Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/12288
Títulos: Invariant subspace problem and compact operators on non-Archimedean Banach spaces
Autores/as: Babahmed, M.
El Asri, A.
Palabras clave: Invariant subspace;Hyperinvariant subspace;Compact operator;t-orthogonal basis;Quasi null vector;Triangular operator;Shift operator;Subespacio invariante;Subespacio hiperinvariante;Operador compacto;Base t-ortogonal;Vector cuasi nulo;Operador triangular;Operador de cambio
Fecha de publicación: 2020
Editor/a: Universidad de Extremadura
Resumen: In this paper, the invariant Subspace Problem is studied for the class of non-Archimedean compact operators on an infinite-dimensional Banach space E over a nontrivial complete non-Archimedean valued field K. Our first main result (Theorem 9) asserts that if K is locally compact, then each compact operator on E possessing a quasi null vector admits a nontrivial hyperinvariant closed subspace. In the second one (Theorem 17), we prove that each bounded operator on E which contains a cyclic quasi null vector can be written as the sum of a triangular operator and a compact shift operator, each one of them possesses a nontrivial invariant closed subspace. Finally, we conclude that if K is algebraically closed, then every compact operator on E either has a nontrivial invariant closed subspace or is a sum of upper triangular operator and shift operator, each of them is compact and has a nontrivial invariant closed subspace.
URI: http://hdl.handle.net/10662/12288
DOI: 10.17398/2605-5686.35.2.205
Colección:Extracta Mathematicae Vol. 35, nº 2 (2020)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_35_2_205.pdf396,75 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons