Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/16341
Títulos: | On Tauberian and co-Tauberian operators |
Autores/as: | Dutta, S. Fonf, V.P. |
Palabras clave: | Operadores tauberianos;Operadores co-tauberianos;Espacio Banach;Banach space;Tauberian operators;Co-Tauberian Operators |
Fecha de publicación: | 2006 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | We show that a Banach space X has an infinite dimensional reflexive subspace (quotient) if and only if there exist a Banach space Z and a non- isomorphic one-to-one (dense range) Tauberian (co-Tauberian) operator form X to Z (Z to Z). We also give necessary and sufficient condition for the existence of a Tauberian operator from a separable Banach space to c0 which in turn generalizes a result of Johnson and Rosenthal. Another application of our result shows that if X** is separable, then there exists a renorming of X for which, X is essentially the only subspace contained in the set of norm attaining functionals on X*. |
URI: | http://hdl.handle.net/10662/16341 |
ISSN: | 0213-8743 |
Colección: | Extracta Mathematicae Vol. 21, nº 1 (2006) |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2605-5686_21_1_27.pdf | 170,08 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons