Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/16134
Títulos: | Some invariant subspaces for A-contractions and applications |
Autores/as: | Suciu, Laurian |
Palabras clave: | Subespacios invariantes;Contracciones A;Cuasi-isometría;Operador cuasinormal;A-Contractions;Invariant subspace;Quasi-isometry;Quasinormal operator |
Fecha de publicación: | 2006 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | Some invariant subspaces for the operators A and T acting on a Hilbert space H and satisfying T *AT ≤ A and A ≥ 0, are presented. Especially, the largest invariant subspace for A and T on which the equality T *AT = A occurs, is studied in connections to others invariant or reducing subspaces for A, or T . Such subspaces are related to the asymptotic form of the subspace quoted above, this form being obtained using the operator limit of the sequence {T *ⁿAT ⁿ; n ≥ 1}. More complete results are given in the case when AT = A¹̸²TA¹̸ ². Also, several applications for quasinormal operators are derived, involving their unitary, isometric and quasi-isometric parts, as well as their asymptotic behaviour. |
URI: | http://hdl.handle.net/10662/16134 |
ISSN: | 0213-8743 |
Colección: | Extracta Mathematicae Vol. 21, nº 3 (2006) |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2605-5686_21_3_221.pdf | 214,64 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons