Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/16120
Títulos: Classiffication of 4-dimensional nilpotent complex Leibniz algebras
Autores/as: Albeverio, S.
Omirov, B.A.
Rakhimov, I.S.
Palabras clave: Álgebras de Leibniz;Álgebras de Lie;Diálgebras;Leibniz Algebras;Lie algebras
Fecha de publicación: 2006
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: In [8] and [9] several classes of new algebras were introduced. Some of them have two generating operations and they are called dialgebras. The first motivation to introduce such algebraic structures (related with well known Lie and associative algebras) were problems in algebraic K-theory. The categories of these algebras over their operads assemble into the com- mutative diagram which re°ects the Koszul duality of those categories. The aim of the present paper is to study structural properties of one class of Lo- day's list, namely the so called Leibniz algebras. Leibniz algebras present a \non-commutative" (to be more precise, a \non- antisymmetric") analogue of Lie algebras.
URI: http://hdl.handle.net/10662/16120
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 21, nº 3 (2006)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_21_3_197.pdf153,12 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons