Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/13439
Títulos: Convex sets without diametral pairs
Autores/as: Veselý, Libor
Palabras clave: Diametral pair;Bounded closed convex set;Hausdorff metric;Par diametral;Conjunto convexo cerrado acotado;Métrica de Hausdorff
Fecha de publicación: 2009
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: Let X be an infinite dimensional normed linear space. It is not difficult to see that arbitrarily near (in the Hausdorrff metric) to the unit ball of X there exists a nonempty closed convex set whose diameter is not attained. We show that such sets are dense in the metric space of all nonempty bounded closed convex subsets of X if and only if either X is not a reflexive Banach space or X is a reflexive Banach space in which every weakly closed set contained in the unit sphere Sx has empty relative interior in Sx.
URI: http://hdl.handle.net/10662/13439
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 24, nº 3 (2009)

Archivos
Archivo Descripción TamañoFormato 
0213-8743_24_3_271.pdf170,07 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons