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Abstract: In this article, a novel optimization metaheuristic based on the vapour-liquid equilibrium
is described to solve highly nonlinear optimization problems in continuous domains. During the
search for the optimum, the procedure truly simulates the vapour-liquid equilibrium state of multiple
binary chemical systems. Each decision variable of the optimization problem behaves as the molar
fraction of the lightest component of a binary chemical system. The equilibrium state of each system
is modified several times, independently and gradually, in two opposite directions and at different
rates. The best thermodynamic conditions of equilibrium for each system are searched and evaluated
to identify the following step towards the solution of the optimization problem. While the search is
carried out, the algorithm randomly accepts inadequate solutions. This process is done in a controlled
way by setting a minimum acceptance probability to restart the exploration in other areas to prevent
becoming trapped in local optimal solutions. Moreover, the range of each decision variable is reduced
autonomously during the search. The algorithm reaches competitive results with those obtained by
other stochastic algorithms when testing several benchmark functions, which allows us to conclude
that our metaheuristic is a promising alternative in the optimization field.

Keywords: optimization; optimization algorithms; metaheuristics; local search

1. Introduction

Over the past decades, conventional search methods have been applied to solve optimization
problems, providing promising results in many cases. However, these methods may fail in more
complex real-world problems where nonlinearity and multimodality are fundamental issues. If both
constraints and objective functions are linear, the problem can be addressed with techniques specifically
designed for solving linear programming problems, such as the simplex method. However, in most
situations such problems are nonlinear, hindering the solution. Another difficulty arises when the
problem is non-convex, the gradient is unknown, or the first derivatives do not exist. In these cases,
it is not possible to apply gradient-based optimization methods, which is also common in real-world
problems. Another challenge arises when the number of decision variables is large, affecting the search
space. For instance, the well-known travelling salesman problem with a number of decision variables
equalling 100 implies a number of possible combinations of 9.3 x 10!, meaning that it is not practical
to search all possible combinations. Thus, most real-world problems cannot be handled by conventional
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methods, which fall into local optima. Most real-world problems are NP-hard, which means that they
require exponential time to be optimally solved. Thus, more efficient optimization methods are needed
as metaheuristics [1].

Metaheuristics have shown promising results when solving extremely nonlinear and multimodal
optimization problems. This type of algorithm combines randomization and local search to define
strategies for solving difficult optimization problems with an approximate focus, i.e., it finds
good solutions, but there is no guarantee that optimal solutions will be reached [1]. As expected,
these techniques can be applied successfully to solve some problems, though they do not provide the
desired success for others [2].

Different types of metaheuristics have been proposed in the literature during the last decades.
Among the most promising metaheuristics are those inspired by natural phenomena (e.g., physical
and chemical processes) and biological systems (fireflies, bees, and ant colonies) which have proven to
be especially relevant for solving problems in different fields [3]. These metaheuristics can be classified
depending on whether they are based on a single solution during the search (also called trajectory
methods) or several solutions (also called population-based method) [4].

Among single solution-based metaheuristics, we focus on simulated annealing (SA) [5] (it is based
on the annealing of metals, which consists of heating and then slowly cooling the metals to modify
their physical properties), variable neighbourhood search (VNS) [6] (it performs the search by
methodically modifying the local environment), greedy randomized adaptive search procedure
(GRASP) [7] (an iterative procedure composed of an initial generation stage with heuristics and
random selection processes and a second stage of improvement with local search), guided local search
(GLS) [8] (it dynamically modifies the objective function during the search through a penalty factor,
changing the search landscape to avoid being trapped in local optima), iterated local search (ILS) [9]
(it performs a local search starting from an initial solution until a local minimum is reached, and then,
the search starts again after modifying the solution found), and tabu search (TS) [10,11] (it considers
an iterative local search procedure, which explores the search space from one solution to another,
while accepting worsening movements if no improvement is available).

Population-based metaheuristics have been applied to different areas, including data mining [12],
machine learning [13], computer science [14], simulation and system modelling [15], image
processing [16], industry [17], and engineering and scheduling [18,19]. Some metaheuristic procedures
supply better results in solving specific problems, whereas other metaheuristics are limited to certain
domains of the decision variables; however, all of them are successful in solving optimization
challenges [2]. Among these classic population-based methods, evolutionary algorithms (EAs) [7,20]
constitute a set of algorithms based on Darwin’s evolutionary theory, where they start from an initial
randomly generated population, which is improved over generations through recombination and
mutation operators. Genetic algorithms (GAs) [21] are a subset of EAs, where the individuals in
the population are in the form of an array or chromosome. Other important population-based
metaheuristics are the gravitational search algorithm (GSA) [2] (it is based on the Newtonian law
of gravity), the black hole (BH) algorithm [22] (where the best solution of a population is treated
as a black hole that attracts other solutions or normal stars around it during the search), ant colony
optimization (ACO) [23] (an ant colony searches for food according to the concentration of a chemical
substance called a pheromone that ants deposit during the search), particle swarm optimization
(PSO) [24] (it simulates bird behaviour using a simplified social model), the bat algorithm (BA) [25]
(it is inspired by how bats look for their prey using echolocation), the artificial bee colony (ABC)
algorithm [26] (it is inspired by the behaviour of honeybee swarms), and the artificial chemical reaction
optimization algorithm (ACROA) [27] (it is inspired by some types and frequencies of certain chemical
reactions). In the last five years, several optimization algorithms have been developed that consider
novel search strategies and provide significant results. An important fraction of these methods is
based on the social behaviour of a group of individuals of a determined live species. One of them
considers, as a source of inspiration, human reasoning to make decisions when faced with fuzzy
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data [28]. Some of these techniques are: grey wolf optimizer (GWO) [29] (it imitates the command
hierarchy and hunting strategy of grey wolves), the pity beetle algorithm (PBA) [30] (it was inspired by
the grouping behaviour of the beetle Pityogenes chalcographus, looking for food and nests), shark smell
optimization (SSO) [31] (it simulates the skill of a shark for finding their prey by using its sense of
smell and moving toward the source of the odour), symbiotic organisms search (SOS) [32] (mimics the
symbiotic interaction strategies followed by organisms to survive and propagate in the ecosystem),
dolphin echolocation (DOE) [33] (it considers the echolocation system used by dolphins in searching
for food), the whale optimization algorithm (WOA) [34] (it mimics the social behaviour of humpback
whales), and the emperor penguin optimizer (EPO) [35] (it simulates the huddling behaviour of
emperor penguins (Aptenodytes forsteri)).

This paper proposes a novel metaheuristic for continuous domains inspired by a physical-chemical
process, i.e., the thermodynamic equilibrium between two fluid phases of a mixture composed
by two chemical species: the vapour-liquid equilibrium (VLE) metaheuristic. The algorithm is
based on the distribution of the most volatile component of a binary chemical mixture, between
the liquid phase and the gas phase constituted by the vapour [36]. Thus, the search process of
the metaheuristic is guided by the state changes of binary systems and uses the mathematical
concept of the total differential. The behaviour of each binary system represents the movements
or changes of a decision variable of an individual of a population. The metaheuristic also considers
stochastic components to include diversity during the search process to avoid being trapped in
local optima. Some examples of these components are found when generating new individuals,
applying mutation operators, and enabling the exploration around worse solutions instead of better
solutions. Some preliminary results obtained by the first version of VLE solving six benchmark
functions were published previously [37]. Now, this paper describes the search mechanism of VLE
in a deeper and more extensive way; it details the flowsheets of their main modules and presents
new results obtained with more benchmark functions, which allows us to conclude that VLE is
a promising alternative in the optimization field. This conclusion was the expected answer to our
research question about whether changes in the thermodynamic state of a binary chemical system,
in vapour-liquid equilibrium, would succeed or fail in developing a robust optimization technique to
solve complex optimization problems if these changes were associated with each decision variable and
were conducted towards the best equilibrium states, applying the concept of total differential.

The remainder of this work is structured as follows. Section 2 includes a conceptual explanation
of VLE and a practical example of its application to a binary chemical system. Section 3 supplies
a description of the optimization method by explaining how we perform the movements of the
decision variables. Section 4 shows the mathematical models of the simulation used during the search
for the optimal solution. Next, the movement operators, the parameters required, the method of
characterizing the decision variables as chemical species, the inputs and outputs of the optimization
procedure, the pseudocode of VLE and the flowsheets of the main modules of the algorithm are
described in Section 5. For testing purposes, Section 6 describes the benchmark functions used as
optimization problems and presents the optimization experimental results achieved. Finally, we present
our conclusions and future work.

2. Vapour-Liquid Equilibrium for Binary Chemical Systems

In the chemical engineering field, the thermodynamic equilibrium ratio between two fluid
phases is a common calculation. In this line, two classical calculation problems in the industry are
multicomponent and flash distillation [38].

Let us assume a mixture of two fully miscible chemical species, such as a liquid and its vapour
in thermodynamic equilibrium. Under saturated conditions, each of the two chemicals is present in
all phases (vapour and liquid), and the chemical potential of each component between both phases is
the same. In the case of an enclosed system, the total Gibbs free energy is at a minimum regarding all
possible changes at a settled temperature and pressure [36,39]. This saturation condition is considered



Appl. Sci. 2018, 8, 2080 4 of 36

for designing the search process of the algorithm proposed in this paper. Specifically, we focus on
bubble and dew points of a binary chemical mixture for designing the exploration phase of the
algorithm and the flash distillation process for the exploitation phase.

To illustrate the concepts introduced before, we propose the following example. Let us assume
a liquid mixture of 2-butanol and 1-butanol with a mole fraction of 0.352 and 0.648, respectively,
as shown in Figure 1. For this binary system, the chemical species 2-butanol is more volatile than the
chemical species 1-butanol. The mixture is enclosed in a cylinder with a piston at 98 °C, and 525 mmHg,
and the mixture is slowly heated at a constant pressure to a temperature of 104 °C so that it is in
equilibrium all the time.

. The Bubble Point _ B The Dew Point _
P=525 mmHg
P=525 mmHg
po=102.6°C

U i

) . First drop of liquid formed
adiabatic (saturated liquid phase, mole
Thp=99.9°C 5’0 combination fraction Is and i)

cylinder-piston

First bubble of vapour formed
(saturated vapour phase,
mole fraction v4 and v3)

v

Saturated Liquid Phase Saturated Vapour

(1, ) (e,
Chemical species global mole fraction
2-butanol (1) z1=0.648
1-butanol (2) z5=0.352
Total 1.000

Figure 1. Bubble and dew points: vapour and liquid phases in thermodynamic equilibrium.

Following the previous example, Figure 2 represents the phase diagram with the physical states of
the system during the heating process, according to the system temperature (T), the molar fraction for
vapour (v), and the liquid (/) phases of the most volatile chemical species in the mixture. The mixture
(point A) is a subcooled liquid at 98 °C. The system reaches the bubble point in point B at 99.9 °C,
which occurs when the first bubble of vapour appears. This vapour, represented by point B’ with mole
fraction vy, is richer in 2-butanol than the original mixture, reducing the 2-butanol concentration in
the remaining liquid phase. The horizontal line drawn by C-C’ represents a flash distillation, where the
liquid and vapour are in equilibrium (Figure 3). As the temperature continues increasing, more vapour
is formed from the liquid. Vapour and liquid are always in equilibrium; hence, the thermodynamic
states of the two fluid phases lie along paths B'D and BD' and are linked everywhere by horizontal
lines. The mixture reaches its dew point in point D at 102.6 °C, which occurs when the last drop of
liquid is left. From this moment, the system is a fully saturated vapour, reaching the last point E at
104.0 °C. Note that, as the system is closed, the overall composition remains constant during the entire
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heating process. Thus, the state of the system is always represented by a point on the vertical line that
goes from A to E.

T oC P=525 mmHg
Vapour Phase
(superheated region)
E
—_ (o}
T=104°C 'D T vs vy
po=102.6°C
Tfg=101.25°C;
pr=99.9°C
T=98°C ;
Liquid Phase
(subcooled redion)
I : Zy .
0.0 z1, Iy orvy 1.0

Mole fraction of 2-butanol (1)

Figure 2. Tlv diagram for 2-butanol / 1-butanol.

Vapour (V, vq)

Saturated
vapour

Feed (F, z,) phase

Saturated
liquid
phase

Liquid (L, I;)

Figure 3. Flash distillation: vapour and liquid phases in thermodynamic equilibrium.
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3. Optimization Method Proposal

In this proposal, each decision variable is handled as the lightest chemical species of a given
binary liquid mixture at a specified pressure and temperature, where the system pressure remains
constant for all thermodynamic equilibrium calculations.

The optimization process starts from an initial randomly generated solution, which is iteratively
modified through moving operators, generating new solutions. The algorithm includes an exploration
mechanism to restart the iterative search, starting a new search process in a different area of the space of
the solutions in the event that the previous search is considered exhausted. The maximum number of
restarts is defined by a parameter of the metaheuristic, which controls the search orientation, making it
more oriented to either exploration or exploitation. As expected, the maximum number of restarts will
be fewer than the maximum number of movements allowed during the whole search process, which is
also defined by another parameter of the metaheuristic. The search process ends when a stop criterion
is reached, which can be the maximum number of movements or the maximum number of restarts.

Focusing on the exploration stage, the value of a decision variable is calculated according to the
bubble and dew points of the binary chemical mixture associated with the same decision variable.
This means that the value is adjusted according to the thermodynamic state that provides the best fitness
value. Thus, the solution is evaluated for each value of the decision variable, while the other decision
variables remain fixed in their final values after performing the previous movement. As a result,
the fitness function is evaluated several times (indicated by a parameter) between two consecutive
movements, by each decision variable.

Figure 4 shows a movement example performed during the exploration stage for an optimization
problem in R?, for the decision variable x1 between the iteration t and the iteration ¢ + 1. Figure 5 show
movements for x,. Specifically, these figures show phase diagrams (temperature versus mole fraction)
for binary systems corresponding to acetone-acetonitrile (Figure 4) and benzene-toluene (Figure 5).

T
b2 Vapour Phase

(superheated)

Tvs v,

pr,t E

Top,t+1

Liquid Phase Th 1
(subcooled) : : ’
1;(t)=0.313 i1,(t+1)=0.553

0.0 ¢ z1, Iy or I?.J_z 1.0:

Mole fractioniacetone (1)

-100.0 ; X1y +100.0:

xy(t)=-37.6  xy(t+1)=+10.6

Figure 4. Movements of variable x1: Tlv diagram for acetone (1)-acetonitrile (2).
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P

Vapour Phase
(superheated)

Liquid iPhase
(subcooled)

5 Th, 1
i13(t) = 0.153 13(t+1)%0.750

0.0 A 21, 1] or vy : 1.0}
: i Mole fraction benzenei(1) 5

-100.0: X2 v +100.0'
xo(t)= -67.5 Xo(t+1)= +50.0

Figure 5. Movements of variable x;: Tlv diagram for benzene (1)-toluene (2).

Focusing on the exploitation stage, the value of a decision variable is calculated based on the
flash distillation process of the binary chemical mixture associated with the same decision variable.
The value of the decision variable is adjusted based on the thermodynamic state providing the best
fitness value in a similar way as for the exploration stage. Thus, Figure 6 shows how the new values
of a decision variable are obtained during the exploitation stage, where T}, is the flash distillation
temperature for the decision variable x;. This figure corresponds to the same case of Figure 4.

Th,2

Vapour Phase
(superheated)

T vs vy

T
po,t ...................
Top,t+1=Tfg |77 Flashop T £
pr,t .......................... E ....... )y
¢ Tuwsly
Liquid Phase : :
(subcooled) ; 5 Th,1
1;=0.428!  i;=0.553
0.0 I} oor vy 1.0
' Mole fraction dcetone '
-100 JO +100!
: v *1: !
X1,t+1= X1,t=

-14.4 +10.6

Tlv diagram for binary system
acetone(1)-acetonitrile(2)

Figure 6. Movements of variables x; during the exploitation stage.
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The algorithm permits the stochastic modification of the chemical compounds and includes the
random change of compositions of the binary liquid mixtures assigned to each decision variable.
It also includes the acceptance of less than optimal solutions to avoid stagnation in local optimum.
Finally, the technique includes the possibility to set up the search orientation of the algorithm.

4. Mathematical Models of Simulation Used During the Search for the Optimal Solution

In this section, we summarize the basic mathematical models for simulating the vapour-liquid
equilibrium models, and the conditions that bubble point, dew point and flash distillation must satisfy.

4.1. Notation

The variables used to model the vapour-liquid equilibrium in a binary mixture of chemical species
in its bubble point or dew point, or in a flash vapourization process of a binary mixture, are listed in
Table 1. These definitions are required to write the fundamental equations that permit to obtain the
mathematical expressions for the movement operators.

Table 1. Variables considered in the model.

Variable Definition

F Molar flow rate of the feed to the flash distillation vessel.
LV Liquid or vapour molar flow rates leaving the flash distillation vessel.
f; Overall molar composition of the compound j in the binary system
]

or in the feed to the flash distillation vessel.
Molar fractions of the chemical species j in the liquid or vapour of the binary system,

ljroj or in the liquid or vapour stream that leaves the flash distillation vessel.
K; Vapour-liquid saturation ratio or K-value of compound j.
Pj* Vapour pressure of chemical species j.
P Total system pressure.
T System temperature.
A B. C Constants A, B and C of Antoine’s equation [40]
]/ 7

J - for vapour pressure calculation of the chemical species ;.

4.2. Mathematical Models

Equations to allow developing simple mathematical models for simulating the vapour-liquid
equilibrium models.
Total Mass (Molar) Balance:

F=L+V 1)
Mass (Molar) Balance for Component:
Ff;i=Llj+ Vv; je{1,2} 2)
L/ F Ratio: .
0= )
Unitary Mass (Molar) Balance:
2 2
ijlvj =1 and ijll]- =1 4)
Phase Equilibrium Relationship:
U]' = K]l] ] S {1,2} or l] = U]/K] ] S {1,2} (5)

K-value (the vapour-liquid equilibrium is established by Raoult’s law [36]):
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Kj=Pf/P  je{1,2} (6)

Physical Properties: Vapour pressure of chemical species j at a given temperature T:

P]?k =exp[A; — B;/(T +C;)] je{1,2} (7)

Equation (8) must be satisfied at the bubble point to calculate its temperature Tgp and the molar
fraction of the first vapour produced, i.e., v;. In these conditions, the vapour produced is in equilibrium
with the liquid that has a composition /; = f;. This equation is built by combining (4)~(7).

2
Y =1= Y (Kl ®)
=1

Similarly, the condition in (9) must be satisfied at the dew point to calculate its temperature Tpp
and the composition of the first drop of liquid produced, i.e., [;. In these situations, the liquid produced
is in equilibrium with the vapour phase, which has a molar composition v; = f;. This equation is
generated by combining (4)—(7).

Yo li=1=Y,(0/K) ©)

Equations (8) and (9) are solved for temperature T, the bubble point or dew point, using the
bisection numerical method [41].

Finally, for the flash distillation calculations, the condition in (10) must be satisfied in order
to calculate the ¢ = L/F ratio and the molar fraction of the liquid formed, i.e., l]-. Under these
conditions, the vapour phase formed is in equilibrium with the liquid phase which has a molar
fraction /;. Equation (10) is described by combining (1)~(7). It is solved for ¢, also using the bisection
numerical method [41].

2 1 2 f]
ijll]_l_ 1571 — 9K, (10)

5. Algorithm

The algorithm considers a trustworthy strategy, novel movement operators, few tuning
parameters, and the corresponding inputs and outputs.

5.1. Notation

The variables used in Equations (11) through (18) are listed in Table 2.

Table 2. Variables considered in the algorithm.

Variable Definition

min Lower bound of x; in the real search space of x;.

max Upper bound of x; in the real search space of x;; max > min.

New lower bound for x;, but in the molar fractions search space for x;, i.e., zero, the minimum

value of a molar fraction.

New upper bound for x;, but in the molar fractions search space for x;, i.e., one, the maximum

value of a molar fraction.

Overall the mole fraction of the chemical species i, i.e., the species j = 1 (the most volatile

fi compound) in the binary system of the decision variable i, or in the feed to the binary flash
distillation vessel i.
Molar fractions of the chemical species i, i.e., the species j = 1 (the most volatile

l;, v; compound) in the liquid or vapour of the binary system of the decision variable i, or in the liquid
or vapour stream that leaves the binary flash distillation vessel i.

nmin

nmax
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Table 2. Cont.

Variable Definition

Relationship of vapour-liquid equilibrium, or K-value, of the chemical species i,

K; i.e., the species j = 1 (the most volatile compound) in the binary system for the decision
variable i or in the binary flash distillation vessel i.

¢ L/F ratio for the binary flash distillation vessel i.

G Represents any of the constants A, B or C, of Antoine’s Equation.

Gy Represents the lower bound of any of the constants A, B or C, of Antoine’s Equation.

Gy Represents the upper bound of any of the constants A, B or C, of Antoine’s Equation; G5 > Gj;.

X Decision variable i.

xfl Lower bound of the decision variable x; in the real search space of x;.

xfl Upper bound of the decision variable x; in the real search space of x;; xfl > xfl .

5.2. Movement Operators

These operators correspond to the exploration and exploitation stages.

5.2.1. Search strategy

VLE begins the search by randomly creating a single starting solution. To do this, VLE considers,
independently, the initial domain specified for each decision variable. Once this solution is created,
VLE begins to explore its environment in a parallel search space, making a predefined number of
changes in the value of each decision variable, keeping the other ones constant. This parameter is
called alpha (#) and it can be any odd number greater or equal to 3. If this number is equal to 5,
the algorithm will apply, for each decision variable, (5 — 1) /2 = 2 times the bubble point operator and
then (5 —1)/2 = 2 times the dew point operator.

In other words, VLE starts creating new saturated binary mixes for each decision variable. For each
created mixture, VLE evaluates its aptitude by using the equivalent values of each variable in its real
domain. Next, for each decision variable, VLE looks for the most suitable mixture, that is, the one with
the best aptitude, and thus the new value of the decision variable is determined. With the new values
of the decision variables, the aptitude of the new solution is evaluated and compared with the best
aptitude obtained from the last movement. If a better result is obtained, the procedure iterates until the
change between the current aptitude and the best aptitude is less than an established tolerance or a stop
criterion is reached. This criterion is usually the maximum number of movements or restarts. If the last
solution found is the best one so far and it is no longer possible to continue exploring its environment,
given the correspondence established between the real and parallel domains of the variables when
the search starts or restarts, then VLE narrows the relationship between these two domains around
the solution found. Once the relationship is narrowed, the exploitation phase begins. Nevertheless,
if the result is worse, VLE either proceeds to accept the solution found or reject it to restart the search
by creating a new initial solution elsewhere. The decision of acceptance or rejection depends on the
probability of acceptance calculated for the solution found. If its probability of acceptance is grater than
the predefined probability beta, then VLE accepts the solution, otherwise it is rejects it. The relationship
between the real domain and the parallel domain is given by (12) or (14). Figures 7-12, show the
temperature diagrams versus molar fraction, in terms of ordered pairs, versus the respective values for
each decision variable. The narrowing of this relationship is autonomous and depends exclusively on
the equilibrium relationship between the chemical species that make up the binary mixture. If initially
the relationship between these domains is from [—100, +100] to [0, 1], and if the values of the decision
variable closest to their current value are, for example, +4 and +12.2, assuming a value for the decision
variable equal to 47, the narrowing for this variable will be from [+4, +12.2] to [0, 1]. In other words,
VLE amplifies the environment closest to the solution, allowing the exploitation stage.

Summarizing, the exploration is performed covering a wide area that contains a certain number
of binary chemical mixtures, all of them possible solutions of the optimization problem, and the
exploitation is performed covering a reduced or local area that contains the same number of binary
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mixtures, with different compositions but very alike among them. Each of these areas defines a search
table. A search table is a matrix used internally for each decision variable to perform a search around
the current solution and select the more suitable movement for the corresponding decision variable,
between iterations ¢ and ¢ 4 1. These areas are wide area neighbourhoods (in the exploration stage),
and local area neighbourhoods (in the exploitation stage), respectively.

5.2.2. Exploration Stage

In the exploration stage, VLE considers two search operators: bubble point and dew point.
These operators are given by (11) for the bubble point, and (13) for the dew point. Both operators
“work” in the binary space R?, where v; and [; are real numbers that vary between 0 and 1.

In the case of the bubble point operator, from (5) we obtain (11), where [;(t) is equivalent to x;()
(in the binary search space of the decision variable x;) and K;(t) is the K-value for the compound i
at temperature Tgp. The molar composition of the lightest compound of the liquid fraction, i.e., [;(t),
is calculated by (12). This equation is a linear transformation of the values of a decision variable in the
real domain [min, max], into values of its equivalent variable in the real domain [0, 1].

li(t + 1) = Ui(i’) = Ki(t)li(t) i€ {1,2,3,...,7’1} (11)

The real domain [0, 1] is defined here as the search space for the decision variable x;, whose true
value belongs to the domain in R determined by the range [min, max]|, for example [—100, +100].
In (12), nmin = 0 and nmax = 1 while min = —100 and max = +100. These two last bounds can
be modified manually, while nmin and nmax are fixed because they are molar fractions, which have
values between 0 and 1.

nmax — nmin , . )
Ii(t) = m[xi(t) —min| +nmin i€ {1,2,3,..,n} (12)
For the dew point operator, from (5) we obtain (13), where v;(t) is equivalent to x;(t), but in
the binary search space for x;. The molar fraction of the lightest chemical compound in the vapour
is given by (14).

L(t4+1) =

lt o(t)  i€{1,2,3 .1} (13)

v;(t) = %[n(t) — min| 4+ nmin ie€{1,23,..,n} (14)

If o is equal to 5, Equation (11) fills rows 4 and 5 of the search table of decision variable i,
and Equation (13) rows 2 and 1 of same table. The corresponding value in the saturated search space
for the current value in the real domain of the decision variable i, i.e., x;(t), is located in row 3 of
the search table. The evaluation of the objective function is performed by varying the value of one
decision variable by maintaining the values of all the other decision variables of the current solution
to the problem.

The value of x;(t 4 1) is established by the molar fraction of the liquid phase that provides the
best value of the optimization function among the five possible thermodynamic equilibrium states
evaluated for x;. This value is calculated by the inverse transformation (15), which takes the value of
the molar fraction, and converts it into the respective value belonging to the correct search space.

max — min

xi(t+1) = [l;(t + 1) — nmin] + min i€{1,2,3,..,n} (15)

nmax — nmin

For example, consider the search of the optimum of the sphere function using & = 5. If the current
solution in R3 is x; (t) = —3.2, x2(t) = —50.1, and x3(t) = 80.6, the objective function value will be
9016.6; the corresponding values of the molar fractions in R? of each decision variable are /1 3 = 0.484,
13 =0.250, and I 3 = 0.903, respectively. These values are put in the centre row of the corresponding



Appl. Sci. 2018, 8, 2080 12 0f 36

search tables. For each decision variable, the algorithm will build the search tables using the bubble
point and dew point operators, as Figure 7 shows for x,. The molar fractions that correspond to
these liquid mixtures for x; are converted to new possible real values in the iteration ¢ + 1. While the
algorithm is generating the search table of x1, the values of x; and x3 remain unchanged, conserving
the values of the iteration ¢, i.e., —50.1 and 80.6, respectively. The same occurs for x; and x3 when the
search table for x, is built; in this case, the values of x; and x3 remain constant for iteration ¢, and for x3,
it conserves the values of x1 and x. For x, the algorithm evaluates the objective function considering
all possible new equilibrium states, using the real values of each decision variable. Thus, each search
table is completed.

Next, the algorithm explores each search table looking for the minimum value given by the
objective function among the five possible thermodynamic states evaluated for each decision variable.
As we can see in Figure 7, the best and new value for x, will be x(t + 1) = —8.5. The same process
is performed for x; and x3, which results in a new value of 70.3 for x3 in the iteration ¢ + 1; at the
same time, the value for x; does not change, i.e., it remains as 3.2. This new value may appreciate
in the central row of Figure 8. Therefore, the new values for the decision variables at iteration ¢ + 1
willbe xq(t +1) = —3.2, x2(t + 1) = —8.5, and x3(t + 1) = 70.3. With these new values, the objective
function value will be 5032.1. In this case, the algorithm updates the search tables as Figure 8 shows
for xp. In other words, the algorithm centres the new values in row 3 of each table, by scrolling the
records up or down, and completes each search table.

Before starting the search for the next values of the decision variables, i.e., a new feasible solution,
the algorithm updates, records and counts. The procedure continues until no change in the values
for the decision variables is possible using the exploration stage operators. Figure 9 shows the last
iteration for x, during this stage before beginning the exploitation stage.

binary chemical system _______________ 65j_e_éﬁ\;é function
chemical 1/chemical 2 1 !
real domain space : real domain space i
! search fin !
[0,1] : X Xull min-
Tp lp  hp bX Xp X3 f
Xo=X(I ; f=f(X ;
p=1 | | 8400|048 | 0052 PR 55 | 807 | 806 =5l 145480 | |
DewOpir
Xp=X(11 2 f=f(X :
o=2 | |813°|0ss2|o18 U] 55 | 764 806 O 3l 123437 | |
DewOpjr
I1 5=l(x 1) f=f(X 5
p=3 | |76.47| 0750 |0.250 e E 2} 55 | 501 | 806 =05l 00166 | |
BubOp JL X2 t41=X(l1,4)
Xo=xX(l1 4 f=f(X ;
p=t | | 6000|0543 | 0457 U] 55| 55 | 806 =X 5l 65796 ; 85
BubOp New value
' H for xp
Xo=X(1 =f(X ,
o=5 | |63.9°|0313] 0687 U] 55 | 574 | 806 Q) 70061 | |

Figure 7. Movement for x in the exploration: search of x, ;1 starting from x; ;.
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p=2

p=3

p=4

p=5

binary chemical system
chemical 1/chemical 2
real domain space

objective function

real domain space

X2 t+1=X(l1,3)

[0,1] , X1, Xyl
T lp  lp Xo X X2 X3 f(X)
=x(l1,1) i f=f(X)
81.3 |0.882(0.118 > -3.2 ||-76.4 || 70.3 > 10796.2
AN :
DewOp 1
X2 '
=x(ly,2) ! f=f(X)
76.4 |0.751 | 0.249 3 32 ||-50.1 || 70.3 > 7469.1
I\ ;
DewOp :
i3
=l(x2) f=f(X)
69.9 |0.543 |0.457 |« | 32 || -85 || 70.3 > 5032.1
BubOp
Xo
=x(l1,4) ! f=f(X)
63.9 |0.313 |0.687 » -3.2 || 37.4 || 70.3 > 6358.6
BubOp i
\Vi X
=x(ly,5) ! f=f(X)
60.2 | 0.145 [ 0.855 3 32 || 70.9 || 70.3 » 9986.5

-8,5

New value
for xo
Exploit

p=1

p=2

p=

p=

p=5

binary chemical system
chemical 1/chemical 2
real domain space

objective function

real domain space

X2 t+1=X(l4,3)

[0, 1] (i, Xyl
To lp hp 1 ox 1 X X2 X3 £(X)
v=X(ly,q) f=f(X)
81.3 |0.882 [0.118 [ > 32 ||-76.4 || 3.4 > 5859.0
DewOp ﬁ E
Vo X2
r=x(ly2) f=£(X)
76.4 |0.751 | 0.249 |~ > -32 ||-501 || 3.4 > 2531.9
N ;
DewOp : '
Do hs
V=lxop) o f=f(X)
69.9 |0.543 | 0.457 |€ 1 32 || -85 || 34 > 948
BubOp
V_ 1 X
1 =x(l1,4) =f(X)
63.9 |0.313 [0.687 [ > 32 || 374 || 34 > 14213
BubOp JL i :
X2
r=x(l15) ! f=F(X)
60.2 |0.145 | 0.855 |~ > -32 || 709 || 3.4 > 5049.2

-8,5

New value
for xo
Exploit

Figure 9. Final value of x; in the exploration stage: search of x; ;11 starting from x ;.
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5.2.3. Exploitation Stage

In the intensification stage, the new values for the decision variables are obtained by (10),
calculating the previous T¢; and ¢.

For the flash distillation operator, we obtain (16) from (10), where f;(t) corresponds to x;(t), but in
the binary space for x;.

1
s kY

Starting from the last values obtained for the decision variables during the exploration stage,
the flash distillation operator is now applied variable by variable. Thus, the flash distillation

li(t + 1) =

i€{1,2,3,..,n} (16)

temperature for each decision variable has been calculated previously. The flash distillation
temperatures are calculated as the average of the values of the temperatures that provide the two lowest
and nearest values of the objective function, as Figures 10 and 11 show. For example, with regard to
Figure 12 for x, the lowest and nearest values of the objective function are 94.8 and 949.9. To put the
next value for x; in row 3 of the search table, i.e., x1(t + 1), the entire row 3 is moved to row 2 by
updating it, as we can see in Figure 10. Then, considering a binary liquid mixture with a molar fraction
equal to the molar fraction of the vapour that is in equilibrium with the liquid mixture, the flash
distillation temperature translated to row 2 will be Tr; = (Tp2 + Tgp,a)/2. With this temperature,
(10) is solved for ¢. Once ¢ and T4 are calculated, I1 (¢ + 1) is obtained from (16). The value of x;(t + 1)
is calculated by (15), i.e., using the inverse transformation equation. The procedure is repeated several
times until no further change is possible in the downhill direction of the objective function using the
flash operator or until a certain number of worse solutions has been accepted. These solutions will be
accepted while the probability calculated for them is greater than the acceptance probability specified
for this type of solution.

"""" binary chemical system | ©TTTTTT T objective function
chemical 1/chemical 2 : '
real domain space H H real domain space
[0