Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/20289
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHaut Hurtado, Juan Mario-
dc.contributor.authorFernández Beltrán, Rubén-
dc.contributor.authorPaoletti Ávila, Mercedes Eugenia-
dc.contributor.authorPlaza Miguel, Javier-
dc.contributor.authorPlaza, Antonio-
dc.contributor.authorPla, Filiberto-
dc.date.accessioned2024-02-07T11:50:01Z-
dc.date.available2024-02-07T11:50:01Z-
dc.date.issued2018-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/10662/20289-
dc.description.abstractSuper-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery.en_Us
dc.description.sponsorshipThis paper has been supported by Ministerio de Educación (Resolución de 26 de diciembre de 2014 y de 19 de noviembre de 2015, de la Secretaría de Estado de Educación, Formación Profesional y Universidades, por la que se convocan ayudas para la formación de profesorado universitario, de los subprogramas de Formación y de Movilidad incluidos en el Programa Estatal de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016. This work has also been supported by Junta de Extremadura (decreto 297/2014, ayudas para la realización de actividades de investigación y desarrollo tecnológico, de divulgación y de transferencia de conocimiento por los Grupos de Investigación de Extremadura, Ref. GR15005). This work has been additionally supported by the Generalitat Valenciana through the contract APOSTD/2017/007 and by the Spanish Ministry of Economy under the project ESP2016-79503-C2-2-P. (Corresponding author: J.M. Haut.)-
dc.format.extent20 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherIEEE-
dc.rightsAtribución 4.0 Internacional-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectSensores remotoses_ES
dc.subjectSúper resoluciónes_ES
dc.subjectRedes neuronales convolucionaleses_ES
dc.subjectRemote sensingen_Us
dc.subjectSuper-resolutionen_Us
dc.subjectConvolutional neural networksen_Us
dc.titleA new deep generative network for unsupervised remote sensing single-image super-resolutiones_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco3304 Tecnología de Los Ordenadores-
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationJ. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza, A. Plaza and F. Pla, "A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp. 6792-6810, Nov. 2018, doi: 10.1109/TGRS.2018.2843525-
dc.type.versionpublishedVersion-
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Tecnología de los Computadores y de las Comunicacioneses_ES
dc.contributor.affiliationUniversidad Jaume Ies_ES
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8400496-
dc.identifier.doi10.1109/TGRS.2018.2843525-
dc.identifier.publicationtitleIEEE Transactions on Geoscience and Remote Sensinges_ES
dc.identifier.publicationissue11-
dc.identifier.publicationfirstpage6792es_ES
dc.identifier.publicationlastpage6810es_ES
dc.identifier.publicationvolume56es_ES
dc.identifier.e-issn1558-0644-
dc.identifier.orcid0000-0001-6701-961Xes_ES
dc.identifier.orcid0000-0003-1030-3729-
dc.identifier.orcid0000-0002-2384-9141-
dc.identifier.orcid0000-0002-9613-1659-
Appears in Collections:DTCYC - Artículos

Files in This Item:
File Description SizeFormat 
TGRS_2018_2843525.pdf6,67 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons