Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/20289
Títulos: A new deep generative network for unsupervised remote sensing single-image super-resolution
Autores/as: Haut Hurtado, Juan Mario
Fernández Beltrán, Rubén
Paoletti Ávila, Mercedes Eugenia
Plaza Miguel, Javier
Plaza, Antonio
Pla, Filiberto
Palabras clave: Sensores remotos;Súper resolución;Redes neuronales convolucionales;Remote sensing;Super-resolution;Convolutional neural networks
Fecha de publicación: 2018
Editor/a: IEEE
Resumen: Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery.
URI: http://hdl.handle.net/10662/20289
ISSN: 0196-2892
DOI: 10.1109/TGRS.2018.2843525
Colección:DTCYC - Artículos

Archivos
Archivo Descripción TamañoFormato 
TGRS_2018_2843525.pdf6,67 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons