Electronic Supporting Information: c6an00402d

Pencil It In: Pencil Drawn Electrochemical Sensing Platforms

Christopher W. Foster¹, Dale A. C. Brownson¹, Ana P. Ruas de Souza², Elena. Bernalte³, Jesus Iniesta⁴, Mauro Bertotti² and Craig E. Banks^{1*}

¹: Faculty of Science and Engineering, School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester M15 GD, UK

²: Instituto de Química – Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil

³: Departamento de Química Analítica e IACYS, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain

⁴: Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain

ESI Figure 1: Typical cyclic voltammetric responses towards 1 mM hexaammineruthenium (III) chloride / 0.1 M KCl (A) and 1 mM potassium ferricyanide / 0.1 M KCl (B). Recorded at 5 mV s⁻¹ (dotted line) and 100 mV s⁻¹ (solid line), using the 6B PDE drawn ten times (*vs.* SCE).

ESI Figure 2: Typical cyclic voltammetric response using the 6B PDE drawn ten times recorded in 1 mM potassium ferrocyanide / 0.1 M KCl. Scan rate: 100 mV s⁻¹ (vs. SCE). Note that this figure reiterates that electrochemical processes requiring an electrochemical oxidation step first, give rise to featureless voltammetric profiles.

ESI Figure 3: Typical cyclic voltammetric response using the 6B PDE drawn ten times recorded in 1 mM ammonium iron (II) sulfate / 0.2 M HClO₄. Scan rate: 25 mV s⁻¹ (*vs.* SCE).

ESI Figure 4: Raman spectra for the bulk 6B pencil lead (red line; pencil lead analysis as received), 6B PDE drawn one time (green line) and ten times (blue line).

Intensity a.u.

ESI	Table	1:	De-convoluted	data	from	the	XPS	spectra	for	the	bulk	6B	pencil	lead	(prior	to
fabri	cating I	PDI	Es) and assignme	ents b	ased o	n bi	nding	energies	(BE	E).						

Element	Element atom %	Assignment	Atom %	BE / eV	
		Graphite	37.17	284.5	
C 1s	91.92	C-C	39.98	285.2	
		С-О / С-О-С / С- ОН	11.40	286.2	
		-O / C=O	3.37	289.5	
O 1s	7.90	С-О / С-ОН	6.07	532.4	
		-O / C=O	1.83	534.0	

ESI Table 2: Anodic stripping voltammetry of lead (II) and cadmium (II) utilising a 6B PDE as a function of different times drawn. Deposition time and potential of 120 seconds and -1.5 V (*vs.* SCE) respectively; N = 3.

	Lead (II)		Cadmium (II)			
Times Drawn	Average Peak Height / μA	% RSD	Average Peak Height / μA	% RSD		
1	1.7	4.8	0.08	5.2		
3	3.6	4.6	0.30	5.0		
5	4.7	4.9	0.57	5.0		
10	5.5	4.8	0.60	4.8		