Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/16341
Títulos: On Tauberian and co-Tauberian operators
Autores/as: Dutta, S.
Fonf, V.P.
Palabras clave: Operadores tauberianos;Operadores co-tauberianos;Espacio Banach;Banach space;Tauberian operators;Co-Tauberian Operators
Fecha de publicación: 2006
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: We show that a Banach space X has an infinite dimensional reflexive subspace (quotient) if and only if there exist a Banach space Z and a non- isomorphic one-to-one (dense range) Tauberian (co-Tauberian) operator form X to Z (Z to Z). We also give necessary and sufficient condition for the existence of a Tauberian operator from a separable Banach space to c0 which in turn generalizes a result of Johnson and Rosenthal. Another application of our result shows that if X** is separable, then there exists a renorming of X for which, X is essentially the only subspace contained in the set of norm attaining functionals on X*.
URI: http://hdl.handle.net/10662/16341
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 21, nº 1 (2006)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_21_1_27.pdf170,08 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons