Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/14587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCao, Shuai-Shuai-
dc.contributor.authorLi, Shi-Yi-
dc.contributor.authorGeng, Yuan-Ming-
dc.contributor.authorKapat, Kausik-
dc.contributor.authorLiu, Shang-Bin-
dc.contributor.authorPerera, Fidel Hugo-
dc.contributor.authorLi, Qian-
dc.contributor.authorTerheyden, Hendrik-
dc.contributor.authorWu, Gang-
dc.contributor.authorChe, Yue-Juan-
dc.contributor.authorMiranda González, Pedro-
dc.contributor.authorZhou, Miao-
dc.date.accessioned2022-05-03T11:08:03Z-
dc.date.available2022-05-03T11:08:03Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10662/14587-
dc.description.abstractThe advent of three dimensionally (3D) printed customized bone grafts using different biomaterials has enabled repairs of complex bone defects in various in vivo models. However, studies related to their clinical translations are truly limited. Herein, 3D printed poly(lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant bone morphogenetic protein −2 (rhBMP-2) coating were utilized to repair primate’s large-volume mandibular defects and compared efficacy of prefabricated tissue-engineered bone (PTEB) over direct implantation (without prefabrication). 18F-FDG PET/CT was explored for real-time monitoring of bone regeneration and vascularization. After 3-month’s prefabrication, the original 3D-architecture of the PLGA/TCP-BMP scaffold was found to be completely lost, while it was properly maintained in TCP-BMP scaffolds. Besides, there was a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase in TCP-BMP scaffolds density during ectopic (within latissimus dorsi muscle) and orthotopic (within mandibular defect) implantation, indicating regular bone formation with TCP-BMP scaffolds. Notably, PTEB based on TCP-BMP scaffold was successfully fabricated with pronounced effects on bone regeneration and vascularization based on radiographic, 18F-FDG PET/CT, and histological evaluation, suggesting a promising approach toward clinical translation.es_ES
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China [Grant No. 81671029], the National Major Science and Technology Project of China [Grant No. 2016YFC1102900], the Guangzhou Science, Technology and Innovation Commission [Grant Nos. 201803040008 and 201704030024], the International Team for Implantology [Grant No. 881_2012], the Bureau of Education of Guangzhou Municipality [Grant No. 1201610458], China Scholarship Council (No. 201908440308), Spanish Ministry of Science, Innovation and Universities [Grant No. RTI2018-095566–B-I00], and Junta de Extremadura [Grant No. IB16094]; the last two cofinanced with European Regional Development Funds.es_ES
dc.format.extent12 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherACS (American Chemical Society)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPrefabricationes_ES
dc.subjectBone graftes_ES
dc.subjectMandibular reconstructiones_ES
dc.subject3D printinges_ES
dc.subjectTCPes_ES
dc.subjectPLGA/TCPes_ES
dc.subjectReconstrucción mandibulares_ES
dc.subjectInjerto óseoes_ES
dc.subjectImpresión 3Des_ES
dc.subjectPrefabricaciónes_ES
dc.titlePrefabricated 3D-printed tissue-engineered bone for mandibular reconstruction: A preclinical translational study in primatees_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco2401.01 Anatomía Animales_ES
dc.subject.unesco3109.10 Cirugíaes_ES
dc.subject.unesco2401.18 Mamíferoses_ES
dc.subject.unesco3314.02 Prótesises_ES
dc.subject.unesco3313.24 Maquinaria de Impresión y Reproducciónes_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationCao, S. S., Li, S. Y., Geng, Y. M., Kapat, K., Liu, S. B., Perera, F. H., Li, Q., Terheyden, H., Wu, G., Che, Y. J., Miranda, P., & Zhou, M. (2021). Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate. ACS biomaterials science & engineering, 7(12), 5727–5738. https://doi.org/10.1021/acsbiomaterials.1c00509es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationSun Yat-sen University. Chinaes_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Ingeniería Mecánica, Energética y de los Materialeses_ES
dc.contributor.affiliationUniversity of Amsterdam-
dc.contributor.affiliationVrije Universiteit Amsterdam. Paises Bajos-
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.1c00509es_ES
dc.identifier.doi10.1021/acsbiomaterials.1c00509-
dc.identifier.publicationtitleACS Biomaterials Science and Engineeringes_ES
dc.identifier.publicationissue12es_ES
dc.identifier.publicationfirstpage5727es_ES
dc.identifier.publicationlastpage5738es_ES
dc.identifier.publicationvolume7es_ES
dc.identifier.e-issn2373-9878-
Appears in Collections:DIMEM - Artículos

Files in This Item:
File Description SizeFormat 
acsbiomaterials.1c00509.pdf12,3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons