Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/16134
Títulos: Some invariant subspaces for A-contractions and applications
Autores/as: Suciu, Laurian
Palabras clave: Subespacios invariantes;Contracciones A;Cuasi-isometría;Operador cuasinormal;A-Contractions;Invariant subspace;Quasi-isometry;Quasinormal operator
Fecha de publicación: 2006
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: Some invariant subspaces for the operators A and T acting on a Hilbert space H and satisfying T *AT ≤ A and A ≥ 0, are presented. Especially, the largest invariant subspace for A and T on which the equality T *AT = A occurs, is studied in connections to others invariant or reducing subspaces for A, or T . Such subspaces are related to the asymptotic form of the subspace quoted above, this form being obtained using the operator limit of the sequence {T *ⁿAT ⁿ; n ≥ 1}. More complete results are given in the case when AT = A¹̸²TA¹̸ ². Also, several applications for quasinormal operators are derived, involving their unitary, isometric and quasi-isometric parts, as well as their asymptotic behaviour.
URI: http://hdl.handle.net/10662/16134
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 21, nº 3 (2006)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_21_3_221.pdf214,64 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons