Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/20289
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haut Hurtado, Juan Mario | - |
dc.contributor.author | Fernández Beltrán, Rubén | - |
dc.contributor.author | Paoletti Ávila, Mercedes Eugenia | - |
dc.contributor.author | Plaza Miguel, Javier | - |
dc.contributor.author | Plaza, Antonio | - |
dc.contributor.author | Pla, Filiberto | - |
dc.date.accessioned | 2024-02-07T11:50:01Z | - |
dc.date.available | 2024-02-07T11:50:01Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 0196-2892 | - |
dc.identifier.uri | http://hdl.handle.net/10662/20289 | - |
dc.description.abstract | Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery. | en_Us |
dc.description.sponsorship | This paper has been supported by Ministerio de Educación (Resolución de 26 de diciembre de 2014 y de 19 de noviembre de 2015, de la Secretaría de Estado de Educación, Formación Profesional y Universidades, por la que se convocan ayudas para la formación de profesorado universitario, de los subprogramas de Formación y de Movilidad incluidos en el Programa Estatal de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016. This work has also been supported by Junta de Extremadura (decreto 297/2014, ayudas para la realización de actividades de investigación y desarrollo tecnológico, de divulgación y de transferencia de conocimiento por los Grupos de Investigación de Extremadura, Ref. GR15005). This work has been additionally supported by the Generalitat Valenciana through the contract APOSTD/2017/007 and by the Spanish Ministry of Economy under the project ESP2016-79503-C2-2-P. (Corresponding author: J.M. Haut.) | - |
dc.format.extent | 20 p. | es_ES |
dc.format.mimetype | application/pdf | en_US |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | - |
dc.rights | Atribución 4.0 Internacional | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Sensores remotos | es_ES |
dc.subject | Súper resolución | es_ES |
dc.subject | Redes neuronales convolucionales | es_ES |
dc.subject | Remote sensing | en_Us |
dc.subject | Super-resolution | en_Us |
dc.subject | Convolutional neural networks | en_Us |
dc.title | A new deep generative network for unsupervised remote sensing single-image super-resolution | es_ES |
dc.type | article | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | openAccess | es_ES |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | - |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | J. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza, A. Plaza and F. Pla, "A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp. 6792-6810, Nov. 2018, doi: 10.1109/TGRS.2018.2843525 | - |
dc.type.version | publishedVersion | - |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Tecnología de los Computadores y de las Comunicaciones | es_ES |
dc.contributor.affiliation | Universidad Jaume I | es_ES |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8400496 | - |
dc.identifier.doi | 10.1109/TGRS.2018.2843525 | - |
dc.identifier.publicationtitle | IEEE Transactions on Geoscience and Remote Sensing | es_ES |
dc.identifier.publicationissue | 11 | - |
dc.identifier.publicationfirstpage | 6792 | es_ES |
dc.identifier.publicationlastpage | 6810 | es_ES |
dc.identifier.publicationvolume | 56 | es_ES |
dc.identifier.e-issn | 1558-0644 | - |
dc.identifier.orcid | 0000-0001-6701-961X | es_ES |
dc.identifier.orcid | 0000-0003-1030-3729 | - |
dc.identifier.orcid | 0000-0002-2384-9141 | - |
dc.identifier.orcid | 0000-0002-9613-1659 | - |
Appears in Collections: | DTCYC - Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TGRS_2018_2843525.pdf | 6,67 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License