Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/20057
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPietrocola, Federico-
dc.contributor.authorLachkar, Sylvie-
dc.contributor.authorEnot, David P.-
dc.contributor.authorNiso Santano, Mireia-
dc.contributor.authorBravo San Pedro, José Manuel-
dc.contributor.authorSica, Valentina-
dc.contributor.authorIzzo, Valentina-
dc.contributor.authorMaiuri, Maria Chiara-
dc.contributor.authorMadeo, Frank-
dc.contributor.authorMariño García, Guillermo-
dc.contributor.authorKroemer, Guido-
dc.date.accessioned2024-02-06T12:55:02Z-
dc.date.available2024-02-06T12:55:02Z-
dc.date.issued2015-
dc.identifier.issn1350-9047-
dc.identifier.urihttp://hdl.handle.net/10662/20057-
dc.description.abstractSeveral natural compounds found in health-related food items can inhibit acetyltransferases as they induce autophagy. Here we show that this applies to anacardic acid, curcumin, garcinol and spermidine, all of which reduce the acetylation level of cultured human cells as they induce signs of increased autophagic flux (such as the formation of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta and the depletion of sequestosome-1, p62/SQSTM1) coupled to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1). We performed a screen to identify the acetyltransferases whose depletion would activate autophagy and simultaneously inhibit mTORC1. The knockdown of only two acetyltransferases (among 43 candidates) had such effects: EP300 (E1A-binding protein p300), which is a lysine acetyltranferase, and NAA20 (N(α)-acetyltransferase 20, also known as NAT5), which catalyzes the N-terminal acetylation of methionine residues. Subsequent studies validated the capacity of a pharmacological EP300 inhibitor, C646, to induce autophagy in both normal and enucleated cells (cytoplasts), underscoring the capacity of EP300 to repress autophagy by cytoplasmic (non-nuclear) effects. Notably, anacardic acid, curcumin, garcinol and spermidine all inhibited the acetyltransferase activity of recombinant EP300 protein in vitro. Altogether, these results support the idea that EP300 acts as an endogenous repressor of autophagy and that potent autophagy inducers including spermidine de facto act as EP300 inhibitorses_ES
dc.description.abstractVarios compuestos naturales que se encuentran en alimentos relacionados con la salud pueden inhibir las acetiltransferasas ya que inducen la autofagia. Aquí mostramos que esto se aplica al ácido anacárdico, la curcumina, el garcinol y la espermidina, todos los cuales reducen el nivel de acetilación de células humanas cultivadas, ya que inducen signos de aumento del flujo autofágico (como la formación de proteína 1A asociada a microtúbulos y proteína fluorescente verde). /1B-cadena ligera 3 (GFP-LC3) puncta y el agotamiento del sequestosoma-1, p62/SQSTM1) acoplados a la inhibición de la diana de mamíferos del complejo de rapamicina 1 (mTORC1). Realizamos un cribado para identificar las acetiltransferasas cuyo agotamiento activaría la autofagia y simultáneamente inhibiría mTORC1. La eliminación de sólo dos acetiltransferasas (entre 43 candidatas) tuvo tales efectos: EP300 (proteína p300 de unión a E1A), que es una lisina acetiltransferasa, y NAA20 (N(α)-acetiltransferasa 20, también conocida como NAT5), que cataliza la Acetilación N-terminal de residuos de metionina. Estudios posteriores validaron la capacidad de un inhibidor farmacológico de EP300, C646, para inducir la autofagia tanto en células normales como enucleadas (citoplastos), subrayando la capacidad de EP300 para reprimir la autofagia mediante efectos citoplasmáticos (no nucleares). En particular, el ácido anacárdico, la curcumina, el garcinol y la espermidina inhibieron la actividad acetiltransferasa de la proteína EP300 recombinante in vitro. En conjunto, estos resultados respaldan la idea de que EP300 actúa como un represor endógeno de la autofagia y que los potentes inductores de autofagia, incluida la espermidina, actúan de facto como inhibidores de EP300.es_ES
dc.description.sponsorshipLigue contre le Cancer. Agencia Nacional de Investigación (ANR). Asociación de investigación sobre el Cáncer (ARC). Cancéropôle Ile-de-France. Institut National du Cancer (INCa). Fondation Bettencourt-Schueller. Fondation de France. Fondation pour la Recherche Médicale (FRM). The European Commission (ArtForce). The European Research Council (ERC). The LabEx Immuno-Oncology. The SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE). The SIRIC Cancer. Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). FM is supported by FWF Grants LIPOTOX, P23490- B12, I1000 and P24381-B20. MN-S. is supported by the Fondation pour la Recherche Médicale (FRM).es_ES
dc.description.sponsorshipFM is supported by FWF Grants LIPOTOX, P23490-B12, I1000 and P24381-B20. MN-S. is supported by the Fondation pour la Recherche Médicale (FRM).-
dc.format.extent16 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.subjectAcetiltransferasases_ES
dc.subjectAcetyltransferaseses_ES
dc.subjectAutofagiaes_ES
dc.subjectAutophagyes_ES
dc.subjectEspermidinaes_ES
dc.subjectSpermidinees_ES
dc.titleSpermidine induces autophagy by inhibiting the acetyltransferase EP300.es_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsclosedAccesses_ES
dc.subject.unesco2415 Biología Molecular-
dc.subject.unesco2409 Genética-
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationPIETROCOLA, F., LACHKART, S., ENTO, D.P., NISO-SANTANO, M., BRAVO-SAN PEDRO, J.M., SICA, V., IZZO, V., MAIURI, M.C., MADEO, F., MARIÑO, G., KROEMER, G. (2015). Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death and Differentiation, 22, 509–516. https://doi.org/10.1038/cdd.2014.215es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Bioquímica, Biología Molecular y Genéticaes_ES
dc.contributor.affiliationUniversité Paris-Sorbonne (Paris V). France-
dc.relation.publisherversionhttps://www.nature.com/articles/cdd2014215es_ES
dc.identifier.doi10.1038/cdd.2014.215-
dc.identifier.publicationtitleCell Death & Differentiationes_ES
dc.identifier.publicationissue22es_ES
dc.identifier.publicationfirstpage509es_ES
dc.identifier.publicationlastpage525es_ES
dc.identifier.publicationvolume3es_ES
dc.identifier.e-issn1476-5403-
dc.identifier.orcid0000-0002-6506-422Xes_ES
dc.identifier.orcid0000-0002-8169-140Xes_ES
dc.identifier.orcid0000-0002-5781-1133es_ES
dc.identifier.orcid0000-0003-2770-5847es_ES
dc.identifier.orcid0000-0001-6368-4807es_ES
dc.identifier.orcid0000-0002-5070-1329es_ES
dc.identifier.orcid0000-0003-1960-1677es_ES
dc.identifier.orcid0000-0002-9334-4405es_ES
Appears in Collections:DBYBM - Artículos

Files in This Item:
File Description SizeFormat 
cdd_2014_215.pdf
???org.dspace.app.webui.jsptag.ItemTag.accessRestricted???
2,06 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons