Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/13551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarcía Manso, Antonio-
dc.contributor.authorGallardo Caballero, Ramón-
dc.contributor.authorGarcía Orellana, Carlos Javier-
dc.contributor.authorGonzález Velasco, Horacio Manuel-
dc.contributor.authorMacías Macías, Miguel-
dc.date.accessioned2022-02-01T12:08:32Z-
dc.date.available2022-02-01T12:08:32Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10662/13551-
dc.description.abstractBroccoli is a vegetable grown worldwide due to its good nutritional properties. The harvest of this product is done selectively by hand depending on their size and state of maturation for both fresh market and agri-food industry. The final aim of our work is the development of a machine that is able to automatically harvest only those broccoli heads that have the size and ripeness suitable for the agri-food industry, besides discarding those overripe or with diseases. One critical element in such a machine is a vision system that locates and classifies the broccoli heads present in photographic images, to trigger later a cutting module. In this paper, we present an approach to that vision system, based on deep learning techniques. The proposed algorithm, running in a relatively cheap hardware, is able to work in real time, locating broccoli heads in 640 × 480 px digital images, and classifying then into harvestable, immature and wasted classes. Tested with images taken in real conditions, with many heads partially hidden by leaves, the system was able to correctly locate and classify up to 97% of the cases presented in the test set.es_ES
dc.format.extent8 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDeep learninges_ES
dc.subjectObject detectiones_ES
dc.subjectBroccolies_ES
dc.subjectAprendizaje profundoes_ES
dc.subjectDetección de objetoses_ES
dc.subjectBrócolies_ES
dc.titleTowards selective and automatic harvesting of broccoli for agri-food industryes_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco3310.02 Maquinaria Industriales_ES
dc.subject.unesco3103.01 Producción de Cultivoses_ES
dc.subject.unesco3102.04 Maquinas y Aperoses_ES
dc.subject.unesco3107.06 Hortalizases_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationGarcía Manso, A., Gallardo Caballero, R., García Orellana, C.J., González Velasco, H.M. & Macías Macías, M. (2021). Towards selective and automatic harvesting of broccoli for agri-food industry. Computers and Electronics in Agriculture, 188, 106263. https://doi.org/10.1016/j.compag.2021.106263es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Ingeniería Eléctrica, Electrónica y Automáticaes_ES
dc.contributor.affiliationUniversidad de Extremadura. Instituto de Computación Científica Avanzada (ICCAEx)-
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0168169921002805?via%3Dihubes_ES
dc.identifier.doi10.1016/j.compag.2021.106263-
dc.identifier.publicationtitleComputers and Electronics in Agriculturees_ES
dc.identifier.publicationfirstpage106263-1es_ES
dc.identifier.publicationlastpage106263-8es_ES
dc.identifier.publicationvolume188es_ES
dc.identifier.e-issn0168-169-
Appears in Collections:DIEEA - Artículos
ICCAEx - Artículos

Files in This Item:
File Description SizeFormat 
j.compag.2021.106263.pdf12,61 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons