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Abstract

An identification procedure designed to be part of an
autotuning method for event-based proportional-
integral (PI) control systems is proposed in this
contribution. The rationale of the identification
method is based on the information obtained from the
limit cycle that the event based sampler plus an
adequate tuning of the PI controller can generate in
the closed loop. From the information of two limit
cycles at different frequencies, the parameters of the
common transfer function used for tuning of PI
controllers will be deduced. Simulations demonstrate
the effectiveness of the method.

Keywords: send-on-delta, limit cycle,
identification, autotuning, PI controller.
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1 Introduction

Methods for the identification of transfer functions
parameters in event-based PI control loops have been
proposed in the last years in several publications. The
first investigation was described in [4]. In that work,
the process parameters are estimated considering a
limit cycle generated by a pre-tuned event-based Pl
controller. Other two methods are described in [5, 6].
In such contributions, the rationale of the estimation
methods is based on curving fitting and state-space
approaches. Contributions on specific methods for
identification in an event-based control loop have
been recently reported in [10, 11]; both methods are
based on forcing a limit cycle.

The identification approach described in this paper is
based on [11] but taking into account the full Pl
controller. In [11], the integral part of the controller
is deactivated during the identification and only the
proportional part is used to generate the limit cycle; it
is also necessary to add a bias to the sampler output
to introduce asymmetry in the limit cycle to calculate
the dc gain. However, one of the cons described in
[11] is that in lower frequencies the identification of
processes with integration can be not very accurate as
some of the critical points necessary to estimate the
parameters are located in the first and second
guadrants of the Nyquist plot (it is due to the fact that
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such points correspond to the third and fifth
harmonics of the output system). In the procedure
described here, the PI controller works on-line during
the identification as the proportional and integral
parts are taken into account to generate the limit
cycle. Also, the issue of providing accurate results at
low frequencies is worked out by adding an
additional delay in order to reduce the frequency of
the limit cycle.

The paper is organised as follows. In Section 2 the
event-based architecture is presented. The event-
based identification procedure is described in Section
3. Section 4 explains how to improve the procedure.
Finally, conclusions are given in Section 5.

Autotuning logic

v
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Fig. 1. Event-based control architecture.

(i)

2 Event-based PI control architecture
The control architecture considered in this
contribution is shown in Figure 1. In this event-based
control system, when the sampler detects an event, it
sends the information to the PI controller C(s). Many
logical conditions have been proposed in the
literature for the occurrence of an event. The one
employed here is the Symmetric Send-On-Delta
(SSOD) sampling [4]. Its behaviour is described as

e@t)=
(+)5 ife(t)=(i+)Sne* (") =is O
is if e(t) e[(i-1)5, (+)S]re* () =iS
(i-D)5 ife()<(i-DSne*(") =i

With this logical condition, the sampler receives a
continuous signal e(7) and generates a sampled signal
e*(?) that is multiple of &. The key of the relationship
between e(¢) and e*(¢) is that it can be considered as a



generalization of a relay with hysteresis. This implies
that its describing function can be derived [7].
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Figure 2: Nyquist plot of =1/ N(4,6).

The describing function of the SSOD sampler is
given by [9]

N(4,6)=
2 m—1 2
20, l—(émj +2)° 1—[£kj @)
A A . A
26°
Tt

where 4 is the amplitude of a sinusoidal input signal,
and m :LA/éj. The portrait of —1/N(4,6) is shown
in Figure 2 for Ae[5,). Each intersection in Figure
2 of the system G(s)=C(s)P(s) with an arc of
—-1/N(4,5) produces an oscillation (or limit cycle)
of a different amplitude: Intersections with the arc
starting in Cy produce oscillations with 4 <[5,25),
intersections with the arc starting in C, generate
oscillations with 4 €[25,35), and so on. So, for
example, the intersection of a system G(s) with the

point C1=—%—%j in the Nyquist map represents

the existence of a limit cycle of amplitude 4 =6 and
frequency w,,.; this frequency satisfies the

expression G(jw,,.)=C,; .

e

3 Identification procedure

The identification method is based on the stable
oscillations induced in the system G(s) thanks to the
existence of the event-based sampler. It must be
noticed that the current process to identify must
intersect the negative real axis (if not, it should be
added a certain delay). Once the system is in a stable
limit cycle, experimental measurements derived from
the oscillatory signals are taken and used to obtain
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the parameters of the transfer functions used for
tuning a PI controller.

The rationale of the procedure consists in forcing the
system to oscillate at a frequency w,,. by the
detuning of the PI controller C(s). As said before, the
system will oscillate at w,,. as consequence of the
intersection of G(s) = C(s)P(s) with the reciprocal
of the SSOD sampler describing function in the
Nyquist map, that is,

1

" N(4,0) )

G(jw()SC ) =

As the condition for the existence of limit cycles is
given by (3), a convenient detuning of C(s) will
produce an oscillatory behaviour of the system. So, if
the Nyquist point where the system is oscillating at
o,,. 1S measured experimentally, that is, G(jo,,.) .

it is feasible to derive the parameters of a given
transfer function model P(s) .

Thus, once the system is oscillating, the procedure
for fitting a model is:

(@) To measure G(jw,,.),

(b) To get the experimental value of the process at
the oscillation frequency, that is, P(jw,.), by
removing C(jw,,. ) from (3),

(c) To obtain |P(ja,, )| and arg P(jw
(d) To equate the two values obtained in the previous
step to the magnitude and argument expressions of
the transfer function selected to fit, and

(e) To solve the equations system and get the model
parameters.

OSC) '

These steps are now explained in a more detailed
way.

The solution adopted to get G(jw,,.) during a test is

first presented in [14] and is proved in [11]. As in a
limit cycle, y(¢) and u(z) are periodic and piecewise
signals, using the Laplace transform of both, it can be
written

271 o,

Y(ja)osc) _ IO

U(] Dose ) J. 27 @
0

y(t)eijw""t dt

G(j@yse) = (4)

u(t)e ™ dt

where y(7) and u(f) are measured during a test. It must
be noticed that (4) cannot be applied to determine the

steady gain (,, =0) because the oscillations

produced by the SSOD block are symmetric and the
integration of the periods will be zero. How the
procedure is applied to get the steady gain will be



explained afterwards, but we anticipate that the
inclusion of an additional delay will play a key role.

As the PI control parameters and @,,. are known, it
is possible to obtain the value of C(ja,,.),

lrj

osc™ i

C(j @) =Kp(1+ ()

jo

Using (4) and (5), it is easy to obtain the
experimental value of the process at the oscillation
frequency,

G(jwosc )
C(jm

osc )

P(j@,) = (6)

The transfer function models considered in this work
to explain the procedure are:

Model FOPTD:

(s) = el 7)
B Ts +1

Model IFOPTD:
P(s) = ks 8
(s) s(Ts +1)e ®

Model SOPTD:
P(s) =—— ks 9
) (Ts +1)° ®

and their argument and magnitude expressions are:

Model FOPTD:
~ K
[Pl === (10)
T wj, +1
arg Ig(jwasc ) = arCtan(Ta)osc) - a)oxcL (11)
Model IFOPTD:
~ K
P(j@y, )| =——F——= 12)
‘ a)()SC 1 + wOZSC T 2
arg Is(ja)osc) = _a)oscL - arCtan(Twosc) _% (13)
Model SOPTD:
~ K
P(jo, )| = (14)
‘ ‘ T?w?2, +1
arg P(jo,, ) = —2arctan(Tw,,, ) - o, L (15)

To get K and T it is necessary to equate |P(jw,,.)|

with the magnitude of a transfer function ‘13( J®,)

and solve the system of equations. As there are two
unknowns, K and T, in the magnitude expressions, it
is necessary to run two tests to get two experimental
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values, that is, P(jw

osc_1

) and P(jo,

osc_2) - Notice
that each test will be run with a different set of

control parameters to force the system to oscillate at
different frequencies, that is, @,, ; and @, It

osc_2*
will be explained how to modify the Pl parameters in
the following paragraphs depending on the process
and the model to identify. Once K and T are known,
the delay L is obtained by equating argP(je, 1)

with the argument expression of the selected transfer
function model to fit, that is, with (11), (13) or (15).

The following expressions are the result of solving
the equations for the three models. For the sake of

simplicity, @; represents @, ;, |B| represents
|P(coosc_i)|, and arg P, corresponds  to
arg P(ja)osc_i) '
Model FOPTD:
2 2
W — W3
= PP (16)
\/|P]_|ZC()f _|P2|2w22| 1" 2|
2 2
Pl —|A
_ |22|2 |1|2 - (17)
B[ or -|P)| @
Io_ arg A, +arctan(Tw; ) (18)
wq
Model FOPTDI:
2 2
W — Wy
= P||P. (19)
\/|Pl|2w{1 _|P2|2w£1| 1" 2|w1w2
_ [l o3 -Infof 0
B of ~|Po[*
Io_ arg A, +arctan(7e, ) + 0.5z 1)
= o
Model SOPTD:
2 2
)
=——= "¢ _|P|P. 22
Rlo? ez I @
P —|P
T = | §| | 1| - (23)
|Rlor - [Pl
Io_ arg A + 2arctan(Tw,) 24)

w1

As said before, it is necessary to run two tests to
measure G(j@,s. 1) and G(j@,, ). The first test is

done just by increasing the proportional gain K, until
the system reaches a limit cycle and oscillates at a
frequency @,,. 1. The second test is prepared by a

SC_



second increase of K, to reach a new limit cycle at
another frequency @,,. , > ®

osc_1"

However, the previously defined procedure just
works when the current process and the model to fit
have the same order and structure. This is due to the
following reasons:

- If the transfer function template to fit f’(s) is

exactly equal to the actual process to identify, the
identification procedure will provide an exact
result. This is due to the fact that the template is
fitted with the same degrees of freedom than the

true process. As result, the behaviour of é(s) will
be equal to G(s) in all the frequencies range.

- If the process has a higher order than the template
or a different structure, this will produce the
result to be exact at the range of frequencies

between @ but  with

osc_1 and Wpse 2
discrepancies at other frequencies. This is a
consequence of fitting the template with lesser
degrees of freedom than the true process. The
effect is that the behavior of the model at
frequencies out of the range Modofy can become
very inaccurate. Such fact will be especially
notorious and visible at frequencies below w,,, ;

or at the steady state when the fitted model is a
FOPTD or a SOPTD, that is, when the current
process does not have integral dynamics.

The solution proposed in this work consists of
forcing the system to oscillate during the second test
at a very low frequency as close to zero as possible.
To reduce the frequency of the limit cycle below
,, ; an additional delay will be added to the

system during the second test. Next some examples
are given in order to explain better the problem and
present the solution.

3.2. Identification of IFOPD processes

Example 1: To start illustrating the event-based
identification procedure, let considering the process

(8l,

-0.2s

e
Pls)= s(s + 1)

(25)
Initially, the process is controlled by a Pl tuned to
force the system to oscillate. The controller
parameters selected for such a goal are
[K, =1T; =10]. In all the simulations, measurement

noise was not considered and ¢ was set to 1. The data
obtained in the first test were
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G(j@,, 1)=(-0.8542-0.6357;)  at
@5 1 =0.755. For the

increased to 1.2 to obtain a limit cycle at a higher
frequency and 7; was not changed. Now, the second

test data were Wpse o =0.8671 and
G(j@,, ) =(-0.8878-05652). The

parameters were obtained by applying (5) and (6) to
the previous data to get P(j@,,. 1) and P(jw,s. 2),

and after that, using (19), (20) and (21). The resulting
model and results obtained from other relay-based
identification methods are presented in Table I. It can
be appreciated that the event-based procedure gives
results of the same quality as more elaborated methods
based on state-space [1] and curve-fitting [8]
approaches.

frequency

second test, Kp was

model

Table I: Models and errors for (25) where @, =2.16 .

Method Model E
—-0.2015 s
Eventbased | 1.0000e ™77 | 40599
procedure 5(1.0000 s +1)
-0.2s
By [8] 1.0000e 77 1 50027
5(0.9998 5 +1)
-0.2s
By [1] 1.0000e 7 16 50013
5(0.9999 5 +1)

The accuracy of the estimated process model is
computed using the frequency domain estimation

error index (E) for each of the process models is
found by applying integral of absolute error (IAE)
criterion as

o

- |

0

P(jo) - P(jo) }dw |
P(jo)

wherew . is the phase cross over frequency of the

actual process P(s), that is, the frequency where
phase shift is equal to -180°.

Example 2: Let now considering the identification of
the higher-order process presented in [8],

(—s +De™>

Plo)= s(s +1)5

(26)

After two consecutive tests with the two set of control
parameters [K,=0.1T, =50] and

[K,=0.12,7;, =50], the model obtained is shown

and compared in Table Il. The obtained data were
@y 1 =0.098 and P(jo,, ;)=(-8.8169-4.7364))




for the first test, and @, , =0.1167 and
P(jw,s »)=(-7.996-2.3685/) for the second one.
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- masci2
% —10
% y
> ose 1 |
m
£ 5 I
2 *
E !
-30 ;
I
12
40 1 L 1 L 1
-12 -10 -8 -6 -4 -2 0 2

Real Axis

Figure 3: Plots of (26) and the identified model.

In the Example 2, the Nyquist plots of the model and
the process are apparently similar in the third
quadrant (see Figure 3). In particular, the model and
the process behave in a similar way between @, 1
and @, ». However, there are discrepancies at

lower frequencies. Indeed, at the frequencies
® =0.01, 0.001 and 0.0001, the differences between

the true process and model, that is, P(jw)—ﬁ(ja)) ,
are 0.088, 0.87, and 8.73, respectively (see detail in
Figure 3 of the Nyquist points at @ = 0.001).

Table II: Models and errors for (26) where w,. =0.143.

found to be [K, =5,7; =10] and [K, =6,7; =10].

The results of the fitting can be found in Table IlI. It
must be noticed that the result of the event-based
procedure is very accurate because the actual process
has the same order that the template to fit.

Example 4: Now the following high-order process is
going to be identified as a FOPTD model

P(s)=(s+1)~* (28)

where w,. =1. Applying the procedure as before,

that is, with two sets of control parameters that force
the system to  oscillate, for  example,
[K,=15T,=3] and [K,=16T,=3], the

estimated model is

2.91136_]“17515

P(s) =
8.7939s +1

Table 111: Models and errors for (27) where w,. =0.844.

Method Model E
] —2.0015 s
By the event-based | 0.9999 e™"™"" | 4 yy0es
procedure 9.9999 5 +1
—2.0s
By [2] 0999 ™ | 000055
9.9957s +1
-2.3s
By [12] 1037 0.1140
10.3s +1

Method Model E
By the event- ~9.0526 s
based 0.9991e 77 0.00019
orocedure 5(1.9670 s +1)
—-0.55
By [8] 0.7319 ¢ 0.52121
3.1953 5(2.0051 s +1)
—-8.5278 s
By [13] 1018e 7777 0.00156
5(2.5293 5 +1)
3.3. Identification of FOPTD processes
Example 3: Consider the following process
P(s) = @)
10s +1

that is being well controlled by a SSOD-PI tuned
with  [K,=2T7;=10]. By increasing the

proportional gain, the sets of parameters used to enter
the system into two different stable limit cycles are

Obviously, such result is not acceptable as the steady
gain is far from the correct value of one producing an
estimation error index very high (£ =0.347). With
the identification procedure as originally defined, the
fitting of the model is good around the two Nyquist
points defined by the frequencies of the two limit
cycles but not at w=~0. In this example, such
oscillations frequencies are w 0.5506 and

0.5739, and the differences are small,

osc_1 —

Dose 2=

|PU@,c_1) = Py 1)|=0.0004

‘P(ja)osc_Z) - ﬁ(jwosc_Z)‘ =0.01949
but not for =0,
‘P(O) - 13(0)‘ ~1.9113

It can be observed in Figure 4 that the identified
model fits correctly around the oscillation
frequencies measured in the two tests. In particular,
the fitting is exact for w,, , as it is the frequency
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selected for getting L with (18) once K and T are
known by (16) and (17).

—— Actual process
Event—based model

Imaginary Axis

Real Axis
Figure 4: Nyquist plots of (28) and the fitted model.

If a fitting of a SOPTD model is tried, the new result
improves with respect to the previous FOPTD model,

. ~0.91425
B(s) = L1110¢ :
(1.7102s +1)

with E =0.0753, but there is still a 10% of
discrepancy at w =~ 0,

‘P(O) —13(0)‘ ~0.1110

4 Modifying the procedure

A practical solution to make a correct identification
is to generate in the second test a limit cycle at a
frequency o, , asnear zero as possible. A point of

G(s) with a frequency o, , <<, ; are, in

general, far from the intersection with the DF of the
even-based sampler and, also, due to the integral
action of the PI controller, the point will be located
along the negative real axis of the Nyquist map. The
solution is to add new dynamics to G(s) to allow

that the very low frequency range of the new system
G'(s) intersects in some point with —1/N(4,5). To
understand how to modify the estimation procedure

to make the second test with a low frequency limit
cycle, see the steps depicted in Figure 5.

Step 1 consists in rotating a unknown Nyquist point
P =G(jwue 2), Where o is a very low

osc_2
frequency, to the grey area depicted in Figure 5. That
area represents the theoretical section of the Nyquist
map where the intersection of G'(s) with the
negative reciprocal of N(4,8)can be produced after
a radial movement of the point P, (Step 2). This
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theoretical section is located between
arg(-1/ N(=,0))=-n and
arg(-1/ N(6,0)) =-0.757, that is, between -180°

and -135°.

G'(s) = G(s)e ™« G(s)
-8 —ﬁ —‘4 —2 0 ‘
Figure 5: Steps to modify the second test to get
oscillations at frequencies near zero.

A way to get that is by rolling G(s) around the center
of Nyquist map. As the rotation can be done by
adding a delay L. to G(s), that s,
G'(s) = G(s)e **« , bounds for L., to assure that P,
will be rotated inside the grey area are given by,

—r—arg P,
—roagh
w

< —0.757 —arg A
[0

Lad (29)

osc_2 osc_2

Assuming that the frequency o,,. , selected for the
second test is low enough (e.g.0.lw,, ;), and

because of the integral action of the PI controller, we
can consider arg A, ~ —0.57 (that is, -90°) at very low

frequencies. Thus, from (29) practical bounds for L,
could be,

0.57 0.257

>L,g > (30)
Dpse _2 Dose _2
and fixing @,,. , =0.1w,, 1,
o7 >L,, > 2:57 (31)
Dose 1 [ 1
Now, as the unknown point

a,

Py =G(jw,. 5)e”’ me2latjs located in the grey
area but far from the intersection with =1/ N(4,9) , it
is necessary to give a second step. This step consists
in a radial translation of the new system G(s)e * «
looking for an intersection with —1/ N(4,9). That

must be done by reducing the proportional gain as it
can be appreciated in Figure 5. Unfortunately, the
calculation of this gain is not intuitive and must be
done by trial and error.

A =G{ja,, )



Example 5: We identify the previous process
P(s)=(s+1)™* by applying the modified

procedure. The first test is run with the same
parameters as in the previous example, that is,

[K,=15T, =3, and  the  result s
@,5c 1 =0.55067 and argG(jm,, 1)=-146°. By
fixing @,,. , =0.1w,, ; and according to (30), we

obtained 28.5> L, , >14.2. The second test is run

with  the  following set of  parameters
[K,=0157; =3 L,, =214] and the frequency

measured is @,, , =0.049, that is close to

01w, 1. In Table IV and Figure 6, the new

estimation is presented and compared with the model
obtained by a more elaborated method.

03l Actual process
B Event-based model
----[Berneretal,, 2016]
0
< 02
e
(3]
£
o -0.4
@
E
0.6
-0.8 : ;
04 -0.2 0 02 04 06 08 1
Real Axis

Figure 6: Nyquist plots of P(s) = (s +1) ™ and the
identified model with the modified procedure.

Table V: SOPTD models of (28) where o, =1.

Table IV: FOPTD models of (28) where w,. =1. Method Model E
Method Model E By the event-based 1.0007 77 0.0472
By the event-based | 1.0026 ¢ *#%* | 000 procedure (151895 +1)2 |
procecre 2'5032719 ;—391 By [3] 10547 | 0 g0
By [3] 0987e " | 01426 y 17625 +1)% |
3.1036 s +1
Example 6 Table V shows the fitting of Example 7: To produce a new limit cycle at a very

P(s)=(s+1)"* to a SOPTD model using the
results of the two tests of the Example 5.

As said before, if the structure of the actual process
and the model to fit are the same, the original method
is valid for any model and it is not necessary in the
second test to force the system to oscillate at a very
low frequency. But if the structure of the actual
process is higher than the model template it will be
necessary to modify the method as explained before.

However, the original method is valid for FOPTDI
fitting of high-order processes with one pole at the
origin (see Example 7). It is due to the double
integral action introduced by the process and the
controller. Forcing the second limit cycle at a very
low frequency can be done by reducing the
proportional gain used in the first test. The effect of
this action produces two consequences in the Nyquist
plot of G(s) : (a) to be moved radially towards the
origin, and (b) the reduction of the phase margin as

consequence of a lower integral gain (K, IT;). The
radial movement produced an approach of the low
frequencies to the origin, and the reduction of the
phase margin reassures the intersection of G (s) with

the reciprocal of the describing function of the event-
based block.
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low frequency using the process of the Example 2, a
new simulation is run with the control parameters

[K,=0.0017; =50]. It must be noticed that the
proportional gain has been significantly reduced with
respect to the parameters applied in the second test in
Example 2 (that are [K, =0.12 7; =50]). Now, the

of this new limit cycle is
=0.004. It can be observed in Figure 7

frequency

wosc_ 2_new

the differences in the frequencies of the limit cycles
depending on the selected set of controller parameter.
The identified FOPTDI model of (26) using data

from the limit cycles at @, ;=0.098 and
@,5c 2 =0.004 is

. -8.9984s

B(s) = 1:000%e 32)

~ 5(2.02335 +1)

With this new model, the discrepancies at lower
frequencies with respect to (26) have been reduced.
For the frequencies w =0.01, 0.001 and 0.0001, the

differences ‘P(jw)—f’(jw)‘ are 0.027, 0.167, and

1.66, respectively (compare these values with those
presented at the end of Example 2).



), =0.004

asc_2_new

@y 501167

[}

Imaginary Axis

@y 0098

—— [Kp=0.1,Ti=50]
—— [Kp=0.12,Ti=50]
=== = [Kp=0.001,Ti=50] |

Real Axis

Figure 7: Plots of G (s) where
P(s) = (-s +1)e”* /(s +1)® and C(s) changes its
parameters.

Conclusions

In this paper, an autotuning method completely
designed for event-based Pl control loops has been
presented. The identification approach is based on
the information obtained from two limit cycles
produced by the SSOD sampler and the PI controller.
Simulation examples have proven the effectiveness
of the method. However, there are some issues that
need to be improved.

For example, regarding the identification of FOPTD
and SOPTD models, it is necessary to improve the
procedure to determine the second test, especially the
estimation of the new proportional gain to apply in
the Step 2. This will be part of future investigations.
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