Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/17441
Title: | Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold |
Authors: | Kurek, J. Mikulski, W.M. |
Keywords: | Estructuras simplécticas canónicas;Variedad simpléctica;Canonical symplectic structures;Symplectic manifold |
Issue Date: | 2006 |
Publisher: | Universidad de Extremadura, Servicio de Pubicaciones |
Abstract: | We describe all canonical 2-forms Ʌ(ω) on the r-th order tangent bundle TʳM = Jʳ ₀ (R, M) of a symplectic manifold (M; ω). As a corollary we deduce that all canonical symplectic structures Ʌ(ω) on TʳM over a symplectic manifold (M; ω) are of the form Ʌ(ω) = Σₖʳ =₀ αₖω(ᴷ) for all real numbers αₖ with αᵣ ≠ 0, where ω(ᴷ) is the (k)-lift (in the sense of A. Morimoto) of ω to TʳM. |
URI: | http://hdl.handle.net/10662/17441 |
ISSN: | 0213-8743 |
Appears in Collections: | Extracta Mathematicae Vol. 21, nº 2 (2006) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2605-5686_21_2_159.pdf | 139,83 kB | Adobe PDF | View/Open | |
2605-5686_21_2_159_Abstract.pdf | 89,91 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License