Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/13141
Títulos: | Improved bounds in the scaled Enflo type inequality for Banach Spaces |
Autores/as: | Giladi, Ohad Naor, Assaf |
Palabras clave: | Tipo Rademacher;Caracterización métrica;Rademacher type;Metric characterization |
Fecha de publicación: | 2010 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | It is shown that if (X; ∥ · ∥X) is a Banach space with Rademacher type p ≥ 1 then for every n ∈ N there exists an even integer m . ≲n2-1/p log n such that for every f : ℤₘⁿ → X, Ex;" [ ‖f ( x + m /2 ℰ ) − f(x)‖ₓₚ] .≲X mp Σn j=1 Ex [ ∥f(x + ej) − f(x)∥p X ] ; where the expectation is with respect to uniformly chosen x ∈ ℤₘⁿ and " ∈ {−1; 1}ⁿ. This improves a bounds of m ≲ n₃⁻₂/ₚ=p that was obtained in [7]. The proof is based on an augmentation of the \smoothing and approximation" scheme, which was implicit in [7]. |
URI: | http://hdl.handle.net/10662/13141 |
ISSN: | 0213-8743 |
Colección: | Extracta Mathematicae Vol. 25, nº 2 (2010) |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
0213-8743_25_2_151.pdf | 122,15 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons