Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/21278
Registro completo de Metadatos
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Chacón Durán, José Enrique | - |
dc.contributor.author | Fernández Serrano, Javier | - |
dc.date.accessioned | 2024-05-22T07:43:08Z | - |
dc.date.available | 2024-05-22T07:43:08Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/10662/21278 | - |
dc.description | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature | es_ES |
dc.description.abstract | Bump hunting deals with finding in sample spaces meaningful data subsets known as bumps. These have traditionally been conceived as modal or concave regions in the graph of the underlying density function. We define an abstract bump construct based on curvature functionals of the probability density. Then, we explore several alternative characterizations involving derivatives up to second order. In particular, a suitable implementation of Good and Gaskins’ original concave bumps is proposed in the multivariate case. Moreover, we bring to exploratory data analysis concepts like the mean curvature and the Laplacian that have produced good results in applied domains. Our methodology addresses the approximation of the curvature functional with a plug-in kernel density estimator. We provide theoretical results that assure the asymptotic consistency of bump boundaries in the Hausdorff distance with affordable convergence rates. We also present asymptotically valid and consistent confidence regions bounding curvature bumps. The theory is illustrated through several use cases in sports analytics with datasets from the NBA, MLB and NFL. We conclude that the different curvature instances effectively combine to generate insightful visualizations. | es_ES |
dc.description.sponsorship | The first author’s research has been supported by the MICINN grant PID2019-109387GB-I00 and the Junta de Extremadura grant GR21044 | es_ES |
dc.format.extent | 25 p. | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Búsqueda de protuberancias | es_ES |
dc.subject | Concavidad | es_ES |
dc.subject | Estimación de derivadas | es_ES |
dc.subject | Densidad del kernel | es_ES |
dc.subject | Curvatura gaussiana | es_ES |
dc.subject | Curvatura media | es_ES |
dc.subject | Bump hunting | es_ES |
dc.subject | Concavity | es_ES |
dc.subject | Gaussian curvature | es_ES |
dc.subject | Kernel density | es_ES |
dc.subject | Derivative estimation | es_ES |
dc.subject | Laplacian | es_ES |
dc.subject | Mean curvature | es_ES |
dc.title | Bump hunting through density curvature features | es_ES |
dc.type | article | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | openAccess | es_ES |
dc.subject.unesco | 12 Matemáticas | es_ES |
dc.subject.unesco | 1209 Estadística | es_ES |
dc.subject.unesco | 1208.02 Teoría Analítica de la Probabilidad | es_ES |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | Chacón, J.E., Fernández Serrano, J. Bump hunting through density curvature features. TEST 32, 1251–1275 (2023). https://doi.org/10.1007/s11749-023-00872-z | es_ES |
dc.type.version | publishedVersion | es_ES |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Matemáticas | es_ES |
dc.contributor.affiliation | Universidad Autónoma de Madrid | - |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11749-023-00872-z | es_ES |
dc.identifier.doi | 10.1007/s11749-023-00872-z | - |
dc.identifier.publicationtitle | TEST | es_ES |
dc.identifier.publicationfirstpage | 1251 | es_ES |
dc.identifier.publicationlastpage | 1275 | es_ES |
dc.identifier.publicationvolume | 32 | es_ES |
dc.identifier.e-issn | 1133-0686 | - |
dc.identifier.orcid | 0000-0002-3675-1960 | es_ES |
Colección: | DMATE - Artículos |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
s11749_023_00872_z.pdf | 1,57 MB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons