Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/21125
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaranjo, Lizbeth-
dc.contributor.authorEsparza, Luz Judith R.-
dc.contributor.authorPérez Sánchez, Carlos Javier-
dc.date.accessioned2024-04-29T17:19:32Z-
dc.date.available2024-04-29T17:19:32Z-
dc.date.issued2020-
dc.identifier.issn2227-7390-
dc.identifier.urihttp://hdl.handle.net/10662/21125-
dc.description.abstractA Bayesian approach was developed, tested, and applied to model ordinal response data in monotone non-decreasing processes with measurement errors. An inhomogeneous hidden Markov model with continuous state-space was considered to incorporate measurement errors in the categorical response at the same time that the non-decreasing patterns were kept. The computational difficulties were avoided by including latent variables that allowed implementing an efficient Markov chain Monte Carlo method. A simulation-based analysis was carried out to validate the approach, whereas the proposed approach was applied to analyze aortic aneurysm progression data.es_ES
dc.description.sponsorshipThis research was supported by Agencia Estatal de Investigación, Spain (Project MTM2017-86875-C3-2-R), UNAM-DGAPA-PAPIIT , Mexico (Project IN118720), Junta de Extremadura, Spain (Projects IB16054 and GR18108), and the European Union (European Regional Development Funds)es_ES
dc.format.extent12 p.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectBayesian analysises_ES
dc.subjectConditional independencees_ES
dc.subjectHidden Markov modeles_ES
dc.subjectMeasurement errores_ES
dc.subjectMisclassificationes_ES
dc.subjectMonotone continuous processes_ES
dc.subjectOrdinal responsees_ES
dc.subjectAnálisis bayesianoes_ES
dc.subjectIndependencia condicionales_ES
dc.subjectError de mediciónes_ES
dc.subjectModelo oculto de Markoves_ES
dc.subjectModelo de respuesta ordinales_ES
dc.titleA Hidden Markov Model to Address Measurement Errors in Ordinal Response Scale and Non-Decreasing Processes_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1208.06 Procesos de Markoves_ES
dc.subject.unesco1208 Probabilidades_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationNaranjo, L.; Esparza, L.J.R.; Pérez, C.J. A Hidden Markov Model to Address Measurement Errors in Ordinal Response Scale and Non-Decreasing Process. Mathematics 2020, 8, 622. https://doi.org/10.3390/math8040622es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversidad Nacional Autónoma de Méxicoes_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Matemáticases_ES
dc.contributor.affiliationUniversidad Autónoma de Aguascalientes. México-
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/4/622es_ES
dc.identifier.doi10.3390/math8040622-
dc.identifier.publicationtitleMathematicses_ES
dc.identifier.publicationissue4es_ES
dc.identifier.publicationfirstpage622-1es_ES
dc.identifier.publicationlastpage622-12es_ES
dc.identifier.publicationvolume8es_ES
dc.identifier.orcid0000-0001-6385-9080es_ES
Appears in Collections:DMATE - Artículos

Files in This Item:
File Description SizeFormat 
math8040622.pdf849,88 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons