Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/21125
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Naranjo, Lizbeth | - |
dc.contributor.author | Esparza, Luz Judith R. | - |
dc.contributor.author | Pérez Sánchez, Carlos Javier | - |
dc.date.accessioned | 2024-04-29T17:19:32Z | - |
dc.date.available | 2024-04-29T17:19:32Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 2227-7390 | - |
dc.identifier.uri | http://hdl.handle.net/10662/21125 | - |
dc.description.abstract | A Bayesian approach was developed, tested, and applied to model ordinal response data in monotone non-decreasing processes with measurement errors. An inhomogeneous hidden Markov model with continuous state-space was considered to incorporate measurement errors in the categorical response at the same time that the non-decreasing patterns were kept. The computational difficulties were avoided by including latent variables that allowed implementing an efficient Markov chain Monte Carlo method. A simulation-based analysis was carried out to validate the approach, whereas the proposed approach was applied to analyze aortic aneurysm progression data. | es_ES |
dc.description.sponsorship | This research was supported by Agencia Estatal de Investigación, Spain (Project MTM2017-86875-C3-2-R), UNAM-DGAPA-PAPIIT , Mexico (Project IN118720), Junta de Extremadura, Spain (Projects IB16054 and GR18108), and the European Union (European Regional Development Funds) | es_ES |
dc.format.extent | 12 p. | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Bayesian analysis | es_ES |
dc.subject | Conditional independence | es_ES |
dc.subject | Hidden Markov model | es_ES |
dc.subject | Measurement error | es_ES |
dc.subject | Misclassification | es_ES |
dc.subject | Monotone continuous process | es_ES |
dc.subject | Ordinal response | es_ES |
dc.subject | Análisis bayesiano | es_ES |
dc.subject | Independencia condicional | es_ES |
dc.subject | Error de medición | es_ES |
dc.subject | Modelo oculto de Markov | es_ES |
dc.subject | Modelo de respuesta ordinal | es_ES |
dc.title | A Hidden Markov Model to Address Measurement Errors in Ordinal Response Scale and Non-Decreasing Process | es_ES |
dc.type | article | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | openAccess | es_ES |
dc.subject.unesco | 1208.06 Procesos de Markov | es_ES |
dc.subject.unesco | 1208 Probabilidad | es_ES |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | Naranjo, L.; Esparza, L.J.R.; Pérez, C.J. A Hidden Markov Model to Address Measurement Errors in Ordinal Response Scale and Non-Decreasing Process. Mathematics 2020, 8, 622. https://doi.org/10.3390/math8040622 | es_ES |
dc.type.version | publishedVersion | es_ES |
dc.contributor.affiliation | Universidad Nacional Autónoma de México | es_ES |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Matemáticas | es_ES |
dc.contributor.affiliation | Universidad Autónoma de Aguascalientes. México | - |
dc.relation.publisherversion | https://www.mdpi.com/2227-7390/8/4/622 | es_ES |
dc.identifier.doi | 10.3390/math8040622 | - |
dc.identifier.publicationtitle | Mathematics | es_ES |
dc.identifier.publicationissue | 4 | es_ES |
dc.identifier.publicationfirstpage | 622-1 | es_ES |
dc.identifier.publicationlastpage | 622-12 | es_ES |
dc.identifier.publicationvolume | 8 | es_ES |
dc.identifier.orcid | 0000-0001-6385-9080 | es_ES |
Appears in Collections: | DMATE - Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
math8040622.pdf | 849,88 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License