Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/17294
Títulos: | On continuous surjections from Cantor set |
Autores/as: | Cabello Sánchez, Félix |
Palabras clave: | Homeomorfismo;Conjunto de Cantor;Homeomorphism;Cantor set |
Fecha de publicación: | 2004 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | It is a famous result of Alexandroff and Urysohn that every compact metric space is a continuous image of Cantor set ∆. In this short note we complement this result by showing that a certain “uniqueness” property holds. Namely, if (K, d) is a compact metric space and f and g are two continuous mappings from ∆ onto K, then, for every ε > 0 there exists a homeomorphism φ of ∆ such that d(g(x), f (φ(x)) < ε for all x∆. |
URI: | http://hdl.handle.net/10662/17294 |
ISSN: | 0213-8743 |
Colección: | DMATE - Artículos Extracta Mathematicae Vol. 19, nº 3 (2004) |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2605-5686_19_3_335.pdf | 104,4 kB | Adobe PDF | Descargar | |
2605-5686_19_3_335_Abstract.pdf | 51,89 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons