Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/17441
Title: Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold
Authors: Kurek, J.
Mikulski, W.M.
Keywords: Estructuras simplécticas canónicas;Variedad simpléctica;Canonical symplectic structures;Symplectic manifold
Issue Date: 2006
Publisher: Universidad de Extremadura, Servicio de Pubicaciones
Abstract: We describe all canonical 2-forms Ʌ(ω) on the r-th order tangent bundle TʳM = Jʳ ₀ (R, M) of a symplectic manifold (M; ω). As a corollary we deduce that all canonical symplectic structures Ʌ(ω) on TʳM over a symplectic manifold (M; ω) are of the form Ʌ(ω) = Σₖʳ =₀ αₖω(ᴷ) for all real numbers αₖ with αᵣ ≠ 0, where ω(ᴷ) is the (k)-lift (in the sense of A. Morimoto) of ω to TʳM.
URI: http://hdl.handle.net/10662/17441
ISSN: 0213-8743
Appears in Collections:Extracta Mathematicae Vol. 21, nº 2 (2006)

Files in This Item:
File Description SizeFormat 
2605-5686_21_2_159.pdf139,83 kBAdobe PDFView/Open
2605-5686_21_2_159_Abstract.pdf89,91 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons