shows it this analysis, with the result obtained for the regression kriging
map with value of 21% (good between 10 and 20% and acceptable between 20 and 30%
according to Jamieson et al., 1991). The resolution of the ECa map was also measured,
obtained a value of 11% of RRMSE.

The use of a massive sampling parameter such as ECa is a good indicator of where
different kinds of soil are located. It is also important to remember that a single
recording of ECa over a field already provides a general pattern of soil properties and
delivers insight into the spatial heterogeneity within a field (Benson et al., 1988).
Mobile soil ECa measurements constitute one of the most efficient ways to quickly map
soil spatial variability (Moral et al., 2010).

In consequence, the use of ECa as a guided sampling tool provide the best locations to
take samples that allow the development of zoning maps of soil. Model yield simulator,
in general terms, measured and simulated values followed very similar trend, the more
productive surfaces obtained the higher simulated values and vice versa. Figure 6 shown
the comparison between yield measured and simulated by AquaCrop model at the
global study site, a good degree of calibration between measured and simulated data
was observed with a value of R? 0f 0.9211. But in function of different surfaces studied,
the degree of calibration was variable. Thereby, zones 8, 1,11 and 2 obtained the lowest

values for normalised differences (D) in %, with values of -1.53, 2.51, 3.80 and 4.89
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respectively. Medium values were obtained on surfaces 7, 9, 4 and 2, with values of
5.13, 6.39, 6.64 and 8.08 for D respectively. The higger values of D were reached for
zones 3, 5 and 6, with values of 13.65, 11.69, and 11.44 for D respectively, all this
results are showing on table 9. This results shown a good degree of calibration between
measured and simulated data. If we analyse the difference between D values in the
different surfaces studied the patterns are not related to soil characteristics observed.
Different values of D are located on different kind of soils. There is not direct
relationship between model accuracy and a determinate type of soil observed. The same
amount water not was applied into the different surfaces by slope effect, and for this the
different type of soil not influenced resolutely in the different levels of yield on the
different surfaces. Also it can see two level of production yield, which is highly
influenced by the existing soil and slope. It was a hard influence of the slope in the
differents surfaces of the plot, so, the surfaces that occupied soils with high content in
clay obtained a good degrees of yield when this zones were in the top of the slope, and
the soil that were situated into soils with high sand content also obtained good yield
when it was occupied the low of the slope. Therefore the slope was a big influence in
the management of the water management. The AquaCrop accuracy in predicting
canopy cover (CC) was acceptable (Figure 7), the accuracy to determine CC was
variable in function of the differents crop checkpoints, anyway the tendency in the CC
development maintained a similar trend, similar results were obtained for Rinaldi et al.
(2011), Palumbo et al. (2012) and Katerji et al. (2013) in similar conditions and in the
same crop. Finally a prediction map comparing virtual and simulated yield obtained was
developed in figure 4; It is easy to observe a similar trend on plot surface, but the model
simulated an amount of yield higher than the really measured. We did not find studies in

which geostatistical analyses were combined with the model AquaCrop in processing
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tomato crop, however there are studies that have validated the model for this crop.
Rinaldi et al. (2011), Palumbo et al. (2012) and Katerji et al. (2013) obtained similar
results comparing simulated and measured data on processing tomato. Several authors
have adopted the AquaCrop as a suitable research tool for studying the optimisation of
irrigation water supply and for recommending the appropriate water management
decisions (Andarzian et al., 2011; Rinaldi et al., 2011; Garcia-Vila, Fereres, 2012 and
Katerji et al., 2013). Rinaldi et al, (2007) calibrated and validated CROPGRO model for
growing tomato with the same experimental data comparing validation indices used by
AquaCrop, however, AquaCrop showed a slight advantage over CROPGRO in terms of
total dry matter of the plant, dry matter of fruit, development canopy and water content
of the soil when the average values of the parameters calibrated for each year crop were
compared.

CONCLUSION

The combined use of precision agriculture and crop simulation models could be an
important tool for the delineation of within-field management zones. Both tools are
starting to use, but there are not many studied about it. In this study we used a
methodology based on apparent electrical conductivity and guided soil samples to
determine the differents soils surfaces, since the soil could be the main parameter to find
differences into the crop surfaces. The results obtained shown than soil is not the only
parameter to take in count, and other parameters should be studied. This work also
shown a good degree of calibration between measured and simulated data using the
FAO AquaCrop model, therefore, studies combining soil properties, crop parameters
and slopes must be developed to improve the combined use of simulation models and

the geostatistical analysis.
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TABLES
Table 1. Filenames, extension, description and main inputs for each input file required
for AquaCrop. Those filenames marked with an asterisk are not mandatory for a

simulation run. Adapted from Lorite et al 2013.

Filename Extension Description Main Inputs
Project .PRO Defines the specific inputs required by — Folder for inputs/outputs
AquaCrop for each run — Input file names

— First/last day of simulation
— First/last day of cropping
— Crop parameters

Climate .CLI Defines the different climate input files TMP, ET0 and PLU filenames
— CO2 filename
Temperature .TMP Defines temperatures — Temporal variation
- Minimum temperature
— Maximum temperature
Reference ET .ETO Defines reference evapotranspiration — Temporal variation
— Reference ET
Rain .PLU Defines rainfall — Temporal variation
— Rainfall
Atmospheric .CO2 Defines the default mean annual _ CO2 concentration
CO2 atmospheric [CO2] from 1902 to 2099.
Crop .CRO Defines the complete set of required ~ — Base/upper temperatures
crop parameters) - Soil water depletion factors
— Root depth

-Shape factor for stress
-CGC, CCx, CDC coefficients
— Length of stages

Irrigation* JRR Deﬁn.es .info'rmation about the - IrrigaFion method
irrigation schedule — % Soil surface wet
— Date/depth by irrigation event
Management .MAN Defines the soil fertility level and soil — Soil fertility level
* conservation practices that affect the =~ Mulching/soil bunds
soil-water balance — Reduction of runoff
Soil .SOL Defines the soil properties. — Number of the soil horizons
— Thickness of the soil horizons
— Water content at FC/PWP
— Curve Number

— Saturated hydraulic conductivity
— Depth of restrictive layer

Initial .SWO0 Defines the soil profile layers at the  — Water content of each layer
conditions start of the simulation period — Thickness of each layer
Off Season .OFF Defines the off-season (outside the ~ -% Ground surface covered
growing season period) practices - Soil evaporation reduction

— Irrigation (date and depth)
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Table 2. The main soil characteristics observed in the differents soil surfaces at the

study site.
Water Water Water Total Saturated
content at | content at content at N .
su?e(;l/slfoE % SAND | % cLAY TETXJFEJERE Depth (m) | the wilting | the field | the field | 2vailable hydraulic
. . . soil water conductivity
point capacity saturation (cm/cm) (mm/hr)
(vol.%) (vol.%) (vol.%)
1 67.21 16.75 | Sandy Loam 07 10.70 18.90 40.00 0.08 22.91
2 60.92 2008 | SandyLoam | 0.68 12.50 21.80 40.20 0.09 15.36
3 67.19 21.80 Sa[i’;n(fl'ay 063 13.60 21.90 39.90 0.08 13.91
4 50.93 23.08 Sa[g’;n(fl'ay 053 14.30 25.40 41.00 0.1 9.60
5 4728 26.82 Sa[g’;g'ay 0.35 16.70 28.30 4170 0.12 6.11
6 43.88 31.83 | ClayLoam 0.42 19.60 31.50 42.60 0.12 3.51
7 47.30 32.71 Sa[g‘;rﬁ'ay 0.44 20.10 31.60 42.40 0.11 3.16
8 63.53 2048 | SandyLoam | 0.66 12.50 21.50 40.10 0.09 15.93
9 57.42 24.58 Sa[g‘;nf'ay 0.36 14.90 24.90 40.60 0.10 9.61
10 63.29 20.72 Sa[g’;n(fl'ay 068 13.10 22.00 4010 0.09 14.43
11 57.19 21.76 Sa[g’;n(fl'ay 067 13.70 23.70 4050 0.10 1175

Table 3. Comparison between the default values contained in the AquaCrop files (Raes
et al., 2009) and the values calibrated at the study site.

Parameter Description Parameter Value Unit
Default Calibr
Plant density 33333 33333 plants/ha
Maximun canopy cover (CCX) 75 80 %
GDD Recovered time of crop 43 25 °C
GDD Reach max canopy 1009 800 °C
GDD Reach senescence 1553 1144 °C
GDD Reach maturity 1933 1456 °C
GDD Reach flowering 525 430 °C
GDD Duration of flowering 750 680 °C
GDD Reach maximun rooting depth 891 806 °C
Maximun effective rooting depth, Zx 1 0.5 m
Minimum effective rooting depth, Zn 0.3 0.15 m
Reference Harvest Index, Hlg 63 67 %
Building up of HI during yield formation 1050 988 °C
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Table 4. Theoretical spherical variograms fitted to experimental variograms for the
residuals data.

VARIABLE| RATIO NUGGET-SILL (%) RANGE (m)
ECa 31 125
WAC 68 172

Table 5. Correlation matrix between soil properties in the study site.

PARAMETER Eca Sand Clay oM AWC
Eca 1
Sand -0.66 1
Clay 0.65 -0.77 1
OM 0.21 -0.19 0.11 1
AWC 0.67 -0.86 0.66 0.15 1

Table 6. Linear relationships (Y = aX + b) between ECa (X) and WAC (7).

Y

R2

AWC

0.0016

0.0823

67

Table 7. Descriptive statistics of the sample data in the study areas; n, number of
samples, SD, standard deviation.

PARAMETER n Min Max | Mean| Median SD Skewness | Kurtosis
ECa (mS/m) 619 1.1 249 | 1017 10.19 6.20 0.46 2.5
Sand (%) 11 438 | 67.21] 56.92 56.44 11.2 -0.03 2.3
Clay (%) 11 16.75] 32.71| 23.69 23.73 8.7 0.14 1.9
OM (%) 11 0.6 1.35 1.3 14 4.2 0.17 1.6
AWC (cm/cm) 11 0.08 0.12 0.10 0.109 0.9 -0.67 2.1
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Table 8. Relative root mean square error (RRMSE in %) determined in predictive
maps (WAC and Eca) with the two geostatistical estimation applied.

PARAMETER Geostatistical n RRMSE
STUDIED Estimation (%)
WAC Regression Kriging 7 21
ECa Ordinary Kriging 7 11

Table 9. Yield measured (meas) and simulated (sim) by AquaCrop model for processing
tomato in the differents soil surfaces at the study site. The normalised differences (D in
%) between simulated and measured values are also reported.

Yield (t ha ™)
Treatment

Meas Sim D (%)
zone 1 76.21 78.12 2.51
zone 2 73.11 79.02 8.08
zone 3 69.21 78.66 13.65
zone 4 54.80 58.44 6.64
zone 5 49.17 54,92 11.69
zone 6 71.44 79.61 11.44
zone 7 75.12 78.97 5.13
zone 8 59.34 58.43 -1.53
zone 9 74.13 78.87 6.39
zone 10 75.23 78.91 4.89
zone 11 76.41 79.31 3.80
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FIGURES

Figure 1. Study site. Crop sampling points (green flags), soil check points (red flags),
soil sampling (black flags) and ECa samples (blue dots). Topographic contour lines
(in meters) are also depicted.
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Figure 2. ECa prediction map of study site. Numbers are crop sampling points.
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Figure 3. WAC Regression Kriging map on study site.
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Figure 4. Prediction map of final yield measured and simulated by AquaCrop model for

processing tomato crop.

MEASURED(T/ha)
N w80

A

-50

40 20 0 a0 80 120 160

™ | Meters

stMULATED (T/ha)
w80

.50

Figure 5. Plots of percent sand and clay (independent variable %) in relation to ECa
(dependent variable mS/m) measured at the study site.
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Fig 6. Comparation between Yield measured and simulated by AquaCrop model at the
study site.
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Fig 7. Canopy cover measured and simulated by AquaCrop model for crop check
points. The bars represent SE of the mean of the measured data on field. DAT is days
after transplanting.
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CONSIDERACIONES FINALES

En la presente tesis se han evaluado diferentes herramientas para hacer frente al
manejo de grande superficies de cultivo de tomate destinado a industria. Para ello se han
evaluado parametros de suelo y plantas medidos de manera masiva y georreferenciada,
para poder apoyarlos en estudios estadisticos a través del uso de sistemas de
informacion geografica. Todo este trabajo se ha recopilado en cuatro capitulos que
pretendian responder a una problematica especifica en cada momento y circunstancia

durante el periplo de tres afios que ha llevado a la consecucion de este trabajo.

En el capitulo uno se desarrolld un estudio combinado del uso de pardmetros de
zonificacion basados en suelo y planta, asi se evalu6 la capacidad del indice de
vegetacion normalizado (NDVI) y la Conductividad Eléctrica Aparente (CEa),
parametros de suelo y planta respectivamente, sobre una parcela comercial destinada a
tomate para industria. Ambos pardmetros ofrecieron una informacion relevante a la hora
de tomar decisiones en el manejo de los cultivos, identificandose durante dicho trabajo
la capacidad del NDVI para estimar la productividad del cultivo, asi como la influencia

del suelo sobre la misma.

En el capitulo dos se desarrolld y evalué una metodologia para implementar el
uso de la CEa, dada la gran capacidad de dicho parametro para zonificar el suelo. La
fuerte relacion existente entre los valores medidos de CEa con la textura del suelo nos
llevo a plantear una metodologia que permitiera zonificar las parcelas agricolas desde el
punto de vista hidrico. Para ello se utiliz6 la conjuncién de la CEa y medidas de textura
en suelo obtenidas mediante un muestreo guiado en funcién de la distribucion de la CEa

sobre las superficies estudiadas. Esta conjuncion de medidas de campo y medidas de
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laboratorio permiti6é desarrollar una metodologia aplicable a grandes superficies y capaz
de caracterizar grandes extensiones de terreno, ofreciendo una informacion util a la hora
de plantear disefios de instalaciones de riego mas eficientes e implementar el uso de

sondas de humedad para el control de riego.

En el capitulo tres utilizamos los buenos resultados obtenidos en el capitulo uno,
y planteamos una metodologia para estimar la productividad de las superficies agricolas
del cultivo de tomate para industria. Para ello se volvid a recurrir a la metodologia
basada en la regresion krigeado usada en el capitulo dos. Esta vez el pardmetro utilizado
para la zonificacion de las superficies de cultivo fue el NDVI, un método de medicion
masiva y no destructivo. En base a las medidas de NDVI se realiz6 un muestro masivo
de cosecha y mediante el uso combinado de la produccién obtenida en campo y de su
relacion con el NDVI se desarrolld una metodologia 1til y aplicable para determinar y

zonificar la produccion final del cultivo de tomate para industria en grandes superficies.

Una vez determinada la potenciabilidad de la agricultura de precision para
obtener herramientas utiles en la zonificacion para el manejo de los cultivos, la tltima
tecnologia que nos faltaba por evaluar era la implementacion de los conocimientos
adquiridos mediante el uso de modelos matematicos de simulacién de estados hidricos.
Recurrimos al modelo desarrollado por FAO y denominado AquaCrop. Segun la
bibliografia consultada existia informacion alentadora acerca de su aplicabilidad sobre
diversos cultivos, entre ellos el tomate para industria. Nuestro reto fue implementar el
uso del modelo y extrapolar su aplicabilidad a una superficie de cultivo amplia.
Recurrimos a la metodologia desarrollada en el capitulo dos para zonificar la superficie

de ensayo y establecer unos puntos de control donde aplicar el modelo y proceder a la
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toma de datos necesaria para su evaluacion. El modelo simulé de manera adecuada las
producciones finales del cultivo, y la metodologia de zonificacién permiti6é establecer
los puntos adecuados para hacer representativo a la totalidad de la superficie los
parametros medidos sobre suelo y cultivo para nutrir al modelo. Sin embargo
descubrimos la fuerte implicacion de la pendiente del terreno a la hora de simular la
potenciablidad productiva de los terrenos agricolas irrigados, abriéndonos las puertas a
futuros estudios para incluir dicho parametro y mejorar asi el uso combinado de
sistemas de informacién geografica y modelos de simulacion en la obtencion de

informacion que implemente la gestion de las grandes superficies agricolas.
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CONCLUSIONES

Las conclusiones y consideraciones finales que puede extraerse de la presente
tesis doctoral son las siguientes:

CAPITULO I:

El indice de vegetacion normalizado NDVI es un buen estimador para predecir
la produccion final en el cultivo de tomate para industria. Esta medida directa en planta
es mas precisa que otras medidas indirectas como la conductividad eléctrica aparente,
un parametro relacionado con las propiedades del suelo con el que también se
obtuvieron buenos resultados. Las ventajas de este tipo de medidas radica en la
posibilidad de tomar muestras georeferenciadas de manera masiva, lo que permite
desarrollar mapas georreferenciados de grandes superficies para obtener informacion
util sobre el manejo del cultivo. Por lo tanto, se puede concluir que esta metodologia es
muy util para evaluar el potencial productivo de los cultivos, ademas de ser un buen
estimador a la hora de planificar la cosecha. Este tipo de estudio es especialmente
relevante en el caso de cultivos ecologicos, como es el caso del cultivo objeto de
estudio, en el que el factor principal para obtener un alto rendimiento depende
fundamentalmente de la productividad del suelo en comparacidon con otros parametros,
debido a las restricciones al el uso de fertilizantes y fitosanitarios.

CAPITULO 2:

Los resultados de este estudio mostraron que el uso de conductividad eléctrica
aparente combinada con un muestreo de suelos dirigidos para el analisis posterior de los
mismos, ofrece una interesante herramienta para la gestion agricola de los suelos. Esta
informacion puede ser util para la planificacion de una gestion del riego mas eficiente, a
través de la adaptacion del disefio de las instalaciones de acuerdo con los factores del

suelo. Indicando los lugares 6ptimos para la ubicacion de sondas de humedad, haciendo
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que la informacion obtenida a través de éstas de manera puntual sea extensible a
mayores superficies, o a la aplicacion de estrategias de riego diferenciadas segin las
caracteristicas de las diferentes zonas de manejo.

CAPITULO 3:

Los mapas predictivos basados en el indice de vegetacion normalizado (NDVI)
fueron adecuados para describir una zonificacion de la productividad del cultivo de
tomate para industria. El andlisis geoestadistico de la medida de NDVI ofrecié una
adecuada descripcion de la variabilidad espacial de las superficies analizadas mediante
el uso de la metodologia basada en la regresion krigeado. El estudio solo considera una
variedad en dos lugares diferentes con limitaciones similares, y con muestras tomadas
en un momento fenoldgico especifico. Las diferentes variedades, riego y métodos de
gestion de la fertilizacion deben ser incluidos en futuros estudios.

CAPITULO 4:

El uso combinado de la agricultura de precision y los modelos de simulacion de
cultivos podria ser una herramienta importante para la delimitacion de zonas de manejo
en las superficies agricolas. Ambas herramientas estan comenzando a ser utilizadas,
pero no hay muchos estudios al respecto. En este estudio se utilizé una metodologia
basada en la conductividad eléctrica aparente y muestreos guiados de suelo para
clasificar las diferentes superficieses estudiadas, ya que el suelo podria ser el parametro
principal para encontrar una diferenciacion en el rendimiento de los cultivos. Los
resultados obtenidos muestran que el suelo no es el Gnico parametro a tener en cuenta, y
que otros parametros deben ser estudiados. Este trabajo mostré un buen grado de
calibracion entre los datos medidos y los simulados utilizando el modelo de FAO
denominado AquaCrop, por lo tanto, estudios que combinen las propiedades del suelo,

pardmetros de cultivo y las pendientes en el terreno deben ser desarrollados para
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mejorar el uso combinado de modelos de simulacién y analisis geoestadisticos sobre

grandes superficies de cultivos agricolas.
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