Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/14017
Títulos: On orthocentric systems in strictly convex normed planes
Autores/as: Martini, Horst
Wu, Senlin
Palabras clave: Ortogonalidad de Birkhoff;Bisectriz angular de Busemann;Ortocentro C;Producto interior espacio;Ortogonalidad isósceles;Plano de Minkowski;Espacio lineal normado;Ortocentro;Ortocentro sistema trico;Teorema de los tres circulos;Birkhoff orthogonality;Busemann angular bisector;C-orthocenter;Inner product space;Isosceles orthogonality;Minkowski plane;Normed linear space;Orthocenter;Orthocen- tric system;Three-circles theorem
Fecha de publicación: 2009
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: It has been shown that the three-circles theorem, which is also known as Titeica's or Johnson's theorem, can be extended to strictly convex normed planes, with various ap- plications. From this it follows that the notions of orthocenters and orthocentric systems in the Euclidean plane have natural analogues in strictly convex normed planes. In the present paper (which can be regarded as continuation of [5] and [14]) we derive several new characterizations of the Euclidean plane by studying geometric properties of orthocentric systems in strictly convex normed planes. All these results yield also geometric characterizations of inner product spaces among all real Banach spaces of dimension ≥2 having strictly convex unit balls.
URI: http://hdl.handle.net/10662/14017
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 24, nº 1 (2009)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_24_1_31.pdf229,3 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons