Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/20324
Registro completo de Metadatos
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Paoletti Ávila, Mercedes Eugenia | - |
dc.contributor.author | Haut Hurtado, Juan Mario | - |
dc.contributor.author | Fernández Beltrán, Rubén | - |
dc.contributor.author | Plaza Miguel, Javier | - |
dc.contributor.author | Plaza, Antonio | - |
dc.contributor.author | Pla, Filiberto | - |
dc.date.accessioned | 2024-02-07T12:37:44Z | - |
dc.date.available | 2024-02-07T12:37:44Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 0196-2892 | - |
dc.identifier.uri | http://hdl.handle.net/10662/20324 | - |
dc.description.abstract | Convolutional neural networks (CNNs) have recently exhibited an excellent performance in hyperspectral image classification tasks. However, the straightforward CNN-based network architecture still finds obstacles when effectively exploiting the relationships between hyperspectral imaging (HSI) features in the spectral-spatial domain, which is a key factor to deal with the high level of complexity present in remotely sensed HSI data. Despite the fact that deeper architectures try to mitigate these limitations, they also find challenges with the convergence of the network parameters, which eventually limit the classification performance under highly demanding scenarios. In this paper, we propose a new CNN architecture based on spectral-spatial capsule networks in order to achieve a highly accurate classification of HSIs while significantly reducing the network design complexity. Specifically, based on Hinton's capsule networks, we develop a CNN model extension that redefines the concept of capsule units to become spectral-spatial units specialized in classifying remotely sensed HSI data. The proposed model is composed by several building blocks, called spectral-spatial capsules, which are able to learn HSI spectral-spatial features considering their corresponding spatial positions in the scene, their associated spectral signatures, and also their possible transformations. Our experiments, conducted using five well-known HSI data sets and several state-of-the-art classification methods, reveal that our HSI classification approach based on spectral-spatial capsules is able to provide competitive advantages in terms of both classification accuracy and computational time. | en_Us |
dc.format.extent | 17 p. | es_ES |
dc.format.mimetype | application/pdf | en_US |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | - |
dc.rights | Atribución 4.0 Internacional | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Imagen hiperespectral | es_ES |
dc.subject | Red neuronal convolucional | es_ES |
dc.subject | Redes de cápsulas | es_ES |
dc.subject | Hyperspectral imaging | en_Us |
dc.subject | Convolutional neural networks | en_Us |
dc.subject | Capsule networks | en_Us |
dc.title | Capsule networks for hyperspectral image classification | en_US |
dc.type | article | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | openAccess | - |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | - |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | M. E. Paoletti et al., "Capsule Networks for Hyperspectral Image Classification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 4, pp. 2145-2160, April 2019, doi: 10.1109/TGRS.2018.2871782 | - |
dc.type.version | publishedVersion | - |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Tecnología de los Computadores y de las Comunicaciones | - |
dc.contributor.affiliation | Universidad Jaume I | - |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8509610 | - |
dc.identifier.publicationtitle | IEEE Transactions on Geoscience and Remote Sensing | es_ES |
dc.identifier.publicationissue | 4 | - |
dc.identifier.publicationfirstpage | 2145 | es_ES |
dc.identifier.publicationlastpage | 2160 | es_ES |
dc.identifier.publicationvolume | 57 | es_ES |
dc.identifier.e-issn | 1558-0644 | - |
dc.identifier.orcid | 0000-0003-1030-3729 | es_ES |
dc.identifier.orcid | 0000-0001-6701-961X | - |
dc.identifier.orcid | 0000-0002-2384-9141 | - |
dc.identifier.orcid | 0000-0002-9613-1659 | - |
Colección: | DTCYC - Artículos |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TGRS_2018_2871782.pdf | 2,01 MB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons